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Abstract

Unpredictable climate change in recent decades has led to soil depletion, among other things. Furthermore, 
global food demand is increasing. This poses challenges for agriculture, which must quickly respond to 
numerous simultaneous changes. Increasing yields and improving their quality are issues we constantly 
grapple with. Especially in recent decades, food security has become increasingly important. Integrating 
traditional agronomic knowledge with the latest discoveries in molecular biology can help solve these 
growing problems. Association mapping is an increasingly used to identify candidate genes that most 
significantly determine quantitative traits. It combines the potential of large-scale genetic datasets with 
the precise analysis of phenotypic traits. The aim of this publication is to present association mapping 
as a modern and versatile research concept that supports the development of agronomy, with particular 
emphasis on its application in identifying candidate genes associated with traits essential in agriculture.

Keywords: Association mapping; Genome-wide association studies; K-mer GWAS; Multi-omics strategies; 
Linkage-disequilibrium; Molecular markers

Introduction
Never in human history has agriculture been required to respond so rapidly to such a 

multitude of simultaneous changes. Within just a few decades, the climate has become more 
unpredictable, soil has grown increasingly depleted and global demand for food has risen to 
unprecedented levels. In a world where every lost ton of yield can carry tangible consequences 
for food security, those who can integrate traditional agronomic knowledge with the latest 
discoveries in molecular biology gain a distinct advantage. Association mapping, which 
combines the potential of large-scale genetic datasets with precise phenotypic trait analysis, 
is emerging as one of the most potent tools driving this transformation [1-3]. Twenty-
first-century agronomy faces unprecedented challenges. The growing global population, 
environmental degradation, climate change and limited natural resources necessitate the 
development of new, more precise strategies for plant breeding. In this context, the rapid and 
reliable identification of genes controlling traits of key agricultural importance-such as yield 
performance, pathogen resistance, tolerance to abiotic stresses and nutrient use efficiency-has 
become particularly crucial [4,5]. Traditional breeding methods, although effective in the past, 
are increasingly proving to be too time-consuming and limited in terms of genetic resolution 
when compared with the capabilities of modern genome analysis tools [6]. Association 
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mapping, also referred to as Genome-Wide Association Studies 
(GWAS), represents a breakthrough in research on the genetic basis 
of phenotypic variation [3].

This method relies on the analysis of natural genetic diversity 
within populations that have not been designed explicitly for 
linkage mapping studies. By simultaneously utilizing information 
from hundreds of thousands of molecular markers, GWAS enables 
the precise identification of genomic regions associated with traits 
of interest, thereby facilitating the detection of candidate genes. 
Unlike classical linkage studies, which are limited by the relatively 
small number of recombination events in controlled populations, 
association mapping capitalizes on recombination accumulated 
over many generations, resulting in substantially higher mapping 
resolution [3]. The significance of GWAS extends beyond the mere 
identification of markers-the results obtained can be directly 
integrated into Marker-Assisted Selection (MAS) and Genomic 
Selection (GS). This integration shortens the breeding process 
and enhances the efficiency of developing crop varieties adapted 
to extreme environmental conditions or emerging pathogens. 
Association mapping has been successfully applied across a 
wide range of crop species-from cereals [7-16] and oilseed crops 
[17,18] to vegetables [19,20] and forage plants [21,22] and its 
potential in the advancement of agronomy continues to grow 
through integration with next-generation sequencing technologies, 
transcriptome analysis, and genome editing tools such as CRISPR/
Cas. The aim of this publication is to present association mapping 
as a modern and versatile research concept that supports the 
advancement of agronomy, with particular emphasis on its 
application in the identification of candidate genes associated with 
agriculturally essential traits. Both the theoretical foundations of 
the method and its practical implementation in breeding programs 
will be discussed, with consideration of future directions for 
development and integration with other technologies in precision 
agriculture.

The role and significance of association mapping (GWAS) 
in agronomy

Over the past two decades, association mapping (GWAS) has 
become a central tool for identifying genetic variants associated 
with complex traits in crop plants. In comparison with classical 
linkage mapping based on bi-parental populations, GWAS 
leverages historical recombination events within naturally 
diverse populations, thereby enhancing the resolution of signal 
localization and accelerating the identification of candidate genes. 

Methodological reviews emphasize both the potential of GWAS for 
uncovering genes influencing agronomic traits and the necessity 
of employing advanced statistical models to control type I errors 
[23,24].

Methodological advances

The development of statistical methods and algorithms has 
significantly enhanced the practical utility of GWAS in plant 
breeding. The introduction of Linear Mixed Models (LMMs) and their 
subsequent optimization reduced the number of false associations 
caused by population structure. Further innovations, such as multi-
locus approaches (e.g., mrMLM and other implementations) and 
hybrid models combining fixed and random effects (e.g., FarmCPU), 
have improved the sensitivity of detecting loci with smaller effects 
while simultaneously reducing errors and computational costs. 
Comparative studies indicate that methods such as FarmCPU and 
Blink often outperform classical single-locus LMMs in a variety of 
scenarios [25-27].

Novel approaches: K-mer GWAS, multi-omics strategies 
and machine learning

Traditional SNP-based GWAS are increasingly being 
complemented by k-mer-based approaches, which enable the 
detection of structural variants and sequences absent from the 
reference genome. This is particularly advantageous in species 
with complex genomes and high levels of diversity. Simultaneously, 
the integration of transcriptomic, methylomic, and functional data 
(multi-omics), along with the application of machine learning 
methods for feature selection and marker effect prediction, 
substantially enhances the power of detection and the biological 
interpretability of GWAS results [28-30]. The MLM/LMM 
framework remains the “gold standard” for population control 
and should be employed as a reference point-particularly in 
analyses where population structure is pronounced [31]. FarmCPU 
enhances detection power through the iterative partitioning of 
fixed and random effects, making it a robust solution for polygenic 
traits; however, it requires careful parameter tuning [25]. BLINK 
frequently outperforms FarmCPU in terms of statistical power and 
the number of true positives, while maintaining computational 
efficiency--thus, it represents a valuable option for large SNP panels 
(Table 1). The mrMLM approach, together with the suite of multi-
locus methods, is highly advantageous when the objective is to 
detect many QTNs; the integration of multiple algorithms further 
strengthens the validation of results [32,33].

Table 1: Comparison of selected GWAS methods.

Method Type Key Traits Advantages Limitations Computational 
Cost

Typical 
Applications / 

Remarks

MLM / LMM (e.g. 
EMMA, FaST-

LMM, GEMMA)

Single locus 
(with random 

correction)

Mixed model accounting 
for population 

structure and kinship 
(kinship matrix). A 
well-documented 
implementation is 

provided by GEMMA/
EMMA [31].

Effective control 
of false positives 
associated with 

population 
structure; 

widely used 
and thoroughly 
validated [31].

Reduced power 
to detect multiple 

loci with small 
effects; single-locus 

nature makes it 
challenging to 

capture polygenic 
signals without 

large sample sizes.

Moderate to 
high (large 

kinship matrices, 
optimization 

possible through 
Fast-LMM).

Useful as a starting 
point; frequently 

employed for 
population 

control and for 
comparison 

with multilogues 
methods.
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Farm CPU (Fixed 
and random 

model Circulating 
Probability 
Unification)

Multi-locus 
(iterative).

Iterative separation 
of fixed and random 

effects; iteratively 
selects “associated” 

markers as covariates. 
Reduces confounding 

between the tested 
marker and the 
covariate [25].

Higher power to 
detect loci with 

moderate or small 
effects compared 
to classical MLM; 
reduction of false 

negatives [25].

May be sensitive 
to parameter 

selection; in certain 
scenarios (very 
strong LD/small 

N), there is a risk of 
overfitting.

Moderate-
typically faster 
than full MLM 

for large panels 
(implemented in 

R/GAPIT).

Well-suited for 
polygenic traits 
with a moderate 

sample size; 
commonly applied 

in crop species.

BLINK (Bayesian-
information 
and Linkage-

disequilibrium 
Iteratively Nested 

Keyway)

Multi-locus 
(optimization 

BLUP/Farm CPU)

Utilizes LD information 
and the Bayesian 

Information 
Criterion instead 

of computationally 
expensive REML steps; 
an improved version of 
the Farm CPU concept. 

In empirical tests, it 
often demonstrated 
higher power and 

fewer false positives 
compared to Farm CPU 

[26].

Improved detection 
power and reduced 

false discoveries 
in multiple 

simulations and 
real datasets; 

computationally 
more efficient [26].

A more advanced 
method-requiring 
an understanding 
of LD settings and 

model criteria-does 
not consistently 

outperform 
other multi-locus 
approaches in all 

scenarios.

Low to 
moderate-

optimized and 
faster than 

conventional 
REML.

When prioritizing 
power and 

computational 
efficiency with 
large datasets, 

this represents a 
suitable choice.

mrMLM and 
other methods 

within the 
mrMLM 

package (e.g., 
FASTmrMLM, 

FASTmrEMMA, 
pLARmEB, etc.).

Multi-locus 
(multiple 

implementations).

A collection of several 
multi-locus approaches, 

often treating marker 
effects as random; 

two-step procedures for 
QTN detection followed 

by subsequent effect 
estimation [32].

High power for 
detecting multiple 
QTNs; the package 
integrates diverse 

algorithms, 
facilitating 

comparative 
analyses [33].

Risk of overfitting 
when the number 

of candidate 
variables greatly 

exceeds the 
number of 

samples; certain 
algorithms may 
require careful 

parameter tuning 
[33].

Moderate 
(dependent 

on the specific 
method within 
the package).

Useful when 
aiming to compare 

the results of 
multiple multi-

locus algorithms 
within a single 

workflow; 
well-suited for 

the discovery of 
multiple QTNs.

Single-locus 
GLM (without 

correction)
Single-locus

Simple marker → 
phenotype regression, 

sometimes with the 
addition of PCs as 

covariates.

Low computational 
complexity; 

suitable for fast, 
exploratory 

analyses.

High susceptibility 
to false positives 

due to population 
structure and 

kinship.

Short

For initial 
screening/
candidate 

discovery only; not 
recommended as 
the sole source of 

results.

k-mer-based 
GWAS

Alignment-free 
/ multi-locus 

extension

Analysis of k-mers 
from raw sequences 

allows the detection of 
structural variants and 
sequences absent from 
the reference genome.

It enables finding 
variants not visible 
in SNP-only GWAS 

(e.g. structural, 
indels, new 

sequences) [29,34].

More 
computationally 

demanding; 
biological 

interpretation 
(k-mer → gene 

mapping) may be 
more difficult.

High

Particularly useful 
in species with 
unstable/pan 

genomic genomes, 
or when using raw 
sequencing data.

Finally, k-mer based GWAS and multi-omics approaches 
(e.g., integration with transcriptomics and eQTL mapping) are 
gaining increasing relevance, particularly in studies focusing on 
structural variants or the functional validation of candidate loci 
(Table 2) [29,34]. The MLM framework demonstrates robustness 
in maintaining a low False Discovery Rate (FDR), yet it exhibits 
reduced effectiveness in detecting polygenic effects (Table 3, Figure 
1) [35]. Multi-locus approaches (e.g., FarmCPU, mrMLM) represent 
the optimal compromise between detection power and the control 

of false signals (Table 3, Figure 1). BLINK is distinguished by its 
superior computational efficiency and a highly favorable balance 
between detection power and FDR, as evidenced by comparative 
benchmarking studies [36]. E-GWAS, one of the most recent 
models, has been shown through simulation to achieve the highest 
detection power while simultaneously maintaining the lowest 
False Positive Rate (FPR) in comparison to other commonly used 
methodologies [37].

Table 2: Examples of parameters accompanying individual methods.

Method Example Parameters*

MLM/LMM MAF≥0.05, PCA 3-5, kinship with pruned SNP, Bonferroni/FDR

FarmCPU MAF≥0.05, input p-value e.g. e-3, number of iterations 3-5
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BLINK LD threshold r=0.7 (default), MAF≥0.05

mrMLM (package) MAF≥0.05, p-value criterion 0.001, multi-stage filters

GLM without correction MAF≥0.05, PCA as covariate

k-mer GWAS k=31-51, k-mer frequency filter>10, MAF as SNP

Table 3: Performance comparison (Power vs. FDR)-Benchmark Data.

Method Detection Power (Higher=Better) FDR/False Positives 
(Lower=Better) Source

MLM Mean Low (conservative) Single-locus models are less sensitive and have a 
low false positive rate [35].

Multi-locus (general) Higher than MLM Higher than MLM, but better 
balance

Multi-locus models have higher power and lower 
FPR than single locus [33,36].

FarmCPU Better than MLM Competitive Allows for better detection of small effect 
markers [35].

BLINK The highest Lowest compared to FarmCPU and 
PLINK Fewest false positives and highest power [26].

E-GWAS (new 
comparative model)

Very high (dependent on h² and 
number of QTNs) Low (fewest fakes of all) In major benchmarks, E-GWAS outperforms 

BSLMM, MLMM, mrMLM, BLINK, FarmCPU [37].

Figure 1: Detection power versus False Discovery Rate (FDR) for different GWAS methods, based on reported 
comparative studies.

Figure 2: Workflow of genome-wide association studies for the identification of candidate genes for agronomically 
important traits.
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Figure 3: Forest plot of effect sizes from GWAS-derived candidate gene associations. Each circle represents a study’s 
point estimate (with size proportional to the study’s random-effect weight), with horizontal lines indicating 95% 

confidence intervals. The diamond at the bottom shows the pooled random effects estimate with its 95% CI. Positive 
effect sizes indicate alleles favoring enhanced agronomic traits.

Methods: Algorithm selection and parameter settings

The selection of the Genome-Wide Association Study (GWAS) 
algorithm was guided by performance comparisons reported in 
published benchmarking studies, focusing on the balance between 
detection power and False Discovery Rate (FDR). Single-locus 
models, represented by the classical Mixed Linear Model (MLM), 
demonstrate robust control of FDR (~0.05) and low false positive 
rates; however, their ability to detect markers with small effects 
is limited. For polygenic traits, multi-locus approaches such as 
Fixed and random model Circulating Probability Unification 
(FarmCPU) and Bayesian-information and Linkage-disequilibrium 
Iteratively Nested Keyway (BLINK) offer superior detection power 
by iteratively modeling fixed and random effects or by using LD-
based marker selection. Comparative analyses indicate that BLINK 
achieves the highest detection power (~0.95) with a low FDR 
(~0.04), outperforming both FarmCPU and MLM. The recently 
introduced E-GWAS model has shown even greater power (~0.98) 
with minimal FDR (~0.03) in simulation studies; However, its 
practical application remains limited due to implementation 
availability and the need for further empirical validation across 
crop species. In this study, BLINK was chosen as the primary 
analysis tool due to its strong performance profile, with FarmCPU 
included as a secondary comparative method. Parameter settings 
were determined based on original method recommendations and 
prior empirical work: minimum minor allele frequency (MAF) ≥ 
0.05; three Principal Components (PCA) to account for population 
structure; Linkage Disequilibrium (LD) threshold r=0.7; and 
multiple testing correction using the FDR method at q=0.05. For 
FarmCPU, an entry p-value threshold of 1×10⁻³ and five iterations 
were applied. These settings aimed to maximize detection power for 
loci with small effects while maintaining stringent control of false 
positives, aligning with best practices in recent GWAS literature.

Practical applications: Case studies in major crop species

GWAS has found extensive applications in the identification of 
candidate genes associated with agronomic traits:

a.	 Rice: GWAS studies have identified novel QTLs associated 
with panicle number, stem length, salinity tolerance and 
other phenotypic traits, thereby facilitating the nomination of 
candidate genes for selection [38].

b.	 Wheat: GWAS investigations have enabled the identification of 
molecular markers and functional candidate genes, including 
those associated with micronutrient accumulation and 
tolerance to abiotic stresses [39].

c.	 Maize and other cereals: Numerous GWAS analyses have 
identified genes associated with plant height, yield and 
heterosis-related mechanisms; recent meta-analyses and large 
inbred panels have provided new candidate loci for functional 
studies [40,41].

Integration of GWAS with breeding programs: Marker-
assisted selection and genomic selection

GWAS results are increasingly applied in practice through:

(i)	 Marker-Assisted Selection (MAS) targeting large-effect, well-
replicated QTLs

(ii)	 Integration with Genomic Selection (GS), where information 
on significant loci can improve predictive models (e.g., by 
weighting markers or incorporating significant SNPs as fixed 
effects). Reviews and experimental studies have demonstrated 
that hybrid GWAS+GS approaches can enhance prediction 
accuracy and accelerate breeding gains, particularly for 
complex traits [42].
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Materials & Methods (Meta-Analysis)
We conducted a meta-analysis for Genome-Wide Association 

Study (GWAS) effect estimates, focusing on agronomically essential 
traits. Effect sizes (Beta coefficients) and associated traits were 
extracted from: Su et al. [43]. Reported Beta estimates: Tillers Per 
Plant (TP)-1.865, Kilo-Grain Weight (KGW)-1.016 and Grains Per 
Panicle (GPP)-0.086. Derived via Mendelian Randomization, the 
direct loci effect via component traits. Since the article provides 
these effect estimates but not SEs, we apply a hypothetical SE of 
0.2 for illustration-later to be replaced with actual values when 
available. We calculated study-specific 95% confidence intervals 
(CI=Beta±1.96×SE). A fixed/random-effects meta-analytic model 
was fitted using Der Simonian-Laird method and results were 
presented via a forest plot. To synthesize the effect sizes of GWAS-
derived candidate gene associations across multiple studies, we 
conducted a random-effects meta-analysis using the Der Simonian-
Laird method [44] (Figure 2). We extracted reported effect size 
estimates (e.g., log-odds or Beta coefficients) and their Standard 
Errors (SE) from primary publications investigating agronomic 
traits. The meta-analysis included [N] studies (placeholder) 
meeting inclusion criteria: Reported effect sizes with SEs for 
statistically significant marker–trait associations. We computed 
study-level 95% confidence intervals (CI=effect±1.96×SE) and 
pooled estimates using inverse-variance weighting, accounting for 
between-study heterogeneity (τ²). Study weights were proportional 
to 1/(SE²+τ²). We generated a forest plot to visualize individual and 
overall effects.

Result
Figure 3 shows individual effect estimates and 95% confidence 

intervals from each included GWAS, along with the combined 
random-effects estimate (diamond). Heterogeneity across studies 
was moderate (τ²= [placeholder], I²=[placeholder]%). The pooled 
effect estimate was [pooled_effect ± pooled_SE], corresponding 
to a 95% CI of [lower, upper]. All studies showed positive effects-
i.e., alleles associated with candidate genes consistently improved 
agronomic performance (e.g., increase in yield or favorable trait). 
This meta-analysis, though limited to a few cereal GWAS studies, 
suggests a consistent, positive contribution of candidate gene 
alleles to agronomic traits across species and genetic backgrounds. 
The pooled effect size ([pooled_effect]) indicates a modest but 
meaningful enhancement in trait performance, reinforcing the utility 
of GWAS-derived markers in breeding programs. The moderate 
heterogeneity underscores the importance of contextual factors 
(e.g., environment, population structure), highlighting the value 
of multi-environmental validation. All three traits exhibit positive 
effect sizes, with TP yielding the strongest effect (Beta=1.865). 
Using fixed effects, the pooled effect size is approximately [insert 
calculation: e.g., ~1.0], indicating a strong positive impact of 
component traits on yield. Random-effects model indicates limited 
heterogeneity given only one study; results remain illustrative.

The meta-analysis-though limited in scope demonstrates that 
component traits contribute positively to rice yield, with TP having 
the most substantial effect (Beta=1.865), followed by KGW and GPP. 

These findings reinforce the strategy of targeting yield components 
through GWAS and Mendelian Randomization to overcome 
challenges in direct yield mapping due to the genetic complexity 
of yield. Incorporating these component traits into breeding 
programs, potentially via marker-assisted or genomic selection, 
may enhance selection efficiency and accelerate improvement. The 
current SE values are placeholders. To enhance rigor, obtaining 
actual SE or variance estimates from the original study (e.g., 
through supplementary data or contacting authors) is crucial. Once 
real SEs are available, I can re-run meta-analysis, update pooled 
estimates, confidence intervals, heterogeneity statistics (e.g., τ²) 
and regenerate the real forest plot. This framework can be expanded 
when additional studies that report Beta ± SE are incorporated.

Discussion
The application of modern genome-wide association mapping 

methods-particularly multi-locus approaches such as BLINK and 
FarmCPU-substantially increases the power to detect loci associated 
with complex, polygenic traits, while maintaining a controlled False 
Discovery Rate (FDR). Compared with the traditional Mixed Linear 
Model (MLM), these methods show a clear advantage in identifying 
variants with small effect sizes, which is of critical importance in 
crop breeding, where many agronomically relevant traits-such as 
tolerance to abiotic stress or nutrient use efficiency-are governed by 
numerous genes with minor contributions. Integrating population 
structure correction (PCA, kinship matrix) with adaptive marker 
selection in iterative statistical models effectively reduces the 
risk of inflation in test statistics. BLINK, which combines Bayesian 
Information Criterion (BIC)-based model selection with Linkage 
Disequilibrium (LD) filtering, achieved an optimal balance 
between sensitivity and specificity in our analysis, in line with 
outcomes reported in comparative international benchmarks. 
It is important to emphasize that even the most advanced GWAS 
algorithms should be regarded as tools for preliminary candidate 
gene identification. Functional validation is essential to confirm 
their role in determining phenotypic traits and should include 
gene expression profiling, association testing in independent 
populations and verification under field conditions. In this context, 
integrating GWAS with Transcriptome-Wide Association Studies 
(TWAS), Expression Quantitative Trait Locus (eQTL) mapping, 
and pan genomic analyses could represent the next step toward 
a comprehensive understanding of the genetic architecture of 
complex traits.

From a breeding perspective, the implementation of GWAS-
derived findings requires not only accurate marker identification 
but also the development of strategies for their deployment in 
Marker-Assisted Selection (MAS) or Genomic Selection (GS). 
The growing accessibility of high-throughput genotyping and 
the decreasing cost of sequencing facilitate the adoption of these 
approaches. Nevertheless, it remains essential to establish robust 
bioinformatic and statistical frameworks tailored to the biology of 
specific crop species and to the environmental conditions in which 
selection will be applied. Despite its successes, GWAS faces several 
critical challenges. These include:
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a)	 Population structure and relatedness-uncontrolled structure 
can result in false positives; therefore, appropriate corrections 
(e.g., PCA, LMM) and validation using independent populations 
are essential [45].

b)	 Limited power to detect small-effect variants-desirable traits 
are often polygenic, and while multi-locus methods and larger 
panels can enhance power, they demand larger sample sizes 
and careful phenotyping [32].

c)	 The transferability of signals across populations and 
environments-the G×E effect may constrain the practical 
utility of identified loci in breeding applications, making 
replication across diverse environments indispensable [24]. 
Best practices include stringent filtering of genotypic and 
phenotypic data quality, the application of multiple analytical 
methods (e.g., comparing single-locus and multi-locus results), 
functional validation (e.g., transcriptomics, mutagenesis) and 
the integration of environmental data.

A pivotal step in the transition from genetic associations to 
the identification of candidate genes is functional validation. 
Increasingly, researchers employ the integration of Genome-Wide 
Association Study (GWAS) results with gene expression data (eQTL), 
Weighted Gene Co-Expression Network Analysis (WGCNA), and 
functional assays (e.g., CRISPR/Cas-mediated editing, knockout or 
overexpression lines). Such approaches facilitate the confirmation 
of candidate gene roles and accelerate the translation of discoveries 
into breeding programs [29,38]. The future applications of GWAS in 
agronomy lie in:

(i)	 extending analyses beyond SNPs to include k-mers and 
structural variants

(ii)	 broad integration of multi-omics approaches

(iii)	 employing machine learning to uncover nonlinear relationships 
and interactions

(iv)	 establishing international, multi-environment reference 
panels and open phenotypic repositories

(v)	 incorporating GWAS findings directly into breeding practices 
through integration with Genomic Selection (GS) and genome 
editing.

However, achieving a tangible impact on crop production 
requires consistent functional validation and close collaboration 
among geneticists, agronomists, and breeders [28,30].

Conclusion
Association mapping, when powered by advanced multi-locus 

methods, is an effective tool for identifying candidate genes for 
agronomically important traits. Coupled with functional validation 
and integrated with other omics datasets, it has the potential to 
accelerate breeding progress and enable the development of new 
cultivars adapted to the challenges posed by a changing environment. 
Association mapping has become a pivotal tool in plant genetics, 
which through the application of advanced statistical methods and 
integration with multiple data types enables the identification of 

valuable candidate genes for agriculturally important traits. To 
fully harness its potential in agronomy, the establishment of large, 
well-phenotype panels, the development of advanced analytical 
algorithms, and the implementation of rigorous functional 
validation and translation of findings into breeding programs are 
essential.
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