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Abstract

Acute poverty has a severe impact on children in India, where 30% of all children living in extreme 
poverty worldwide are born. The truth is that 36% of the world’s poorest children reside in South Asia, 
with India hosting 84 percent of this population. Besides, more than 45 million children in India are 
affected by the COVID-19 pandemic’s extreme poverty, which accounts for 30% of all children worldwide. 
Childhood poverty, which is frequently associated with accelerated aging, may have a significant impact 
on immune system function, which may lead to dysregulation of inflammatory processes in response to 
foreign substances and a change to unfavorable proinflammatory states. The term “Metabolic Syndrome” 
(MetS) describes a group of disorders, such as high blood pressure, high blood sugar, insulin resistance 
(IR) and elevated adiposity, that frequently co-occur and increase the risk of stroke, type 2 diabetes 
(T2DM), and cardiovascular diseases. An extensive incidence of IR among children exhibiting MetS was 
found in an Indian cross-sectional investigation. Over time, the scientific community has become more 
cognizant of the critical role the immune system plays in maintaining systemic metabolic homeostasis. 
The maintenance of excellent “metabolic health” over the course of a person’s life depends critically 
on this interaction between the immune and metabolic systems. Two major stress-signaling pathways 
that contribute to immunological dysregulation in children during poverty are the Autonomic Nervous 
System (ANS) and the Hypothalamic-Pituitary-Adrenal (HPA) axis. Prolonged HPA axis activation brought 
on by poverty-induced stress can directly contribute to the pathophysiology of T2DM. Early traumatic 
events and lifestyle modifications induced by poverty may also have an impact on how quickly telomeres 
shorten throughout the course of a person’s lifespan. Telomere shortening brought on by immune system 
aging slows down T- and B-cell population renewal and clonal proliferation, aggravating MetS. Early-life 
nutrition results in long-lasting alterations in DNA methylation that have an effect on a person’s health 
and aging-related disorders throughout their lifetime. In order to further validate the causal relationship 
between these crucial intersecting events that the article seeks to capture during poverty, additional 
research will be needed to collect data on the prevalence of MetS, immunological parameters, including 
retrospective and prospective longitudinal studies in larger Indian cohorts.

Introduction
Understanding poverty in India

With roughly 1.4 billion people, India is one of the most populous nations in the world. 
More than 17% of the world’s population resides in India alone [1]. With such a large 
population, there aren’t enough resources to maintain the majority of residents’ livelihoods 
and standards of living. India has a long history of poverty, with 63.1% of its people subsisting 
on less than $1.90 a day in 1977 [2,3]. This percentage has since sharply declined to 22.5 
percent in 2011; nonetheless, this still equates to an alarming 296 million people living in 
extreme poverty. More specifically, children in India bear a heavy burden of acute poverty. 
30% of all children in extreme poverty worldwide are born in India [4,5]. In reality, South Asia 
is home to 36% of the world’s poorest children, while India alone makes up 84 percent of this 
population [2]. In a recent research titled “Ending Extreme Poverty: A Focus on Children,” the 
World Bank Group and UNICEF (United Nations Children’s Fund) discovered that children 
are disproportionately impacted by extreme poverty [6]. It’s interesting to note that children 
made up half of the extremely poor despite making up only a third of the population under 
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study. Children therefore have a higher likelihood of living in 
extreme poverty than adults. It’s significant to note that from the 
start of the COVID-19 pandemic, 150 million more children around 
the world have ended up living in poverty [7]. More than 45 million 
children in India are affected by the COVID-19 pandemic’s extreme 
poverty, which accounts for 30% of all children worldwide [8].

The potential association between childhood poverty 
and metabolic syndrome

 Aging often causes a progressive loss in immune system 
function, among other things, which raises the risk of a number 
of illnesses such infections and cancer [9,10]. This aging-related 
immunological dysfunction is specifically referred to as “immune-
senescence,” which describes changes in the organizational 
and functional characteristics of various immune components, 
including the innate immune system, as well as the loss of diversity 
in adaptive immunity [11,12]. Childhood poverty, which is 
typically linked to accelerated aging [13] may have a major effect 
on immune system function, which can cause dysregulation of 
inflammatory processes in response to foreign substances and a 
shift to unfavorable proinflammatory states [14,15]. For instance, 
a recent study [16] on 342 African American teenagers from the 
Southeast of the United States examined the potential link between 
familial poverty throughout adolescence (years 11 to 18) and 
Insulin Resistance (IR) in young adulthood (ages 25 to 29). The 
participants were tracked for nearly two decades (2001-2019). 
The findings suggested that adolescent family hardship might 
have contributed to both rapid immune cell aging and greater 
levels of IR in young adults. The researchers also discovered that 
the longer subjects lived in poverty throughout youth, the higher 
their chance of developing diabetes and insulin resistance as adults, 
suggesting a potential connection between poverty and accelerated 
immunological aging. Importantly, this study also emphasizes the 
importance of taking a life course perspective when examining 
social differences throughout time. This is partly because, when 
compared to researching the population at younger ages, examining 
the older population at a certain age range will leave out other 
significant health differences [17]. 

 The term “metabolic syndrome” (MetS) refers to a group of 
disorders, including elevated blood pressure, high blood sugar, and 
elevated adiposity, frequently co-occur and raise the risk of stroke, 
Type 2 Diabetes (T2DM) and cardiovascular disease [18-20]. Also 
closely related to IR is the metabolic syndrome [21,22]. For instance, 
a cross-sectional study conducted in India discovered a substantial 
prevalence of IR among schoolchildren producing MetS . In total, 
21.8 percent of these kids had MetS. A HOMA (Homeostatic Model 
Assessment)-IR of 2.5 was present in almost 55% of the children 
[23]. As a result, the purpose of this research is to investigate the 
relationship between metabolic syndrome, immunological aging, 
and childhood poverty in India. MetS affects about 25% of the 
world’s population, and it is more common in people with low 
socioeconomic status (SES) [24,25]. Low early-life SES was linked 
to an 83 percent higher risk of MetS in later life, according to a study 
comparing the relative contributions of early-life SES and current 
SES in determining MetS risk [24,26]. This further demonstrates that 

implementing targeted interventions in childhood may lessen the 
prevalence of MetS among the poor. Low SES during pregnancy and 
gestation causes pregnant women to lack certain macronutrients 
like protein and carbs [27,28], which leads to reduced child birth 
weight, a surrogate marker for fetal growth, and later insulin 
resistance, glucose intolerance, hypertension, and obesity in adults. 
Furthermore, famine is also a natural paradigm for examining 
how undernutrition in adolescence affects persons later in life 
[29]. Following the end of World War II, the Dutch winter famine 
(1944-1945) was one of the most Well-known famines in history, 
characterized by a 5-month period of extreme undernourishment 
in the western urban region of the country. Lumey [30] investigated 
a birth cohort of 3307 singletons born between 1945 and 1946. A 
study [31] found a greater prevalence of T2DM and dyslipidemia 
in adult offspring aged 59 following maternal undernutrition as 
a result of famine during pregnancy. Moreover, the Dutch Famine 
Birth Cohort Study carried out by Ravelli et al. [32]. showed that 
exposure to a famine during pregnancy resulted in considerable 
glucose intolerance and insulin resistance in offspring at ages 50 
and 58 [32].

Case studies in India of malnutrition and the metabolic 
syndrome

Additionally, postnatal malnutrition can result in 
hyperinsulinemia, impaired glucose tolerance, and an increased 
risk of diabetes in children [33,34]. Previous research has shown 
a connection between T2DM and low SES [35,36]. Additionally, 
more research tend to point to the crucial connection between 
childhood undernutrition and a higher risk of acquiring T2DM 
[37,38]. A 10-year follow-up study conducted in an urban South 
Indian population found a significant association between SES 
gradient and prevalence of diabetes and CV risk factors, with a 
higher concentration among those in the middle and lower-income 
categories [39,40]. Another serial epidemiological study from Jaipur 
[41], India found that the prevalence of smoking, diabetes and 
dyslipidemia rose greater in those with lower educational status 
compared to those with higher education. Individuals in the low SES 
group had a higher overall cardiovascular risk based on the widely 
used worldwide cardiovascular risk assessment methodology. As a 
result, this may help to explain why, despite a very low prevalence 
of obesity in Indians compared to Americans, diabetes is at least 
twice as common in Indians. This is likely because more people 
in India belong to low SES groups [42]. In addition, one in two 
persons in the age range of 25 to 64 in India’s tribal (Aboriginal) 
population has hypertension either reported or determined to exist 
[43]. Despite a constant increase in the GDP over the previous 10 
years, India’s average inflation rate, particularly food inflation [44], 
has remained high. Since the poor have a harder time affording 
the healthier options due to the high inflation rate, the risk of 
developing metabolic syndrome is enhanced [45].

The symphony of immunological dysfunction, metabolic 
syndrome and undernourishment 

An exhaustive assessment of the literature looked at 
malnutrition and compromised immune function [46,47]. A 
literature review [48] that included 3402 articles published 
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between 1970 and 1990 and 33 articles after 2003, of which 245 
met the inclusion criteria, found that malnutrition was associated 
with impaired gut-barrier function, decreased exocrine secretion 
of protective substances, low plasma complement levels along with 
atrophic thymus, and significant reductions in antibody levels in 
severely malnourished children after vaccination, as opposed to 
no such change. Cytokine patterns were skewed towards an anti-
inflammatory The 2-response. The study’s observational nature 
and cross-sectional analysis approach, however, may be seen as 
potential weaknesses [49]. The immunological priming of Dendritic 
Cells (DC) and monocytes, as well as the activity of effector memory 
T cells, are both known to be compromised by starvation [50,51]. 
Furthermore, it’s likely that poverty-related hardships prevent 
parents from having kind and considerate relationships with 
their kids, which could potentially negate the impact of SES on 
the inflammatory process in kids [52,53]. Children from low SES 
backgrounds typically have lower levels of education as adults, 
which keep them from acquiring healthy dietary habits [54] and 
behavior patterns to reduce chronic inflammatory processes. Early 
childhood poverty has been associated with poor adult mental 
health [55,56]. There is evidence that people with mental health 
disorders experience persistent inflammation [57,58].

Along with its better-known functions of providing defense 
against external infections and preventing the growth of tumors, the 
immune system also plays a critical role in the control of systemic 
metabolic homeostasis, which has gained widespread recognition 
over time [59,60]. The maintenance of excellent “Metabolic 
Health” over the course of a person’s life depends critically on this 
interaction between the immune and metabolic systems [61,62]. 
Any disturbances in this complex immune-metabolic cross talk have 
the potential to cause MetS, which will most likely lead to T2DM and 
Cardiovascular Illnesses (CVDs) [63-66]. Moreover, researchers 
looked at the relationship between early childhood income and 
disease states that occur as adults and have a strong correlation 
with immune system malfunction and immunological-mediated 
pathogenic processes [14,67]. This study employed annual family 
income reports obtained between the prenatal year and age 15 
years, in contrast to numerous epidemiological studies that only 
used retrospective data of childhood SES. It followed participants 
from birth to adulthood. To eliminate the possibility of any other 
confounding variables, the study also included wealthy controls for 
conditions governed by income. This result therefore confirmed 
earlier findings from a few other research that a steady income 
stream is essential for a metabolically healthy adult life, particularly 
for young people at the low end of the income distribution. The 
absence of direct evaluations of immune parameters, which was a 
major flaw in this study’s design based on the basic immunological 
premise, was identified.

The Autonomic Nervous System (ANS) and the Hypothalamic-
Pituitary-Adrenal (HPA) axis are two primary stress-signaling 
pathways that contribute to immune dysregulation [68,69]. When 
the brain perceives a stressful situation, such as poverty, it activates 
the HPA axis [70] and the Sympathetic-Adrenal Medullary Axis 
(SAM), resulting in the release of hormones that are known to 

modulate immune cell functions, including Adrenocorticotropic 
Hormone (ACTH), cortisol, growth hormone, prolactin, epinephrine 
and norepinephrine. Additionally, prolonged HPA axis activation 
brought on by stress can directly contribute to the pathophysiology 
of T2DM [71,72]. Additionally, pro-inflammatory indicators like 
CRP (C-reactive protein), IL-1, and IL-6 are driven by cytokines 
called adipokines that are generated from visceral adipose tissue, 
supporting the hypothesis that stress and inflammation are linked 
and result in T2DM and other metabolic illnesses [73-75]. Visceral 
obesity frequently co-occurs in people with T2DM, produced 
by stress-induced elevated cortisol levels [76,77]. Furthermore, 
unfavorable experiences in life and changes in lifestyle due to 
poverty may also have an impact on the pace of telomere shortening 
over the course of a person’s lifespan [78,79]. These results led 
Kiecolt et al. [80] to demonstrate that childhood adversities have 
detrimental impacts on cell aging in later life, as seen by the 
existence of shortened telomeres, demonstrating the lasting effects 
of childhood adversity throughout the life. Telomere shortening, 
linked to immune system aging, slows down cell renewal and clonal 
expansion of T- and B-cell populations [81,82]. 

Importantly, it should be noted that immunological dysfunction 
and starvation have a somewhat “chicken-and-egg” relationship, 
with each condition both causing and resulting from the other. 
Immune dysfunction brought on by poverty can leave permanent 
epigenetic marks on DNA that can be passed on to offspring, 
resulting in children inheriting a compromised immune system 
that can even be passed down multiple generations [83,84]. 
Children who have a nutritious diet may nonetheless experience 
the effects of malnutrition, such as MetS, due to their altered 
immune systems. Early-life nutrition causes long-lasting alterations 
in DNA methylation that have an effect on a person’s health and 
aging-related disorders throughout their lifetime [83]. Inhibiting 
epigenetic enzymes like DNMT (DNA methyl transferase), HDAC 
(Histone deacetylase), or HAT (Histone acetyl transferase) or 
modifying the availability of substrate required for those enzymatic 
activities are two ways that nutrients can act. The expression 
of key genes is subsequently altered, which has an effect on our 
longevity and general health. By regulating the activity and function 
of microRNAs (miRNAs), nutrition may also be able to influence 
gene expression in a variety of biological processes, including 
development, differentiation, cell proliferation, metabolism and 
inflammation, as well as in a number of pathological ones [85,86]. 
Recent research suggests that dietary factors have important roles 
in the development of CVDs, T2DM, and other conditions through 
modulation of miRNA expression. Given the interactions between 
DNA methylation, miRNAs, and post-translational modification of 
histones (PTMs), it is likely that nutrients change the nature of PTMs 
in addition to altering the DNA methylation pattern to regulate gene 
expression in a variety of tissues, including immune cells [87-89].

Conclusion
When considered as a whole, it is not unexpected that 

India, where more than 40% of children under the age of 5 are 
malnourished, has also earned the title of “diabetes capital” of the 
world, with an estimated 65 million diabetic patients aged 20-
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79 years in 2013 and a high prevalence of MetS. The Well-known 
“thrifty genotype” hypothesis proposed that population metabolic 
differences have arisen through different ancestral exposure to 
“feast and famine” cycles, causing a large Indian population to live 
with MetS and then develop full-blown metabolic diseases like 
T2DM and CVDs, among others, along with diverse immunological 
dysfunction that in turn can further exacerbate the severity of MetS, 
thereby establishing a vicious cycle of interconnected events. As a 
result, holding that there is a causal link between immunological 
aging and/or malfunction and MetS may not be incorrect. Designing 
an effective public strategy to reduce poverty-related problems 
while focusing on early health-related interventions in the Indian 
population is crucial since this nexus might have long-term 
detrimental impacts on a person’s metabolic health. The proper 
prenatal and postnatal nutritional interventions among pregnant 
women and their offspring must be emphasized with particular 
attention in a policy-directed way, especially to the people who 
belong to low SES. More studies will also be required to accumulate 
information on the prevalence of MetS, immunological parameters, 
including retrospective and prospective longitudinal studies 
in larger Indian cohorts, in order to further validate the causal 
relationship among these intersecting events the article seeks to 
capture.
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