

Advances on Pod and Stem Blight of Soybean (*Diaporthe Phaseolorum* var. *Sojae* and *Phomopsis Longicolla*) in Argentina

ISSN: 2637-7659

 Rosanna N Pioli^{1,3*}, Facundo Hernández² and Guillermo Pratta^{3,4}
¹Department of Phytopathology, BioVyM-FRE (IICAR), Argentina

²Independent Professional, Argentina

³Faculty of Agricultural Sciences, National Council for Scientific and Technical Research, Institute for Agricultural Sciences Research of Rosario, National University of Rosario (IICAR), Argentina

⁴Department of Genetics, Argentina

Abstract

The *Diaporthe/Phomopsis* complex, composed of *D. phaseolorum* var. *sojae* and *P. longicolla*, causes the Soybean Stem Blight (SSB) and Seed Decay (SD), which affect seed quality worldwide. This study synthesizes recent advances in the taxonomy and epidemiology of the complex, identifying seeds and crop residues as main sources of primary inoculum. An integrated approach was employed, combining morphological characterization with molecular tools (ITS, RAPD and SNP), to resolve taxonomic ambiguities and validate the isolates. This research analyzed also pathogenic variability by GGE Biplot and allowed to detect markers associated with virulence patterns. Finally, the most recent advances regarding the identification of the resistance gene *Rpsb1*, which exhibits Mendelian inheritance, are discussed. It was demonstrated that stalk resistance (PSB) is genetically independent of the *Rpsd* genes linked to Seed Decay (SD). These advances provide a solid genetic foundation for plant breeding, enabling the development of cultivars with specific resistance to improving soybean crop health.

Keywords: *Glycine max-*phomopsis* sp. interactions*, *F1 validation by SNP*, *Resistance to soybean stem blight and seed decay*

Causal Agents

Diaporthe phaseolorum (Cke. & Ell.) Sacc. var. *sojae* (Lehman) Wehm. [teleomorph].

Phomopsis phaseoli var. *sojae* Leh. [anamorph].

Phomopsis longicolla (not detected *Diaporthe* Teleomorph)

Taxonomy

Domain: *Eukaryota*

Kingdom: *Fungi*

Phylum: *Ascomycota*

Class: *Ascomycetes*

Subclass: *Sordariomycetidae*

Order: *Diaporthales*

Family: *Valsaceae*

***Corresponding author:** Rosanna N Pioli, Faculty of Agricultural Sciences, National Council for Scientific and Technical Research, Institute for Agricultural Sciences Research of Rosario, National University of Rosario (IICAR), Argentina

Submission: December 30, 2025

Published: January 22, 2026

Volume 15 - Issue 4

How to cite this article: Rosanna N Pioli*, Facundo Hernández and Guillermo Pratta. Advances on Pod and Stem Blight of Soybean (*Diaporthe Phaseolorum* var. *Sojae* and *Phomopsis Longicolla*) in Argentina. *Mod Concep Dev Agrono.* 15(4). MCDA. 000870. 2026.

DOI: [10.31031/MCDA.2026.15.000870](https://doi.org/10.31031/MCDA.2026.15.000870)

Copyright@ Rosanna N Pioli, This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Introduction

Diaporthe phaseolorum var. *sojae* (Dps) and (Plo) were isolated from leaves, pods, seeds and stems of soybean and occasionally from flowers and roots [1-3]. According to data from the 2006-2009 period, the most frequent isolates obtained from soybeans with Pod and stem blight symptoms were identified as *P. longicolla* [4]. *Phomopsis longicolla* and *Phomopsis sojae* produce light brown spots on the cotyledons and lower stem. Later, pod and stem show blight and pycnidia on the main stem. Seeds infected with *P. longicolla* or *D. phaseolorum* var. *sojae* are frequently flattened, wrinkled, discolored and smaller than non-infected seeds [5]. They may also exhibit various degrees of cracking on the seed coat, shriveling, and frequently are covered with a white mold [6,7]. *D. phaseolorum* (Cke. & Ell.) Sacc. var. *sojae* (Lehm.) Wehm. (*D. sojae* Lehm.), anamorph *Phomopsis sojae* (Lehm.) or *Phomopsis phaseoli* var. *sojae*, was generally accepted as the cause of pod and stem blight. This species is known to infect numerous host plants such as alfalfa stems, *Abelmoschus esculentus* (Malvaceae), *Arachis hypogaea* (Fabaceae), *Camptotheca acuminata* (Nyssaceae), *Capsicum annuum*, *Capsicum frutescens* var. *grossum* (Solanaceae), *Citrus* spp. (Rutaceae), *Cucumis melo* (Cucurbitaceae), *Glycine max* (Fabaceae), *Helianthus annuus* (Asteraceae), *Lespedeza* spp. (Fabaceae), *Solanum lycopersicum* (Solanaceae), *Melilotus* spp. (Fabaceae), *Phaseolus lunatus* (Fabaceae), *Phaseolus vulgaris* (Fabaceae), *Stokesia laevis* (Asteraceae), *Strophostyles helvola* (Fabaceae), *Vigna sinensis* (Leguminosae), *Vitis vinifera* (Vitaceae) [8-10].

Therefore, Dps was identified as a species complex. Detailed descriptions of asexual and sexual morphs are available in Lehman [11] and Udayanga et al. [8]. Pathogenicity data on different hosts are available in Dissanayake et al. [9], Udayanga et al. [8]. In the phylogenetic tree of Norphanphoun et al. [12], *Diaporthe sojae* clustered in the *D. sojae* species complex. Regarding the *D. sojae* species complex observed in the same study, there is a possibility that this complex may comprise multiple complexes or encompass several distinct and well-delimited species. On the other hand, Kmetz et al. [13] gave evidence on a *Phomopsis* spp. related predominantly to soybean seed decay, recognized as a separate and distinct component of the pod and stem blight. Hobbs et al. [14] provided a full morphological description of *Phomopsis* spp. sensu Kmetz and established its name as *Phomopsis longicolla* Hobbs. Numerous morphological and physiological differences as size and shape of stromata, conidiomata formation, pycnidial locula appearance, and conidiophora branches served, also, to separate *Phomopsis longicolla* from *Phomopsis sojae* [15]. The teleomorph (perithecial stage) of *Phomopsis longicolla* has never been found [2,14,16,17]. It has several hosts as *Abutilon Theophrasti* (Malvaceae), *Ambrosia trifida* (Asteraceae), *Euphorbia maculata* (Euphorbiaceae), *Rumex crispus* (Polygonaceae), *Xanthium strumarium* (Asteraceae), *Arachis hypogaea* (Fabaceae), *Aster exilis* (Compositae), *Caperonia palustris* (Euphorbiaceae), *Desmanthus illinoensis* (Fabaceae), *Eclipta prostrata* (Asteraceae), *Euphorbia nutans* (Euphorbiaceae), *Glycine max* (Fabaceae), *Ipomoea lacunosa* (Convolvulaceae), *Plectranthus scutellarioides* (Lamiaceae), *Polygonum aviculare* (Polygonaceae), *Sida spinosa* (Malvaceae), *Chamaesyce nutans* (Euphorbiaceae).

This species was introduced as *Phomopsis longicolla* by Hobbs et al. [14] from the seeds, pods, and stems of *Glycine max* in USA. The conidiomata are pycnidial, black, stromatic, solitary or aggregated, with an apical ostiole. Locules are uniostiolate or multiostiolate, globose and up to 500µm wide. Alpha conidia are hyaline, ellipsoid to fusiform, 5-9.5×1.5-3.5µm. *Phomopsis longicolla* was synonymized as *Diaporthe* by Santos et al. even though the teleomorph has not detected yet. Additionally, Zhang et al. [18] inferred the phylogeny of the *Diaporthe/Phomopsis* complex on soybean based on the nucleotide sequence divergence in the internal transcribed spacers of the ribosomal DNA. These authors suggested that *P. longicolla* is an individual species, meanwhile *D. phaseolorum* var. *caulivora* and *D. phaseolorum* var. *meridionalis* are varieties of *D. phaseolorum*, and *D. phaseolorum* var. *sojae* is either several varieties of *D. phaseolorum* or possibly several distinct species. Considering the intricate nature of this group, it would be valuable to conduct further investigations using GMYC, PTP analyses, and phylogenetic network approaches [12], including bio morphological characterization, as a necessary complement to establish the relationship between the observation of natural biological structures and molecular studies [19]. These methods can provide insights into the genetic relationships and boundaries of closely related taxa, helping to clarify the structure of the *D. sojae* complex.

Dissemination and Sources of Inoculum

Natural dispersal

Soybean seeds and crop residues were formerly recognized as sources of inoculum for *D. phaseolorum* var. *sojae* and *Phomopsis* spp. [11,20]. All colonized tissues are potential sources of primary inoculum, although the bulk of primary inoculum appears to originate from over-wintered or over-summered crop debris [21,22].

Seedborne spread

An effective way to introduce *Phomopsis* into new areas fungus-free is the movement of infected potentially seeds [1,21]. However, seed-borne inoculum, even on 77% of incidence; was not related to infections on either seedlings or mature plants in fields with continuous soybean or corn-soybean rotation, which indicated that seeds were a minor inoculum source [21]. These results allowed us to infer that soybean infected residues with *Phomopsis* are the major inoculum sources for pod and stem blight [20,21,23]. Similar results were obtained in Santa Fe, Argentina where continuous-soybean rotation increased the incidence of *Phomopsis* when compared with corn-soybean rotation [24].

Impact of Disease

Economic impact

Human consumption of cooked soybeans and soy flour may help alleviate global protein deficiency, especially in high populating developing countries [25]. Therefore, soybean seed quality, judged by germination and general appearance of the seed has been relevant aspects to consider in many of the soybean-growing

areas of the world. However, tropical areas with high rainfall and temperature favor the development of seed-borne *Diaporthe phaseolorum* var. *sojae* (*Phomopsis sojae*) and *P. longicolla*, their broad distribution and high frequency deserve careful attention. Formerly, pod and stem blight was cited as a common disease in Illinois, Iowa, Indiana, USA, and Ontario, Canada [26-29]. Later, in Midwestern Maryland and Delaware this fungus was considered the predominant organism associated with low seed quality [6]. Louisiana, bio-assayed for internally borne pathogens, showed 97% infection with *D. phaseolorum* var. *sojae* [5]. In Illinois, seeds of soybean with symptoms of stem pod blight infection were smaller in size and volume, lower in density, produced lower quality oil and flour and had lower viability and durability than symptomless seeds. Oil from infected seeds had rancid off smell, and a high peroxide value, indicating oil deterioration [30]. *Phomopsis* seed decay and stem canker constitute diseases that more severely affect soybean seed quality and yield, and they are present in almost every region of soybean production in the world [22]. In South America *Phomopsis sojae* was identified on naturally infected soybean plants in Argentina (Memoria anual 1979), in Brazil (Castro and Kimati, 1981; Almeida, 1981; Berger and Hinson, 1984), and pathogenicity was confirmed in Venezuela (Sanabria de Albarracin, 1993). Other studies also reported the importance of *Phomopsis* spp. (*P. sojae*, *P. longicolla*, *Phomopsis* spp.) as seed-borne pathogen associated to green seed soybean (*eda mamé*) [31]; native forest species [32] and the epidemiological role of the infection progress and colonized tissues by this fungus in the core of soybean area [3,33].

Effect on seed quality

Infection of soybean seeds by the *Diaporthe/Phomopsis* complex decreases physiological quality and viability leading to significant losses in germination [34]. Oil extracted from infected seeds typically has a lower quality, characterized by a rancid smell and a high peroxide value, which indicates oil deterioration [30,35]. And the quality of the produced flour was also diminished. For horticultural use such as vegetable soybean or edamame, infected pods and seeds are considered unsuited for consumption due to these qualitative defects [17,31,36]. Consequently, the presence of these pathogens impacts not only on the seed's health but also on its overall weight, industrial utility, and commercial value [17,22].

Phytosanitary risk

Prior to 1960 *Phomopsis sojae* was considered of little importance to soybean production [26,29,37,38]. Since that time significant germination losses have been reported in heavily infected seed lots in the USA and Canada [5,39-41]. Later *Phomopsis sojae* was recognized as a major cause of moldy, poorly germinating soybean seeds in Brazil, Canada, and USA [42-46]. *Phomopsis* seed infection often exceeds 50% on susceptible cultivars when the harvest is delayed [34,40,42]. Latent infection by *Phomopsis sojae* has also been found in symptomless soybean plants [33]. It contributes to the fungus capacity to over-winter on crop debris and would have epidemiological importance. Also, as seeds are important source of inoculum that may perpetuate the pathogen, seed treatment was considered necessary even for good quality asymptomatic seeds [30]. In this context, *Diaporthe/Phomopsis*

(DP) is a complex that comprises over 900 species characterized by high genetic diversity and a broad host range, including industrial crops and native forests. As hemi-biotrophic pathogens, these fungi establish versatile nutritional strategies-transitioning between endophyte, necrotrophy, saprophytism, and parasitism-often maintaining a latent endophytic phase before manifesting symptoms [17,33].

In Argentina, *Phomopsis longicolla* (Plo) and *P. phaseoli* var. *sojae* (Pps) (Teleomorph *Diaporthe phaseolorum* var. *sojae*, Dps) are the primary species associated with soybean, as well as horticultural varieties intended for fresh consumption or edamame [31]. Their interaction leads to Stem and Pod Blight and Seed Decline (TTVys), drastically reducing seed weight and quality. While Pps possesses a known teleomorph (sexual) stage, Plo has only been observed in its anamorphic form. Both species utilize stubble and seeds as primary inoculum sources, and their biological plasticity allows them to colonize diverse agro-ecosystems, even affecting the seed germination of tree species like *Schinopsis balansae* [32,33]. The biological plasticity of this complex has facilitated its expansion into diverse agro-ecosystems, the transmission through seeds and long-distance transport increasing the epidemiological risk; thus constituted the main pathways to introduce inoculum into plots previously free of the disease [17]. Molecular studies revealed significant genetic variability within the complex, favoring the emergence of new physiological races with enhanced parasitic capacity. This diversity in both fungal and plant germplasm complicates disease management. Consequently, Argentine research has pivoted toward characterizing specific sources of resistance to Stem Blight.

Identification based on morphological and molecular tools

To resolve taxonomic ambiguities, an approach combining morphological characterization with molecular tools was employed to evaluate Argentine isolates of Plo and Pps from different environments. For morphological analysis: Macro-attributes (colony texture, stroma/pycnidia distribution) and micro-attributes (conidia, ascii, and ascospore dimensions) were evaluated. Whilst several molecular analyses validated the identity of isolates where morphology was limited. Thus, 12 isolates were selected and categorized into four taxa: Ten as *P. longicolla*; one as *D. phaseolorum* var. *sojae* (or Pps); and to use as experimental control: one *D. phaseolorum* var. *caulivora* (Dpc) and two *D. phaseolorum* var. *meridionalis* (Dpm). The combination of phenotypic and molecular tools is essential for the accurate identification of species within the DP complex. These findings enhance the understanding of fungal plasticity, host expansion mechanisms, and biological relationships (such as (homo or heterothallism and hybridization), providing a critical foundation for managing genetic variability and preserving fungal biodiversity in agricultural systems [33].

Pathogenic diversity of *phomopsis* sp. causal agent of soybean (*glycine max*) stem and pod blight

Molecular studies applied on Dps and Plo demonstrated a remarkable genetic variability within this fungal group [22], that

gave rise to the appearance of new physiological races [8,47]. Resistant genotypes to SPB-SD were obtained by breeding programs worldwide, but not particularly to SB. Therefore, although in Argentina it was possible to characterize and select some potential sources of resistance [48], it was relevant to deepen the study of these diseases. In this case, the objective was to study genetic and pathogenic variability of *Phomopsis* in interactions with cultivars of varied resistance or susceptibility, and to study the association between molecular and pathogenic profiles in the analyzed interactions. The hypothesis was that the existence of genetic variability in both fungus and plant materials increases the biodiversity in specific reactions during the development of SB. For contrasting this hypothesis, a new approach of the widely known statistical methods GGE Biplot was proposed for measuring the correlation among pathogenic attributes (phenotypic expression of the plant pathology) and molecular markers. Six isolates of *Plo* and one of *Pps* were inoculated to six soybean cultivars. Genetic variability in the fungi was evaluated at the molecular level by RAPD and ITS markers and at the phenotypic level by their pathogenic performance through the severity (S%) of the pathology caused in soybean cultivars. Molecular characterization separated the *Plo* isolates from the *Pps* isolate. Specific interaction between each isolate-cultivar combination evidenced differential pathogenic performances in respect to resistance/susceptibility. Biplot GGE analysis allowed visualization of specific interactions where certain isolates express their maximum virulence on specific cultivars, demonstrating that genetic variability in both fungal and plant germplasm is associated with the diversity of specific reactions during disease development. Using this tool, specific polymorphic fragments (generated by the OP-AA01 primer) were identified, the presence or absence of which correlated with the ranking of *Phomopsis* isolates that cause SB in *G. max*, differentiated by severity, detecting molecular markers potentially associated with virulence [33].

Inheritance of resistance genes to SSB caused by *Plo*

In recent years, some soybean genotypes carrying *Rpsd* genes that confer resistance to soybean seed decay, caused by the same agents that cause SSB, have been reported. However, it was not known whether the *Rpsd* genes were also effective for Soybean Stem Disease (SSB). Therefore, in this case, the objective was the characterization of various soybean genotypes, carriers of *Rpsd* genes and others of interest, to evaluate their behavior against local strains of *Phomopsis* (*Pps* and *Plo*) that caused SSB, detecting eventual resistance genes (*Rpsb*) and determining their mode of inheritance. From these parents, crosses between RxS and RxR genotypes (Ge) were carried out during two planting seasons, 2015/16 and 2016/17. Of a total of 203 hybridizations performed (RxS and RxR), 43 fertile combinations producing pods and seeds were obtained, corresponding to a 21% cross effectiveness [49]. To identify truly hybrid individuals (with heterozygous complement) and ensure the accuracy of the resulting segregating generations, SNP-type molecular markers were used to evaluate the F1. Due to their robustness and greater accessibility thanks to reduced costs, SNP markers are currently the most widely used and promising

class of markers. Based on the importance and progress achieved by applying these biotechnological tools to plant breeding, this thesis proposed the early and innovative application of specific molecular markers to characterize the first generation (F1), making the selection process more efficient from the beginning of soybean breeding work [33]. The use of SNP molecular markers in the initial stages of selection and genetic improvement allowed for obtaining F1 individuals who's heterozygous and hybrid makeup was molecularly validated, ensuring safe progress in subsequent segregating generations [50].

Analyzing the SNP molecular characterization of each parental pair yielded information on four interesting aspects: the degree of polymorphism between parents, residual heterozygosity, the conversion of an allele to one of the parents (maternal effect), and the advantages and limitations of characterizing the first generation (F1) solely through observation of morphological traits [51]. Regarding the degree of polymorphism detected between parents, it emerged that the germplasm of some genotypes was more closely related to each other, as observed, for example, in Ge(1) and Ge(2), which are considered almost isolines, and some authors still debate whether they are the same genotype, where out of 1100 amplified SNPs, only 1 SNP was polymorphic for both. Meanwhile, other more divergent genotypes allowed the identification of up to 405 polymorphic SNPs between the parents, as in the case of Ge (1) and Ge (5). Regarding the residual heterozygosity detected in the parents through the loci characterized by polymorphic SNPs for 10 parents, it was observed that the Ge (6) and Ge (4) genotypes, which are stabilized cultivars used in various breeding programs, showed practically no loci in a state of residual heterozygosity (2 and 1, respectively). While the Ge (3) genotype registered 22 out of 564 residual heterozygous events, this may be due to a problem with seed purity, which could be associated with seed handling; however, in none of the cases it was higher than 4%. Likewise, when characterizing the F1 individuals, in a few cases a proportion of non-heterozygous loci were observed, which duplicated one of the alleles of one of the parents. Although this study observed a low proportion of loci like maternal parent, a phenomenon known as the "maternal effect" or gene conversion heterozygous genotypes, individuals with this percentage exceeding 10-12% were excluded [52-56]. A particular case was found for the crosses resulting from the white-flowered Ge(6) and purple-flowered Ge(1) genotypes, where the three F1 individuals from such a cross (Ge(6) x Ge(1).1A; Ge(6) x Ge(1).1B; Ge(6) x Ge(2).2), molecularly validated as heterozygous hybrids, presented white flowers as the maternal genotype Ge(6), contrary to what was expected based on the molecular analysis using SNPs [57]. This could be due to a residual heterozygosity effect from the paternal genotype Ge (1), in which, of the 1224 total SNPs, 920 amplified for this genotype, 848 were found in homozygosity and 72 in heterozygosity [10]. Within these 72 heterozygous SNPs, 6 were located on chromosome 13, the site of the allele coding for flower color (dominant purple W1, recessive white w1) [58].

The results obtained demonstrated that the additional and complementary application of molecular markers, combined with

classical controls (morphological and structural-histological), provides rigor and relevant additional information about each of the parents involved in the crosses, enriching and strengthening the results and their biological significance. However, it is important to note that this same protocol simultaneously generated a significant reduction in diversity compared to the numerous original combinations and their respective RxS, RxR, and reciprocal crosses [59]. Thus, one of the proposed objectives has been met: to have molecularly validated F1 populations and their respective heterozygous and hybrid parents from the first filial generation (F1), that is, from the F1 individuals, and to allow for safe progress in the segregating F2 populations and their respective F3 generations and F2:3 families. Through inoculations, the reaction against SSB of the parents, the F1, F2 individuals and the F3 plants distributed in the F2:3 families (Progeny Tests) were characterized [60]. Through the observed phenotypic ratios, it was possible to infer the expected genotypic ratios in the F2 parents, allowing the identification of the first SSB resistance gene (*Rpsb1*) to SSB, carried by one of the resistant genotypes, without ruling out the possibility of carrying other associated genes [61]. By evaluating Resistance / Susceptibility as a dichotomy qualitative trait, different types of epistatic interactions were detected in each different cross.

Conclusion

The preliminary results obtained by classic genetic improvement and molecular assistance contribute and strengthen the current studies for identifying resistance genes (*Rpsb*) to SSB-Plo and their inheritance way. It was also demonstrated that stalk resistance (PSB) is genetically independent of the *Rpsd* genes linked to Seed Decay (SD). These advances provided an understanding about the effectiveness of the strategies applied and perspectives of plant improvement aimed at incorporating resistance to diseases in soybean crops.

References

- Roy KW, McLean KS (1989) Host range of the Diaporthe/Phomopsis complex. In: Pascale AJ (Ed.), World Soybean Research Conference IV Proceedings, Orientación Grafica Editora, Buenos Aires, Argentina, pp. 1707-1711.
- Pioli RN, Morandi EN, Martínez MC, Lucca MF, Tozzini A, et al. (2003) Morphological, molecular and pathogenic characterization of Diaporthe phaseolorum variability in the core soybean producing area of Argentina. *Phytopathology* 93(2): 136-146.
- Pioli RN, Morandi E (2005) Chapter review of Diaporthe phaseolorum var. *sojae* and *P. longicolla* on soybean and others hosts. In: L Mcgillivray (Ed.), In Crop Protection Compendium, CAB Internacional, CD ROM versions, Wallingford, UK.
- Pioli RN, Peruzzo A, Morandi EN (2009) Intra-and interspecific vegetative compatibility of Diaporthe-Phomopsis complex. Vº Congreso Brasileiro de Soja, EMBRAPA Londrina, MAPA, Resumo, Goiania, Brasil, 340: 189.
- Ellis MA, Machado CC, Prasartsee C, Sinclair JB (1974a) Occurrence of Diaporthe phaseolorum var. *sojae* (Phomopsis spp.) in various soybean seed lots. *Plant Disease Reporter* 58(2): 173-176.
- Athow KL, Laviolette FA (1973) Pod protection affects soybean seed germination and infection with Diaporthe phaseolorum var. *sojae* and other microorganisms. *Phytopathology* 63(8): 1021-1023.
- Ilyas MB, Dhingra OD, Ellis MA, Sinclair JB (1975) Location of mycelium of Diaporthe phaseolorum var. *sojae* and *Cercospora kikuchii* in infected soybean seeds. *Plant Disease Reporter* 59(1): 17-19.
- Udayanga D, LA Castlebury, AY Rossman, E Chukeatirote, KD Hyde (2015) The Diaporthe *sojae* species complex: Phylogenetic re-assessment of pathogens associated with soybean, cucurbits and other field crops. *Fung Biol* 119(5): 383-407.
- Dissanayake AJ, Liu M, Zhang W, Chen Z, Udayanga D, et al. (2015) Morphological and molecular characterization of Diaporthe species associated with grapevine trunk disease in China. *Fungal Biol* 119(5): 283-294.
- Farr DF, AY Rossman (2022) Fungal databases, US National Fungus Collections, ARS, USDA, USA.
- Lehman SG (1923) Pod and stem blight of the soybean. *Annals of the Missouri Botanical Garden* 10: 111-178.
- Norphanphoun C, Gentekaki E, Hongsanan S, Jayawardena R, Maharanachikumbura SSN, et al. (2022) Diaporthe: Formalizing the species-group concept. *Mycosphere* 13(1): 752-819.
- Kmetz K, Ellett CW, Schmitthenner AF (1974) Isolation of seedborne Diaporthe phaseolorum and Phomopsis from immature soybean plants. *Plant Disease Reporter* 58(11): 978-982.
- Hobbs TW, Schmitthenner AF, Kuter (1985) A new Phomopsis species from soybean. *Mycologia* 77(4): 535-544.
- Vidic M, Jasnic S, Stojsin V (1996) Cultural and morphological characteristics of Phomopsis *sojae* and Phomopsis *longicolla* originating from soybean. *Zastita-Bilja* 47(1): 37-44.
- Hernández FE, RN Pioli, AM Peruzzo, AN Formento, yGR Pratta (2015) Morphologic and molecular characterization of Phomopsis *longicolla* (teleomorph unknown: Diaporthales) from tempered and subtropical regions of Argentina. *Rev Biol Trop* 63(3): 871-884.
- Hernández FE (2022) Search and identification of resistance genes to Phomopsis *longicolla* and related fungal species, in the germplasm of *Glycine max*. PhD tesis, Universidad Nacional de Rosario, Argentina.
- Zhang AW, Riccioni L, Pedersen WL, Kollipara KP, Hartman GL (1998) Molecular identification and phylogenetic grouping of Diaporthe phaseolorum and Phomopsis *longicolla* isolates from soybean. *Phytopathology* 88(12): 1306-1314.
- Pioli RN, Peruzzo AM, Hernández FE, Cuba Amarilla M, Pratta GR, et al. (2023) Search advances on resistance to soybean diseases caused by Diaporthe-phomopsis complex: A sustainable strategy to obtain safe food products. *Mod Concep Dev Agrono* 13(1): 1250-1255.
- Kmetz KT, Ellett CW, Schmitthenner AF (1979) Soybean seed decay: Sources of inoculum and nature of infection. *Phytopathology* 69(8): 798-801.
- Garzonio DM, McGee DC (1983) Comparison of seeds and crop residues as sources of inoculum for pod and stem blight of soybeans. *Plant Disease* 67(12): 1374-1376.
- Athow KL (1987) Fungal diseases. Soybeans: Improvement, Production and Uses. In: Wilcox JR (Ed.), (2nd edn), American Society of Agronomy, Madison, USA, pp. 687-727.
- Kmetz KT (1975) Soybean seed decay: Studies on disease cycles, effects of cultural practices on disease severity and differentiation of the pathogens Phomopsis spp. Diaporthe phaseolorum var. *sojae* and Diaporthe phaseolorum var. *caulivora*. Ph.D. Dissertation, Ohio State University, USA.
- Pioli RN, Benavídez R, Morandi EN, Bodrero M (2000) Epidemiological study of diseases associated to soybean carpels and seeds, in Santa Fe, Argentina. *Fitopatología* 35(2): 111-118.
- Circle SJ, Smith AK (1975) Soybeans: Processing and products. In: Pirie NW (Ed.), Food Protein Sources, Cambridge University Press, Cambridge, UK, p. 260.

26. Athow KL, Caldwell RM (1954) A comparative study of diaporthe stem canker and pod and stem blight of soybeans. *Phytopathology* 44: 319-325.

27. Gerdemann JW (1954) The association of Diaporthe phaseolorum var. sojae with root and basal stem rot of soybean. *Plant Dis Report* 38: 742-743.

28. Dunleavy JM (1956) Soybean disease in Iowa in 1955. *Soybean Dig* 16(9): 20.

29. Hildebrand AA (1956) Observations of stem canker and pod and stem blight of soybean in Ontario. *Can J Bot* 34(4): 577-599.

30. Hepperly PR, Sinclair JB (1978) Quality losses in *Phomopsis*-infected soybean seeds. *Phytopathology* 68(12): 1684-1687.

31. Pioli RN, Benavidez R, Morandi EN (1997) Preliminary study on the incidence of pathogens in fresh soybean (eda mame) seeds for human consumption. *Fitopatología* 32(2): 116-120.

32. Alzugaray C, N Carnevale, A Salinas, R Pioli (2007) Biotic and abiotic factors that affect the quality of seeds of *schinopsis balansae* Engl y *Aspidosperma quebracho-blanco* Schltdl. *Rev Iber Micol* 24(2): 142-147.

33. Hernández FE, Peruzzo A, Pratta GR, Pioli RN (2020) Molecular polymorphism associated with pathogenic diversity in *Phomopsis longicolla* (unknown Teleomorph) and *Glycine max* interactions, in Argentina. *Agrociencia* 54: 313-326.

34. Sinclair JB (1977) Seed-borne microorganisms and their control. In: Goodman RM (Ed.), *Expanding the Use of Soybeans*, INTSOY Publ, Univ of Illinois Urbana, USA, pp. 259.

35. Bailey AE (1964) Industrial oil and fat products. Wiley-Interscience, New York, USA, p. 969.

36. Mehlembacher VC, Hopper TH, Salles EM, Linke EW (1977) Official and tentative methods of the American oil chemist's society, American Oil Chemist's Society, Champaign, Illinois, USA, pp. 584.

37. Sasaki S (1929) Mummy disease or black spot of soybean. *Ann Agric Expt Gov Gen Chosen* 4(1): 28.

38. Luttrell ES (1947) Diaporthe phaseolorum var. sojae on crops plants. *Phytopathology* 37: 445-505.

39. Ellis MA, Ilyas MB, Tenne FD, Sinclair JB, Palm HL (1974b) Effect of foliar applications of benomyl on internally seedborne fungi and pod and stem blight in soybean. *Plant Disease Reporter* 58(8): 760-763.

40. Ellis MA, Sinclair JB (1976) Effect of benomyl field sprays on internally borne fungi, germination, and emergence of late-harvested soybean seeds. *Phytopathology* 66(5): 680-682.

41. Wallen VR, Seaman WL (1963) Seed infection of soybean by Diaporthe phaseolorum and its influence on host development. *Can J Bot* 41(1): 13-21.

42. Wilcox JR, Laviolette FA, Athow KL (1974) Deterioration of soybean seed quality associated with delayed harvest. *Plant Disease Reporter* 58(2): 130-133.

43. Crittenden HW, Svec LV (1974) Effect of potassium on the incidence of Diaporthe phaseolorum var. sojae in soybean. *Agron J* 66(5): 696-697.

44. Chamberlain DW, Gray LE (1974) Germination, seed treatment and microorganisms in soybean seed produced in Illinois. *Plant Disease Reporter* 58(1): 50-54.

45. Bolkan HA, De Silva AR, Cupertino FP (1976a) Fungi associated with soybean and bean seed and their control in central Brazil. *Plant Dis Rep* 60: 545-548.

46. Bolkan HA, Cupertino FP (1976b) Effect of foliar applications of fungicides on the control of seed-borne *Phomopsis* and yield of soybean. *Fitopatología Brasileira* 1(3): 215-218.

47. Dissanayake AJ, AJL Phillips, KD Hyde, JY Yan, XH Li (2017) The current status of species in Diaporthe. *Mycosphere* 8(5): 1106-1156.

48. Hernández FE, Pratta GR, Peruzzo AM, Pioli RN (2016) Association between pathogenic diversity and molecular polymorphism detected in *Phomopsis* x *Glycine max* interactions. *XXIV Jornadas de Jóvenes Investigadores organizadas por la Asociación Grupo Montevideo (AUGM)* São Paulo, Universidad Estadual Paulista, Brasil.

49. Hernández FE, Peruzzo AM, Malone G, Ferrari B, Pratta GR, et al. (2018a) Molecular characterization of soybean parental genotypes with different behavior to soybean stem blight and seed decay through SNPs. *III Jornadas Regionales de Genética del Litoral (SAG)*, Rafaela, Santa Fe, Argentina.

50. Hernández FE, Peruzzo AM, Malone G, Ferrari B, Pratta GR, et al. (2018b) Molecular validation of heterozygous hybrids (F1) for soybean studies about soybean stem blight and seed decay resistance, using simple nucleotide polymorphism type markers (SNPs). *XX Congreso y XXXVIII Reunión Anual de la SBR*, Rosario, Argentina.

51. Hernández FE, Peruzzo AM, Pratta GR, Cacchiarelli P, Iglesias F, et al. (2019b) Identification of resistance genes to soybean stem blight caused by *Phomopsis longicolla* from Argentina in *glycine max* germplasm. *Mercosoya 2019*, Rosario, Argentina.

52. Fernández FA, Hanlin RT (1996) Morphological and RAPD analyses of Diaporthe phaseolorum from soybean. *Mycologia* 88(3): 425-440.

53. Hernández FE, Peruzzo AM, Cabodevila V, Cacchiarelli P, Iglesias F, et al. (2019a) Search and identification of resistance genes to *Phomopsis longicolla* and related fungal species, in the germplasm of *Glycine max*. *2º Taller Nacional de Enfermedades en Cultivos Extensivos*, Zavalla, Argentina.

54. Kulik MM (1984) Symptomless infection, persistence, and production of pycnidia in host and non-host plants by *Phomopsis batatae*, *Phomopsis phaseoli*, and *Phomopsis sojae*, and the taxonomic implications. *Mycologia* 76(2): 274-291.

55. Kulik MM, Schoen JF (1981) Effect of seedborne Diaporthe phaseolorum var. sojae on germination, emergence, and vigor of soybean seedlings. *Phytopathology* 71(59): 544-547.

56. Kulik MM, Yaklich RW (1982) Relationship of the appearance of soybean seeds to seed-borne infection by Diaporthe phaseolorum var. sojae and other aspects of seed quality. *Seed Science and Technology* 10(2): 335-342.

57. Kulik MM, Sinclair JB (1999) Pod and stem blight. In: Hartman GL, Sinclair, JB, Rupe, JC (Eds.), *Compendium of soybean diseases*. APS Press, USA, p. 100.

58. Lehman SG (1922) Pod and stem blight of the soybean. *Journal of Elisha Mitchell Scientific Society* 38: 13.

59. Vidic M, Jasnic S, Miladinovic J (1995) The pathogenicity of *Phomopsis sojae* and *Phomopsis longicolla* isolates on soybeans. *Zastita-Bilja* 46(3): 197-205.

60. Vidic MK, Petrovic V, Đorđevic, L Riccioni (2013) Occurrence of *Phomopsis longicolla* conidia in naturally infected soybean. *J Phytopath* 161(7-8): 470-477.

61. Zhang AW, Hartman GL, Curio Penny B, Pedersen WL, Becker KB (1999) Molecular detection of Diaporthe phaseolorum and *Phomopsis longicolla* from soybean seeds. *Phytopathology* 89(9): 796-804.