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Introduction
In the few last decades, tissue regeneration has gained considerable attention in clinical 

research, becoming one of the hotspots that holds great expectation as a possible remedy 
to tissues diseases by providing specific treatment for repairing damaged tissues or even to 
create organ components [1]. Among the different methods of investigations by academies 
and industries, electrospinning is definitely considered one of the most simple and promising 
tools for tissue repair and regeneration [2]. Several studies and industrial applications have 
been carried out and are currently available in the literature on the use of electrospinning 
method for tissue regeneration, mainly due to the peculiar ability of these processes for 
generating ultrathin fibers. However, in spite of the progress in this field, such techniques 
need to be further studied [3].

The magnetic and electrostatic phenomena, central to electrospinning, were well known 
from the late 16th century, when the first experiment on the electro spraying was recorded 
[4]. In 1969, Taylor SG [5] investigated the pillar of the mathematical model that governs 
the droplet shape, known as the “Taylor cone”, on which the theoretical understanding of 
the electrospinning method is funded [6]. Whereas it was in 1974 when the first electro 
spun fibers were used as wound dressing. The investigation on the electro spun fibers as 
implantable started just few years later. Nowadays, many applications of electrospinning 
have demonstrated the suitability of this technology to electro spun organic polymers into 
nanofibers and, as a result, an increasing number of studies on the driving mechanisms of the 
electrospinning process have been carried out [7,8]. 

In the medical field, electro spun fibers are not just used as medical textile materials, but 
electro spun scaffolds have been used for regenerating tissues by being penetrated by biological 
cells to treat damaged tissues, as well as for organ component replacement. Almost all human 
tissues and organs are characterized by a fibrous structure hierarchically organized, composed 
of nanometer fibers which make suitable the use of electrospinning methods [9]. However, the 
choice of the proper process parameters is essential to produce suitable polymer nanofibers 
with specific structural, mechanical, and functional properties. The electrospinning technique 
is based on the application of a high voltage between the spinneret and the ground collector, 
making possible to eject material from the syringe pumps to produce nanofibers. Currently, 
one of the main promising fields of application of this technology is the production of fibrous 
scaffolds with a high loading and encapsulation capacity [10,11]. The electrospinning has 
the advantages to produce continuous ultrafine fibers from polymers and composites with 
better uniformity, porosity large surface area and mechanical strength. Different studies have 
proved its potential application in tissue regeneration, in the fabrication of bio-chemical 
sensor and artificial muscles. Electrospinning methods can contribute to improve the use of 
conductive polymers as novel organic materials for biosensors, bio-actuators and meet the 
expected potential application in tissue engineering scaffolds [12]. 

Crimson Publishers
Wings to the Research

Mini Review

*1Corresponding author: Lina Montuori, 
Department of Applied Thermodynamics, 
Universitat Politècnica de València, 
València, Spain and Manuel Alcázar Ortega, 
Department of Electrical Engineering, 
Universitat Politècnica de València, 
València, Spain

 Submission:  August 17, 2020
Published:  August 27, 2020

Volume 1 - Issue 4

How to cite this article:  Lina Montuori, 
Manuel Alcázar Ortega. Contributions 
of Electrospinning Methods in Tissue 
Regeneration: Latest Applications and 
Novel Materials.  Innovations Tissue Eng 
Regen Med. 1(4).ITERM.000518.2020. 

Copyright@ Lina Montuori* and Manuel 
Alcázar Ortega*, This article is distributed 
under the terms of the Creative Commons 
Attribution 4.0 International License, 
which permits unrestricted use and 
redistribution provided that the original 
author and source are credited.

1Innovation in Tissue Engineering & Regenerative Medicine

https://crimsonpublishers.com/iterm/


2

Innovations Tissue Eng Regen Med       Copyright © Lina Montuori and Manuel Alcázar Ortega

ITERM.000518. 1(4).2020

Accordingly, Havlicek et al. [13] demonstrated how the use of 
different electrospinning methods clearly determine structural 
differences between the produced nanomaterials. Therefore, 
the effects of five different electrospinning methods have been 
analyzed, considering the application of direct current (DC) and 
alternating current (AC) voltages. Based on the evaluation of the 
scanning electron and confocal microscopy images, DC methods 
are more suitable for the preparation of more compact, less rough, 
and well-defined nanofiber structures. Furthermore, centrifugal DC 
methods appear to be the most appropriate procedures for medical 
and tissue engineering applications as they provide nanofibers in 
a narrow size range. On the other side, AC methods result more 
suitable in the sector of filtration and cosmetic product because 
they produce a finer structure and nanofiber coating substrates, 
which are more thread-like with higher surface roughness [13]. 

Previous studies demonstrate as the melt electrospinning 
method can overcome the concern relative to low solubility and the 
intrinsic brittleness of pure conductive polymers that are difficult 
in the use of direct electrospinning [14,15]. Currently, the melt 
electrospinning process enables the direct contact between the 
electros up nanofiber and the cells without affecting their survival 
rate [16]. Additionally, regular structure of 3D scaffolds with 
porosity higher than 85% can be produced [17-19]. For instance, 
emulsion electrospinning was demonstrated to be a potential 
method to build up biocompatible micron-fibers with suitable 
mechanical properties and osteo inductive capacity to osteoblasts 
for potential transplantable scaffolds to repair large-segment 
bone defects. In particular, Tao et al. [20] investigated the use of 
polycaprolactone/carboxymethyl chitosan/sodium alginate (PCL/
CMCS/SA) micron-fibers prepared by emulsion electrospinning as 
micron-fibrous bionic periosteum for the bone tissue regeneration. 
Indeed, PCL/CMCS/SA micron-fibers produced by emulsion 
electrospinning were characterized by an average diameter of 2.381 
± 1.068μm with excellent tensile strength. Moreover, PCL/CMCS/SA 
composite scaffold shows no significant cytotoxicity [20]. Similarly, 
Liu et al. [21] demonstrated that electrospinning, considering its 
ability to produce fibers with a very high surface-to-volume ratio 
and modulated pore size, can be an effective method to synthesize 
biomimetic periosteum scaffolds by using organic and inorganic 
polymers [22,23]. Lastly, the use of biomimetic composite calcium-
phosphate nanoparticles (CaPs) and gelatin-methacryloyl (GelMA) 
hybrid hydrogel electrospinning fibers could accelerate the bone 
regeneration [21]. 

The main advantage of electrospinning methods for scaffold 
applications in the tissue-engineering field is the possibility to 
manufacture biomimetic structures with the same scale and 
morphology as the native extracellular matrix (ECM). Tissue 
engineering scaffolds are not only required to be biomimetic 
with the ECM structure, but also, they should be characterized by 
the same signals contained within the ECM. Regarding that, the 
electrospinning technique allows to produce fibers of a suitable scale 
to induce adequate external signaling with nanofiber structures, 
improving thus the function of tissue engineering scaffolds of 
different human tissues (bone, cartilage, cardiovascular, nervous) 

and bladder regeneration [24]. Regarding the combination of such 
different methods as freeze-drying and 3D printing combined with 
electrospinning, further studies demonstrated that this fact enables 
the production of nanofibrous scaffolds with complex 3D features 
[25,26]. These methods have a large field of application in the 
regeneration of articular cartilages for the treatment of congenital 
defects. The reason is the unique morphology that characterizes 
the cartilage of the nose and ears, that can be reproduced by using 
3D printable scaffolds [27]. 

In addition, the electrospinning has been used to coat the 
screws by Poly-Vinyl Alcohol (PVA) and Nano-Hydroxyapatite 
(nHA) nanofibers, with various concentrations of nHA. The study 
of Saniei et al. [28] analyses the MC3T3-E1 cells cultured on the 
3D-printed Polylactic acid (PLA) and PVA-nHA nanofiber samples. 
The results opened a new gate of investigation in the biocompatible 
implants. The PVA-nHA nanofibers have demonstrated to improve 
the adhesion of the MC3T3-E1 cells as well as to enhance the 
growth of the cells.

In line with the use of the cellular electrospinning and 3D 
bioprinting, it has been demonstrated by Yeo et al. [29] that 
platforms for the cultivation of human umbilical vein endothelial 
cells (HUVEC) and C2C12 cells can be obtained. The produced cells 
are characterized by efficient growth, great cell viability (90%) and 
homogeneous distribution. Moreover, the scaffold, that includes 
myoblasts and HUVEC, can be used to restore the vascularization of 
an engineered skeletal muscle tissue and its physiological activities. 
Last, a study carried out by Kersani et al. [30] uses electrospinning 
technology for covering stents with nanofibers loaded with 
simvastatin (NF-SV), a drug commonly used for the prevention of 
restenosis. A different application of electrospinning has been the 
production of gelatin-base fibers for maxillofacial surgery. However, 
results were unsuccessful because the electro spun membranes 
lacked reproducibility due to their low diameters [31]. 

In the treatment of trauma and disease that causes bone defects 
[32], the incorporation of additive manufacturing to the rotational 
electrospinning have enabled the production of dual-scale 
scaffolds. The results show the influence of the electrospinning 
rotational velocity on the morphological, mechanical, and biological 
characteristics of the scaffolds. 3D scaffolds produce uniform, 
robust with well-defined geometries and the alignment of nanoscale 
electro spun fibers grows by increasing the electrospinning 
rotational velocity [32,33]. As main conclusion, it can be stated 
that a large variety of novel structured materials can be achieved 
by using electrospinning methods. Specifically, interesting in 
the biomedical field, this rising technique can contribute to the 
research of cancer therapy, cellular responses, engineering in 
vitro 3D tissue models and tissue regeneration [34]. The reviews 
presented in this work show the advantages of the combination of 
electrospinning with 3D printing technology, as well as the main 
goals achieved with a special focus on the tissue regeneration field. 
In spite of advances and promising results in tissue regeneration 
applications by electrospinning, specific mechanisms should be 
further studied, especially those related to novel materials for 
electro spun fibers fabrication in bone applications. Future research 
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may be considered to better understand the driving mechanism of 
the nanofiber’s compositions and to reach a fully reparative and 
tissue regeneration.
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