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Introduction
The Hetao Irrigation District (HID) (40°12’-41°20’ N, 106°10’-109°30’ E) is located in 

Bayannur, Inner Mongolia, China. The HID belongs to the cold and arid region, with 0.68 million 
ha of irrigated arable lands. The HID farmland soil was classified as Irrigation Silting Soil by 
China Soil System Classification, which is similar to Plaggept by the US Soil Taxonomy. The 
soils are alkaline with low Soil Organic Matter (SOM) content. Also, the soils have interannual 
periodic secondary salinization [1]. Owing to its salt tolerance, the sunflower (Helianthus 
annuus L.) is planted in the saline-alkali lands of the HID, accounting for approximately 1/2 
of the total arable lands in the district. The sunflower yield is relatively low, the annual mean 
yield from 2000 to 2018 was only 2370 kg ha-1[2]. However, research studies on improving 
the saline-alkali soils are still lacking. Through literature review and field investigation, we 
revealed the synergistic complementary effects of elemental Sulfur (S0) and Micro-Algae 
(MA) (as bio-fertilizers) on the saline-alkali soils. We also proposed that the combination of 
S0 and MA could be used to improve the saline-alkali soils. This study would shed new light on 
improving saline-alkali soils in the HID or other arid regions of the world. 

Discussion
S0 application 
A.	 Can effectively reduce the pH value of saline-alkali soils. Firstly, S0 can be oxidized by 

microorganisms to generate sulfate ions (SO4
2-) and hydrogen ions (H+), which can reduce 

the soil pH value. Also, S0 is insoluble in water, resulting in a slow microbial oxidation 
process, which keeps the lower pH value for a longer time [3-5]. The decrease in pH value 
of the alkaline soil can dissolve the insoluble calcium carbonate (CaCO2) in the soil. The 
dissolved CaCO2 can replace the soil exchangeable Na+, thereby reducing the Exchange 
Sodium Percentage (ESP) in the soil [6]. 
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Abstract 
Sunflower (Helianthus annuus L.) is one of the major crops in the Hetao Irrigation District (HID), which 
belongs to the cold and arid region, Bayannur, Inner Mongolia, China. The sunflower is planted in the 
saline-alkali farmlands, accounting for approximately 1/2 of the total planting area. The sunflower yield 
is relatively low. However, studies on improving the saline-alkali soils in the HID are still lacking. In this 
study, through an in-depth investigation of the HID soils and literature review, we revealed the synergistic 
complementary effects between elemental sulfur (S0) and Micro-Algae (MA) on saline-alkali soils. Also, 
we proposed a novel idea that the interaction between S0 and MA could be used to improve the saline-
alkali soils in the HID or other arid regions.
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B.	 The reduced pH value of alkaline soils by S0 can increase the 
availability of soil nutrients such as nitrogen (N), phosphorus, 
calcium, magnesium, iron, manganese, copper, zinc, and cobalt 
[7]. For instance, as the soil pH value decreases to 7, the negative 
charge of the soil decreases [8], weakening the repulsion 
between soil nitrate nitrogen (NO3

--N) and soil colloid, thus 
slowing down NO3

--N leaching. The S2O2
3- generated by the 

oxidation of S0 can inhibit the nitrification of soil ammonium 
nitrogen (NH4

＋-N) and slow down the conversion rate of NH4
＋-N to NO3

--N [9,10], thereby reducing soil NO3
--N leaching and 

nitrous oxide (N2O) emissions from the soil [11]. 

C.	 However, the S0 application may cause soil sulfur enrichment 
(i.e., an increase in SO4

2-), which in turn increases soil sulfate 
levels [4,12], and reduces crop nitrogen uptake and crop yield 
[13-15].

MA commonly refers to the collective name of single-celled 
micro-algae that contain chlorophyll-a, which are capable of 
photosynthesis. MA belongs to a kind of protists. A variety of soil 
bio-fertilizers have been developed by using different MA species 
as raw materials. The bio-fertilizers were commonly used in 
paddy fields previously, but currently, in dryland, the bio-fertilizer 
application is increasing [16]. 

a)	 MA as bio-fertilizers can reduce soil sulfur enrichment. 
Cyanobacteria (one of the algae species) first appeared in the 
Archean oceans on the Earth. With increasing oxygenation 
and more abundant sulfate (SO4

2-) levels, algae (green algae 
together with cyanobacteria) became the main primary 
producers in the Earth’s oceans. Sulfur is one of the important 
components of algae cells. The sulfur is consumed by algae in 
the form of SO4

2-. Therefore, sulfur has become a macronutrient 
necessary for the growth of micro-algae [17]. The application 
of MA bio-fertilizers can inevitably consume part of SO4

2- and 
reduce sulfur enrichment and sulfate content in the soil. 

b)	 The cyanobacteria integrated with salt-tolerant plants 
can remove much more salts from soils [18]. The major 
contribution of cyanobacteria is to re-establish micro-ecology 
[18] and absorb Na+ in the soil [19]. 

c)	 MA bio-fertilizers can increase soil availability of nutrients 
[16,20]. In drylands, MA species can grow in symbiosis with 
crop roots [21], significantly affecting microbial communities 
[19,22], improve plant rhizosphere microbes [23-25], 
decompose soil compounds to generate available nutrients 
[21], enhance crop N uptake, and fix N [16]. 

d)	 MA can increase Soil Organic Carbon (SOC) through 
photosynthesis [16], thereby increasing SOM. For example, 
the application of MA biofertilizers in desert soil in the United 
States has been reported to increase SOM from 10 to 30 g kg-1 
within three years [26]. 

e)	 MA bio-fertilizers can significantly reduce N2O emissions from 
the soils [27].

However, little information is available on the interaction 
between S0 and MA. To our knowledge, only one study has so 
far evaluated the impacts of sulfur and algae fertilization on the 
productivity of soybean (Glycine max (L.) Merrill) and mung bean 
(Vigna radiata (L.) Wilczek) in Egypt. The results showed that 
compared with the single application of S0, MA, or the control, under 
the condition of combined application of S0 and MA, the yields of 
soybean and mung bean were significantly increased, and the 
protein, carbohydrate, and oil contents also increased accordingly 
[12]. However, the effects of S0-MA interaction on soils have not 
been reported yet.

Conclusions
As a fertilizer, S0 can reduce soil pH and ESP, improve N nutrient 

availability in the soil, and reduce soil NO3
--N leaching, but can lead 

to soil sulfur enrichment (i.e., increase in soil SO4
2- content) and 

an increase in soil total salt content (Table 1). Whereas MA as bio-
fertilizers can significantly reduce soil SO4

2- content, soil total salt 
content, soil N2O emission, can improve SOM content and fix N in the 
soil (Table 1). Therefore, the S0 and MA have strong synergistic and 
complementary effects on saline-alkali soil, by which we proposed 
a novel idea that the interaction between S0 and MA could be used 
to improve the saline-alkali soils in the HID or other globally arid 
regions.

Table 1: Synergistic complementary effects of elemental 
sulfur and micro-algae as bio-fertilizers on saline-alkali 
soils.

Soil Indicators† Element Sulfur Micro-Algae

pH Reducing Not significant

ESP Reducing Not significant

Total salt Increasing Reducing

Available nitrogen Increasing Not significant

NO3
--N leaching Reducing Not significant

SO4
2- Increasing Reducing

Soil organic matter Not significant Increasing

Nitrogen fixation Not significant Increasing

Soil N2O emissions Not significant Reducing

† ESP, Exchange sodium percentage; NO3
--N, Nitrate 

nitrogen; SO4
2-, Sulfate ion; N2O, Nitrous oxide.
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