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Introduction
Precision Agriculture (PA) is not new in the contemporary scientific literature. Its 

description intercepts researchers’ perspectives with applications and approaches tailored 
toward the same goal of smart farming using technology and data-driven methods to optimize 
crop and livestock management. Earlier research has successfully provided science-based 
information about real or near real-time technology (Geographical Information System 
(GIS), Rate Variable Applicators (RVA), Global Positioning System (GPS), and remote sensing) 
powered by the rapidly developed world of Information and Communication Technology 
(ICT) that has transformed agriculture operations from conventional practices into a data-
driven, thus providing a timely and more accurate decision support system to farmers [1-
4]. Consequently, increased resource use efficiency has optimized agricultural management, 
increasing crop and livestock productivity. 

However, the adoption of PA by end users, which transcends the scope of “farmers,” has 
been awkwardly slow when examined based on managed pasture production compared 
to arable crops and regarding the choice of technology. The adoption rate of arable crops 
followed an exponential increase [1], with grains [5] taking the lead depending on climates 
and geographical regions. Despite grassland ecosystems occupying over 40% of the global land 
surface [6] largely dedicated to livestock production with significant importance to reducing 
climate change through carbon sequestration and supporting over 1 billion households 
[7], arable crops have received increasing attention [4,8] and adoption more than pasture 
management. This is evidenced through the use of GPS, GIS, RVA, sensor mounting, and ICT 
technologies in specific crop management, irrigation scheduling, fertilizer and pesticide 
application, mechanization (planting, weed control, and harvesting), and yield monitoring [2]. 
These technologies are also applied to livestock management [9] but are limited to managed 
pasture production [8].
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Abstract

Meeting the goal of agricultural sustainability in the era of climate change and burgeoning global 
population requires an equal commitment to arable crops and pasture production management. However, 
technologies that enable Precision Agriculture (PA) are over-emphasized for the former at the latter’s 
expense. In this mini review, we provided an argument that benefits the future of food security in the 
threat of global issues.
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Although agricultural production and management are 
optimally enhanced through various proximal technologies, the 
benefit of PA is limited without the inclusivity of remote sensing 
data. Remote sensing through satellite and aerial unmanned 
vehicles (UAV) provides spatial information from chemical and 
physical properties (i.e., electromagnetic spectrum or microwaves) 
capable of monitoring variability in agricultural fields through soil 
and crop mapping, weed detection, early detection of pests and 
diseases, irrigation management, environmental monitoring, and 
climate resilience. However, remote sensing technology is more 
widely used for arable land than intensively managed pastures 
[4,10].

Indeed, monitoring intensively managed pastures is more 
challenging than arable crops. Pastures are heterogeneous [11], 
unlike arable crops, which exhibit unique canopy architecture from 
remote sensing data. Thus, the spatial variability of crops is less 
complex than grasslands since they are grown in rows or follow 
a specific pattern. Consequently, resource use and efficiency are 
maximized when operations are directed toward specific field 
areas. Nearly all crops have predictable growing seasons and follow 
established agronomic principles [12] compared to managed 
pastures that are more dynamic. Remote sensing can support 
intensively grazed pastures with management decisions against 
overgrazing or wastage of feeds through under-grazing, leading 
to environmental risks [13]. In contrast, the extensive rangeland 
system primarily practiced by herders will not catalyze the remote 
sensing technologies at the management level. Therefore, closing 
the gap between arable crops and pasture management using 
PA as incentives for agricultural sustainability may be later than 
sooner. Farmers, land managers, and other stakeholders must 
embrace intensive grazing regimes where animals go through 
a cycle of rotation in a multi-paddock/field system [13]. The 
intensively managed pasture system is like sustainable agricultural 
intensification strategies adopted for cropping systems [7,14].

However, a high spatial resolution imagery (1-5m) with timely 
revisit (1- 5 days) will be needed to fulfill the ambition of on-
field remote sensing monitoring of pastures. The finer the spatial 
resolution of remote sensing imagery, the more suited to support 
management decisions at the farm level. Currently, Sentinel-2 
imagery from the European Space Agency (ESA) operates the 
constellation of Sentinel-2A and B, imaging global grasslands 
at 10m spatial resolution every five days, depending on the 
geographical location, capable of supporting PA at no cost [15]. The 
Landsat program of the joint venture of the National Aeronautics 
and Space Administration (NASA) and the United States Geological 
Survey (USGS) can further be used (singly or in hybrid with UAV) 
to provide environmental monitoring and climate resilience for 
pasture monitoring [16].

In conclusion, meeting the aspiration of agricultural 
sustainability in the era of frequent global issues, such as conflict, 
COVID-19 [17], extreme weather events, and climate change, 
the demand for technologies for remote land management in the 
coming decades will likely increase [7].
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