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Abstract

Unpredictable climate change in recent decades has led to soil depletion, among other things. Furthermore,
global food demand is increasing. This poses challenges for agriculture, which must quickly respond to
numerous simultaneous changes. Increasing yields and improving their quality are issues we constantly
grapple with. Especially in recent decades, food security has become increasingly important. Integrating
traditional agronomic knowledge with the latest discoveries in molecular biology can help solve these
growing problems. Association mapping is an increasingly used to identify candidate genes that most
significantly determine quantitative traits. It combines the potential of large-scale genetic datasets with
the precise analysis of phenotypic traits. The aim of this publication is to present association mapping
as a modern and versatile research concept that supports the development of agronomy, with particular
emphasis on its application in identifying candidate genes associated with traits essential in agriculture.

Keywords: Association mapping; Genome-wide association studies; K-mer GWAS; Multi-omics strategies;
Linkage-disequilibrium; Molecular markers

Introduction

Never in human history has agriculture been required to respond so rapidly to such a
multitude of simultaneous changes. Within just a few decades, the climate has become more
unpredictable, soil has grown increasingly depleted and global demand for food has risen to
unprecedented levels. In a world where every lost ton of yield can carry tangible consequences
for food security, those who can integrate traditional agronomic knowledge with the latest
discoveries in molecular biology gain a distinct advantage. Association mapping, which
combines the potential of large-scale genetic datasets with precise phenotypic trait analysis,
is emerging as one of the most potent tools driving this transformation [1-3]. Twenty-
first-century agronomy faces unprecedented challenges. The growing global population,
environmental degradation, climate change and limited natural resources necessitate the
development of new, more precise strategies for plant breeding. In this context, the rapid and
reliable identification of genes controlling traits of key agricultural importance-such as yield
performance, pathogen resistance, tolerance to abiotic stresses and nutrient use efficiency-has
become particularly crucial [4,5]. Traditional breeding methods, although effective in the past,
are increasingly proving to be too time-consuming and limited in terms of genetic resolution
when compared with the capabilities of modern genome analysis tools [6]. Association
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mapping, also referred to as Genome-Wide Association Studies
(GWAS), represents a breakthrough in research on the genetic basis
of phenotypic variation [3].

This method relies on the analysis of natural genetic diversity
within populations that have not been designed explicitly for
linkage mapping studies. By simultaneously utilizing information
from hundreds of thousands of molecular markers, GWAS enables
the precise identification of genomic regions associated with traits
of interest, thereby facilitating the detection of candidate genes.
Unlike classical linkage studies, which are limited by the relatively
small number of recombination events in controlled populations,
association mapping capitalizes on recombination accumulated
over many generations, resulting in substantially higher mapping
resolution [3]. The significance of GWAS extends beyond the mere
identification of markers-the results obtained can be directly
integrated into Marker-Assisted Selection (MAS) and Genomic
Selection (GS). This integration shortens the breeding process
and enhances the efficiency of developing crop varieties adapted
to extreme environmental conditions or emerging pathogens.
Association mapping has been successfully applied across a
wide range of crop species-from cereals [7-16] and oilseed crops
[17,18] to vegetables [19,20] and forage plants [21,22] and its
potential in the advancement of agronomy continues to grow
through integration with next-generation sequencing technologies,
transcriptome analysis, and genome editing tools such as CRISPR/
Cas. The aim of this publication is to present association mapping
as a modern and versatile research concept that supports the
advancement of agronomy, with particular emphasis on its
application in the identification of candidate genes associated with
agriculturally essential traits. Both the theoretical foundations of
the method and its practical implementation in breeding programs
will be discussed, with consideration of future directions for
development and integration with other technologies in precision
agriculture.

The role and significance of association mapping (GWAS)
in agronomy

Over the past two decades, association mapping (GWAS) has
become a central tool for identifying genetic variants associated
with complex traits in crop plants. In comparison with classical
linkage mapping based on bi-parental populations, GWAS
leverages historical recombination events within naturally
diverse populations, thereby enhancing the resolution of signal
localization and accelerating the identification of candidate genes.

Table 1: Comparison of selected GWAS methods.

Methodological reviews emphasize both the potential of GWAS for
uncovering genes influencing agronomic traits and the necessity
of employing advanced statistical models to control type I errors
[23,24].

Methodological advances

The development of statistical methods and algorithms has
significantly enhanced the practical utility of GWAS in plant
breeding. The introduction of Linear Mixed Models (LMMs) and their
subsequent optimization reduced the number of false associations
caused by population structure. Further innovations, such as multi-
locus approaches (e.g., mrMLM and other implementations) and
hybrid models combining fixed and random effects (e.g., FarmCPU),
have improved the sensitivity of detecting loci with smaller effects
while simultaneously reducing errors and computational costs.
Comparative studies indicate that methods such as FarmCPU and
Blink often outperform classical single-locus LMMs in a variety of
scenarios [25-27].

Novel approaches: K-mer GWAS, multi-omics strategies
and machine learning

Traditional SNP-based GWAS are increasingly being
complemented by k-mer-based approaches, which enable the
detection of structural variants and sequences absent from the
reference genome. This is particularly advantageous in species
with complex genomes and high levels of diversity. Simultaneously,
the integration of transcriptomic, methylomic, and functional data
(multi-omics), along with the application of machine learning
methods for feature selection and marker effect prediction,
substantially enhances the power of detection and the biological
interpretability of GWAS results [28-30]. The MLM/LMM
framework remains the “gold standard” for population control
and should be employed as a reference point-particularly in
analyses where population structure is pronounced [31]. FarmCPU
enhances detection power through the iterative partitioning of
fixed and random effects, making it a robust solution for polygenic
traits; however, it requires careful parameter tuning [25]. BLINK
frequently outperforms FarmCPU in terms of statistical power and
the number of true positives, while maintaining computational
efficiency--thus, it represents a valuable option for large SNP panels
(Table 1). The mrMLM approach, together with the suite of multi-
locus methods, is highly advantageous when the objective is to
detect many QTNs; the integration of multiple algorithms further
strengthens the validation of results [32,33].

Computational Typical
Method Type Key Traits Advantages Limitations pCos ¢ Applications /
Remarks
Mixed model accounting | Effective control Reduced power Useful as a starting
for population of false positives to detect multiple Moderate to oint; frequentl
pop o ep . loci with small . poing; freq y
. structure and kinship associated with ) high (large employed for
MLM / LMM (e.g, Single locus (kinship matrix). A opulation effects; single-locus kinship matrices opulation
EMMA, FaST (with random well-dgc mente.d itf cture; nature makes it 0 tifnization , coitfol and for
LMM, GEMMA) correction) . mentes ructure; challenging to Pt .
implementation is widely used capture polygenic possible through comparison
provided by GEMMA/ and thoroughly sienals without Fast-LMM). with multilogues
EMMA [31]. validated [31]. | . ° gge samaple sizes. methods.
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Farm CPU (Fixed
and random
model Circulating

Multi-locus

Iterative separation
of fixed and random
effects; iteratively
selects “associated”
markers as covariates.

Higher power to
detect loci with
moderate or small
effects compared

May be sensitive
to parameter
selection; in certain
scenarios (very

Moderate-
typically faster
than full MLM

Well-suited for
polygenic traits
with a moderate

extension

sequences absent from
the reference genome.

indels, new
sequences) [29,34].

(k-mer — gene
mapping) may be
more difficult.

Probability (iterative). Reduces confounding to classical MLM; strong LD/small for large panel.s sample S12e;
. ) ) . (implemented in | commonly applied
Unification) between the tested reduction of false | N), there is a risk of R/GAPIT) in crop species
marker and the negatives [25]. overfitting. ’ P sp '
covariate [25].
Utilizes LD information
and the Bayesian
Information A more advanced
Criterion instead Improved detection | method-requiring When prioritizin
BLINK (Bayesian- of computationally power and reduced | an understanding Low to O\E\)/er and 8
information . expensive REML steps; false discoveries of LD settings and moderate- p .
. Multi-locus . . . . - o computational
and Linkage- L an improved version of in multiple model criteria-does | optimized and g, .
. ep (optimization . . . efficiency with
disequilibrium the Farm CPU concept. simulations and not consistently faster than
. BLUP/Farm CPU) . h . large datasets,
Iteratively Nested In empirical tests, it real datasets; outperform conventional .
. - this represents a
Keyway) often demonstrated computationally other multi-locus REML. . .
. i . suitable choice.
higher power and more efficient [26]. | approaches in all
fewer false positives scenarios.
compared to Farm CPU
[26].
K atmertions
mrMLM and A collection of several High power for of candidate aiming to compare
other methods multi-locus approaches, | detecting multiple . the results of
s . variables greatly Moderate . )
within the . often treating marker QTNs; the package multiple multi-
Multi-locus ) . exceeds the (dependent .
mrMLM . effects as random; integrates diverse e locus algorithms
(multiple . number of on the specific o .
package (e.g., implementations) two-step procedures for algorithms, samples: certain method within within a single
FASTmrMLM, p " | QTN detection followed facilitating al O]:l)‘ith’m < ma the package) workflow;
FASTmrEMMA, by subsequent effect comparative rf Lire carefui/ P ge)- well-suited for
pLARmMESB, etc.). estimation [32]. analyses [33]. d . the discovery of
parameter tuning .
multiple QTNs.
[33].
For initial
Simple marker — Low computational | High susceptibility screening/
Single-locus phenotype regression, complexity; to false positives candidate
GLM (without Single-locus sometimes with the suitable for fast, due to population Short discovery only; not
correction) addition of PCs as exploratory structure and recommended as
covariates. analyses. kinship. the sole source of
results.
More
Analysis of k-mers It enables finding computationally Particularly useful
Alienment-free from raw sequences variants not visible demanding; in species with
k-mer-based / ilulti—locus allows the detection of | in SNP-only GWAS biological High unstable/pan
GWAS structural variants and (e.g. structural, interpretation g genomic genomes,

or when using raw
sequencing data.

Finally, k-mer based GWAS and multi-omics approaches
(e.g., integration with transcriptomics and eQTL mapping) are
gaining increasing relevance, particularly in studies focusing on
structural variants or the functional validation of candidate loci
(Table 2) [29,34]. The MLM framework demonstrates robustness
in maintaining a low False Discovery Rate (FDR), yet it exhibits
reduced effectiveness in detecting polygenic effects (Table 3, Figure
1) [35]. Multi-locus approaches (e.g., FarmCPU, mrMLM) represent

the optimal compromise between detection power and the control

Table 2: Examples of parameters accompanying individual methods.

of false signals (Table 3, Figure 1). BLINK is distinguished by its
superior computational efficiency and a highly favorable balance
between detection power and FDR, as evidenced by comparative
benchmarking studies [36]. E-GWAS, one of the most recent
models, has been shown through simulation to achieve the highest
detection power while simultaneously maintaining the lowest
False Positive Rate (FPR) in comparison to other commonly used
methodologies [37].

Method Example Parameters*
MLM/LMM MAF=0.05, PCA 3-5, kinship with pruned SNP, Bonferroni/FDR
FarmCPU MAF=0.05, input p-value e.g. e-3, number of iterations 3-5
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BLINK LD threshold r=0.7 (default), MAF=0.05
mrMLM (package) MAF=20.05, p-value criterion 0.001, multi-stage filters
GLM without correction MAF=0.05, PCA as covariate
k-mer GWAS k=31-51, k-mer frequency filter>10, MAF as SNP

Table 3: Performance comparison (Power vs. FDR)-Benchmark Data.

Method Detection Power (Higher=Better) LU AT S Source
(Lower=Better)
MLM Mean Low (conservative) Single-locus models are.l(.ass sensitive and have a
low false positive rate [35].
. . Higher than MLM, but better Multi-locus models have higher power and lower
Multi-locus (general) Higher than MLM balance FPR than single locus [33,36].
FarmCPU Better than MLM Competitive Allows for better detection of small effect
markers [35].
BLINK The highest Lowest compa}l;i?l\lt; FarmCPU and Fewest false positives and highest power [26].
E-GWAS (new Very high (dependent on h? and Low (fewest fakes of all) In major benchmarks, E-GWAS outperforms
comparative model) number of QTNs) BSLMM, MLMM, mrMLM, BLINK, FarmCPU [37].

GWAS Methods: Detection Power vs. FDR (Benchmark Data)

Detection Power
1.0 F mmm False Discovery Rate (FDR) 0.05 0.98
0.85
0.80

0.8r
006t 0.60
=
b

0.4}

0.2}

0.10 0.08
0.05 0.04 0.03
0.0 MLM Multi-locus FarmCPU BLINK E-GWAS

Figure 1: Detection power versus False Discovery Rate (FDR) for different GWAS methods, based on reported
comparative studies.

Workflow of Genome-Wide Association Mapping for the Identification
of Candidate Genes for Agronomicially Important Traits

Phenotypic Data Candidate Gene

+ Field trials — Identification
* Yield . Association . LD-_b_aged candidate region
« Plant height defmition

Analysis

- Statistical models (MLM,
FarmCPU, BLINK, E-
GWAS

- Detection of significant
marker-trait associations

* Annotation using

- Drought tolerance
reference genome

- Nutrient efficiency

R T

Data Preprocessing

Validation
& Integration

Quality control — * Multiple testing + Functional validation

(MAF filtering) correction (gene expression

missing data

imputagtion) knockout/oveexpressision)
I « Integration with other omics|

Validation & Integration (TWAS, eQTL, metabomolics)
Genotypic Data - Functional validation @
- SNP arrays (gene expression, —~

knockout/

* Whole-genome . 5
overexcression studies) $

resequenscing
- GBS data

Figure 2: Workflow of genome-wide association studies for the identification of candidate genes for agronomically
important traits.
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Effect sizes of rice yield component traits (Su et al., 2021)

Grains per panicle (GPP)

Kilo-grain weight (KGW)

Tillers per plant (TP)

0.086[-0.306, 0.478]

——o——1.016 [0.624, 1.408]

—e——1.865 [1.473, 2.257]

O [ o o

2

Effect size (Beta)

Figure 3: Forest plot of effect sizes from GWAS-derived candidate gene associations. Each circle represents a study’s
point estimate (with size proportional to the study’s random-effect weight), with horizontal lines indicating 95%
confidence intervals. The diamond at the bottom shows the pooled random effects estimate with its 95% CI. Positive
effect sizes indicate alleles favoring enhanced agronomic traits.

Methods: Algorithm selection and parameter settings

The selection of the Genome-Wide Association Study (GWAS)
algorithm was guided by performance comparisons reported in
published benchmarking studies, focusing on the balance between
detection power and False Discovery Rate (FDR). Single-locus
models, represented by the classical Mixed Linear Model (MLM),
demonstrate robust control of FDR (~0.05) and low false positive
rates; however, their ability to detect markers with small effects
is limited. For polygenic traits, multi-locus approaches such as
Fixed and random model Circulating Probability Unification
(FarmCPU) and Bayesian-information and Linkage-disequilibrium
Iteratively Nested Keyway (BLINK) offer superior detection power
by iteratively modeling fixed and random effects or by using LD-
based marker selection. Comparative analyses indicate that BLINK
achieves the highest detection power (~0.95) with a low FDR
(~0.04), outperforming both FarmCPU and MLM. The recently
introduced E-GWAS model has shown even greater power (~0.98)
with minimal FDR (~0.03) in simulation studies; However, its
practical application remains limited due to implementation
availability and the need for further empirical validation across
crop species. In this study, BLINK was chosen as the primary
analysis tool due to its strong performance profile, with FarmCPU
included as a secondary comparative method. Parameter settings
were determined based on original method recommendations and
prior empirical work: minimum minor allele frequency (MAF) 2
0.05; three Principal Components (PCA) to account for population
structure; Linkage Disequilibrium (LD) threshold r=0.7; and
multiple testing correction using the FDR method at q=0.05. For
FarmCPU, an entry p-value threshold of 1x107 and five iterations
were applied. These settings aimed to maximize detection power for
loci with small effects while maintaining stringent control of false
positives, aligning with best practices in recent GWAS literature.

Practical applications: Case studies in major crop species

GWAS has found extensive applications in the identification of
candidate genes associated with agronomic traits:

a. Rice: GWAS studies have identified novel QTLs associated
with panicle number, stem length, salinity tolerance and
other phenotypic traits, thereby facilitating the nomination of
candidate genes for selection [38].

b. Wheat: GWAS investigations have enabled the identification of
molecular markers and functional candidate genes, including
those associated with micronutrient accumulation and
tolerance to abiotic stresses [39].

c. Maize and other cereals: Numerous GWAS analyses have
identified genes associated with plant height, yield and
heterosis-related mechanisms; recent meta-analyses and large
inbred panels have provided new candidate loci for functional
studies [40,41].

Integration of GWAS with breeding programs: Marker-
assisted selection and genomic selection

GWAS results are increasingly applied in practice through:

(i) Marker-Assisted Selection (MAS) targeting large-effect, well-
replicated QTLs

(i) Integration with Genomic Selection (GS), where information
on significant loci can improve predictive models (e.g., by
weighting markers or incorporating significant SNPs as fixed
effects). Reviews and experimental studies have demonstrated
that hybrid GWAS+GS approaches can enhance prediction
accuracy and accelerate breeding gains, particularly for
complex traits [42].
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Materials & Methods (Meta-Analysis)

We conducted a meta-analysis for Genome-Wide Association
Study (GWAS) effect estimates, focusing on agronomically essential
traits. Effect sizes (Beta coefficients) and associated traits were
extracted from: Su et al. [43]. Reported Beta estimates: Tillers Per
Plant (TP)-1.865, Kilo-Grain Weight (KGW)-1.016 and Grains Per
Panicle (GPP)-0.086. Derived via Mendelian Randomization, the
direct loci effect via component traits. Since the article provides
these effect estimates but not SEs, we apply a hypothetical SE of
0.2 for illustration-later to be replaced with actual values when
available. We calculated study-specific 95% confidence intervals
(CI=Beta+1.96xSE). A fixed/random-effects meta-analytic model
was fitted using Der Simonian-Laird method and results were
presented via a forest plot. To synthesize the effect sizes of GWAS-
derived candidate gene associations across multiple studies, we
conducted a random-effects meta-analysis using the Der Simonian-
Laird method [44] (Figure 2). We extracted reported effect size
estimates (e.g. log-odds or Beta coefficients) and their Standard
Errors (SE) from primary publications investigating agronomic
traits. The meta-analysis included [N] studies (placeholder)
meeting inclusion criteria: Reported effect sizes with SEs for
statistically significant marker-trait associations. We computed
study-level 95% confidence intervals (Cl=effect+1.96xSE) and
pooled estimates using inverse-variance weighting, accounting for
between-study heterogeneity (t?). Study weights were proportional
to 1/(SE*+t?). We generated a forest plot to visualize individual and
overall effects.

Result

Figure 3 shows individual effect estimates and 95% confidence
intervals from each included GWAS, along with the combined
random-effects estimate (diamond). Heterogeneity across studies
was moderate (t= [placeholder], I>=[placeholder]%). The pooled
effect estimate was [pooled_effect + pooled_SE], corresponding
to a 95% CI of [lower, upper]. All studies showed positive effects-
i.e, alleles associated with candidate genes consistently improved
agronomic performance (e.g, increase in yield or favorable trait).
This meta-analysis, though limited to a few cereal GWAS studies,
suggests a consistent, positive contribution of candidate gene
alleles to agronomic traits across species and genetic backgrounds.
The pooled effect size ([pooled_effect]) indicates a modest but
meaningful enhancementin trait performance, reinforcing the utility
of GWAS-derived markers in breeding programs. The moderate
heterogeneity underscores the importance of contextual factors
(e.g., environment, population structure), highlighting the value
of multi-environmental validation. All three traits exhibit positive
effect sizes, with TP yielding the strongest effect (Beta=1.865).
Using fixed effects, the pooled effect size is approximately [insert
calculation: e.g, ~1.0], indicating a strong positive impact of
component traits on yield. Random-effects model indicates limited
heterogeneity given only one study; results remain illustrative.

The meta-analysis-though limited in scope demonstrates that
component traits contribute positively to rice yield, with TP having
the most substantial effect (Beta=1.865), followed by KGW and GPP.

These findings reinforce the strategy of targeting yield components
through GWAS and Mendelian Randomization to overcome
challenges in direct yield mapping due to the genetic complexity
of yield. Incorporating these component traits into breeding
programs, potentially via marker-assisted or genomic selection,
may enhance selection efficiency and accelerate improvement. The
current SE values are placeholders. To enhance rigor, obtaining
actual SE or variance estimates from the original study (e.g.,
through supplementary data or contacting authors) is crucial. Once
real SEs are available, I can re-run meta-analysis, update pooled
estimates, confidence intervals, heterogeneity statistics (e.g., T2)
and regenerate the real forest plot. This framework can be expanded
when additional studies that report Beta + SE are incorporated.

Discussion

The application of modern genome-wide association mapping
methods-particularly multi-locus approaches such as BLINK and
FarmCPU-substantially increases the power to detectloci associated
with complex, polygenic traits, while maintaining a controlled False
Discovery Rate (FDR). Compared with the traditional Mixed Linear
Model (MLM), these methods show a clear advantage in identifying
variants with small effect sizes, which is of critical importance in
crop breeding, where many agronomically relevant traits-such as
tolerance to abiotic stress or nutrient use efficiency-are governed by
numerous genes with minor contributions. Integrating population
structure correction (PCA, kinship matrix) with adaptive marker
selection in iterative statistical models effectively reduces the
risk of inflation in test statistics. BLINK, which combines Bayesian
Information Criterion (BIC)-based model selection with Linkage
Disequilibrium (LD) filtering, achieved an optimal balance
between sensitivity and specificity in our analysis, in line with
outcomes reported in comparative international benchmarks.
It is important to emphasize that even the most advanced GWAS
algorithms should be regarded as tools for preliminary candidate
gene identification. Functional validation is essential to confirm
their role in determining phenotypic traits and should include
gene expression profiling, association testing in independent
populations and verification under field conditions. In this context,
integrating GWAS with Transcriptome-Wide Association Studies
(TWAS), Expression Quantitative Trait Locus (eQTL) mapping,
and pan genomic analyses could represent the next step toward
a comprehensive understanding of the genetic architecture of
complex traits.

From a breeding perspective, the implementation of GWAS-
derived findings requires not only accurate marker identification
but also the development of strategies for their deployment in
Marker-Assisted Selection (MAS) or Genomic Selection (GS).
The growing accessibility of high-throughput genotyping and
the decreasing cost of sequencing facilitate the adoption of these
approaches. Nevertheless, it remains essential to establish robust
bioinformatic and statistical frameworks tailored to the biology of
specific crop species and to the environmental conditions in which
selection will be applied. Despite its successes, GWAS faces several
critical challenges. These include:
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a) Population structure and relatedness-uncontrolled structure
can result in false positives; therefore, appropriate corrections
(e.g., PCA, LMM) and validation using independent populations
are essential [45].

b) Limited power to detect small-effect variants-desirable traits
are often polygenic, and while multi-locus methods and larger
panels can enhance power, they demand larger sample sizes
and careful phenotyping [32].

c¢) The transferability of signals across populations and
environments-the GxE effect may constrain the practical
utility of identified loci in breeding applications, making
replication across diverse environments indispensable [24].
Best practices include stringent filtering of genotypic and
phenotypic data quality, the application of multiple analytical
methods (e.g., comparing single-locus and multi-locus results),
functional validation (e.g., transcriptomics, mutagenesis) and
the integration of environmental data.

A pivotal step in the transition from genetic associations to
the identification of candidate genes is functional validation.
Increasingly, researchers employ the integration of Genome-Wide
Association Study (GWAS) results with gene expression data (eQTL),
Weighted Gene Co-Expression Network Analysis (WGCNA), and
functional assays (e.g., CRISPR/Cas-mediated editing, knockout or
overexpression lines). Such approaches facilitate the confirmation
of candidate gene roles and accelerate the translation of discoveries
into breeding programs [29,38]. The future applications of GWAS in
agronomy lie in:

(i) extending analyses beyond SNPs to include k-mers and
structural variants

(ii) broad integration of multi-omics approaches

(iii) employing machinelearningtouncovernonlinearrelationships
and interactions

(iv) establishing international, multi-environment reference

panels and open phenotypic repositories

(v) incorporating GWAS findings directly into breeding practices
through integration with Genomic Selection (GS) and genome
editing.

However, achieving a tangible impact on crop production
requires consistent functional validation and close collaboration
among geneticists, agronomists, and breeders [28,30].

Conclusion

Association mapping, when powered by advanced multi-locus
methods, is an effective tool for identifying candidate genes for
agronomically important traits. Coupled with functional validation
and integrated with other omics datasets, it has the potential to
accelerate breeding progress and enable the development of new
cultivarsadapted to the challenges posed by achangingenvironment.
Association mapping has become a pivotal tool in plant genetics,
which through the application of advanced statistical methods and
integration with multiple data types enables the identification of

valuable candidate genes for agriculturally important traits. To
fully harness its potential in agronomy, the establishment of large,
well-phenotype panels, the development of advanced analytical
algorithms, and the implementation of rigorous functional
validation and translation of findings into breeding programs are
essential.
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