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Introduction
Protein glycation is one of the major causes of diabetes complications in diabetic patients, 

causing damage to all important organs, including the kidneys [1,2]. The body’s natural 
scavenging systems for free radicals are impaired as a result of diabetes, leading to free radical 
buildup and tissue damage. Reactive Oxygen Species (ROS) play an important role in the 
pathophysiology of diabetic nephropathy. Diabetic nephropathy is defined by the thickening 
of the glomerular basement membrane due to the expansion of the mesangial matrix, which 
is linked to glomerular filtration efficiency [3,4]. About 30 to 40 percent of diabetic patients 
suffer from diabetic nephropathy [5]. Diabetes is the major cause of diabetic nephropathy in 
Oman, according to a study, with a prevalence of 42.5 percent. It poses a serious threat to the 
health-care system. To control diabetes in the region, effective therapeutic and prevention 
strategies are required [6]. Tight control of blood glucose levels minimizes the risk of 
developing nephropathy. However, it is hard to achieve due to the limitations of available drug 
therapy. Hence, there is an urgent need for novel therapeutic agents in the quest for a more 
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specific therapy [7,8]. Natural products extracted from medicinally 
important plants are under extensive investigation as they are rich 
sources of diverse biologically active and non-toxic compounds 
against different chronic diseases. A series of pentacyclic triterpene 
molecules (Boswellic acids) isolated from the gum resin of Boswellia 
serrata and Boswellia carteri have shown significant efficacy 
against various chronic diseases, including diabetes mellitus [9]. 
Azemi and co-workers revealed that the extract of B. serrata has 
antidiabetic properties [10]. The blood glucose, HbA1c, and lipid 
markers improved in two clinical trials involving type-2 diabetes 
patients who received Boswellia serrata resin [11]. The herbal 
formulation containing B. serrata Roxb. ex Colebr gum-resin also 
exhibited significant anti-diabetic activity [12].

The plant Boswellia sacra Flückiger, belongs to the Burseraceae 
family, which is widespread in the Dhofar region of Oman. 
Frankincense, an aromatic resin derived from boswellia trees, 
has a wide range of medical applications. Several studies have 
shown that the boswellia tree and its sticky resin are useful 
to a variety of ailments, including diabetes mellitus [13-15]. 
Previously, 8-Hydroxyquinoline (8HQ) and its derivatives exhibited 
wide medicinal properties, including antidiabetic, anticancer, 
antimicrobial, and antioxidant activities [16]. Quinoline derivatives 
were found to have significant antiglycation and antioxidant effects 
in vitro while being non-toxic in another investigation [17]. We 
investigated the effects of 11-keto--boswellic acid and 5-chloro-
8-hydroxyquinoline on protein glycation and diabetic nephropathy 
based on these findings. Our research group has previously worked 
on the isolation and characterisation of secondary metabolites 
from Boswella sacra, as well as the synthesis of numerous boswellic 
acid derivatives and their evaluation against a variety of biological 
disorders [18-21]. To examine antiglycation potential in vitro and 
in vivo mice models, we extracted 11-keto--boswellic acid from 
Boswella sacra and synthesized it on a large scale from boswellic 
acid [22,23], whereas 5-chloro-8-hydroxyquinoline was obtained 
from our in-house compound bank.

Materials and Methods
In-vitro studies

BSA-fluorescence assay: With minor adjustments, the same 
assay procedure as described earlier by Matsuda [24] and Matsuura 
[25] was used in this investigation. In a 100mM phosphate buffer 
with a pH of 7, Bovine Serum Albumin (BSA) solution (10mg/
mL) and anhydrous glucose 50mg/mL solution were prepared. 
The comparison of fluorescence intensity at 360nm excitations 
and emission at 440nm was obtained by using spectrofluorimeter. 
Rutin was used as standard inhibitor in this assay [26].

a.	 Statistical analysis: The results were expressed as 
mean±SEM while the EZ-fit software (Perrella Scientific Inc., 
Amherst, U.S.A.) was used to calculate the IC50 values (µg/mL). 
IC50 values were measured by using different concentrations of 
the active samples.

% inhibition=100−(OD sample/OD Control) 100

DPPH-radical scavenging assay: Free radical scavenging 
activity of the compounds was determined by measuring the 
change in absorbance of DPPH (l,l-Diphenyl-2-picrylhydrazyl 
radical) by the spectrophotometric method described by Lee SK & 
co-workers [27]. The absorption was measured at 515nm by using 
spectrophotometers (Molecular Devices, CA, USA). The control 
contained 5µL of DMSO, instead of the test compound. The reactions 
were performed in triplicates. 

In Vivo studies
Experimental animals: A total of 24 female CD1 mice, ranging 

in age from 10 to 12 weeks and weighing between 25 and 30g, 
were used in this study. Mice were housed in standard animal 
cages in a controlled environment (temperature 22±2 °C) fed 
with standard laboratory diet and water ad libitum. In order to 
adopt new conditions, mice were kept for one week in their new 
environment before starting the experiment. To ensure hygiene and 
maximum comfort animal’s bedding was changed twice a week. 
All experiments were approved by the university animal ethics 
committee for animal research. 

Experimental design: The mice were first separated into two 
groups: a healthy control group (6 mice) and a streptozotocin-
induced group (18 mice). Six mice were kept in each cage. The mice 
in the control group (group 1) were injected with citrate buffer 
while the 18 mice in group 2 were Injected Intraperitoneal (IP) with 
streptozotocin (180mg/Kg) body weight in 10mM citrate buffer 
(pH 4.5). Two weeks following injection with streptozotocin, blood 
samples were collected from the mice’s tail vein. Streptozotocin 
induced mice with a blood glucose level higher than 300mg/dL 
were classified as diabetic mice and were further divided into three 
experimental groups, each containing 6 mice. Diabetic control mice 
(group 2) received water only, while group 3, and group 4 diabetic 
mice were treated with 11- keto--boswellic acid and 5-chloro-8-
hydroxyquinoline dissolved in water at doses of 25mg/kg per day, 
respectively. Four weeks later, mice were first anesthetized, and 
blood was collected from the orbital vein. After that, mice were 
sacrificed and both kidneys were harvested for different analysis. 
The right kidney of each mouse was preserved in 4% formalin for 
histological studies, while the left kidney was snapped frozen in 
liquid nitrogen.

Renal histology studies: Kidney tissues from the cortical 
region of different mouse groups were stained with Hematoxylin 
and Eosin Stain (H & E) to show structural alterations in the kidney 
nephrons in this investigation. This research employed a Euromex 
Oxion Digital Light Microscope

Results and Discussion
We investigated the inhibitory ability of 11-keto--boswellic 

acid and 5-chloro-8-hydroxyquinoline (Figure 1) against protein 
glycation in vitro and in vivo for the management of diabetes 
complications. We also examined the free radical scavenging 
(antioxidant) capacity of these samples because oxidative stress, free 
radical production, and diabetes are all linked. Due to its intriguing 
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pharmacological effects, 11-keto--boswellic acid, a strong anti-
inflammatory molecule discovered from frankincense, has extended 
interest in recent decades [18,22,28]. KBA and CHQ demonstrated 
promising antilgycation activity in vitro with IC50 values of 
146.661.5µM and <50µM, respectively, in a BSA-fluorescent based 
antiglycation test (Figure 2). This encouraged us to move forward 
with in vivo research. In the DPPH-radical scavenging (antioxidant) 
assay, CHQ exhibited moderate antioxidant activity with an IC50 
value of 521.41±2.0µM while KBA remained inactive in this assay. 
Rutin and propyl gallate were used as standards in antiglycation 
and antioxidant assays respectively, as shown in Table 1. In this in 
vivo study, blood glucose levels of experimental mice groups were 
measured after two weeks of STZ injection to confirm that diabetes 
mellitus was induced and established in the target group. The blood 
glucose levels were measured again on the final day (after 6 weeks) 

just before sacrificing the animals. The blood glucose was found 
to be considerably lower in mice groups treated with KBA where 
an obvious difference was observed as 237.6±23.4mg/dl (after six 
weeks) as compared with 415.8±25.2mg/dl (after 2 weeks), while 
CHQ also moderately lowered the glucose level as 309.11±14.4mg/
dl (after six weeks) compared to 385.2±23.4mg. Conversely, there 
was no evident change in the blood glucose levels in the diabetic 
mice group with the passage of time, as shown in Table 2. Kidney 
tissues were collected from the cortical region and stained with 
Hematoxylin and Eosin Stain (H&E) to show nephron/s in the 
current investigation (Figure 3). Mesangial expansion, which 
is linked to Glomerular Filtration Rate (GFR), proteinuria, and 
hypertension, is the most visible structural change in diabetic 
nephropathy [29]. 

Figure 1: Chemical structures of 11-keto--boswellic acid and 5-chloro-8-hydroxyquinoline.

Figure 2: Dose-dependent antiglycation activity of KBA (■) and CHQ (▼) in vitro.
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Figure 3: Renal histology images of mice from different experimental groups.

Table 1: Antiglycation and antioxidant activities in vitro. *NA=Not Active.

Bio-Assay KBA Activity (µM) CHQ Activity (µM) Standard Compound Activity 
(µM)

Antiglycation IC50=146.66±2.5 IC50=<50 Rutin (IC50=98.01±2.03)

Antioxidant NA IC50=521.41±2.0 Propyl gallate (IC50=33.00±1.5)

Table 2: Blood glucose levels in different mice groups.

ime Duration (weeks) Normal Mice  Non-
Diabetic Group (mg/dl)

Diabetic Mice Group (mg/
dl)

KBA Treated Mice Group 
(mg/dl)

CHQ Treated Mice Group 
(mg/dl)

(2 weeks) 102.6±7.2 406.8±19.8 415.8±25.2 385.2±23.4

(6 weeks) 111.6±9.0 419.4±16.2 237.6±23.4 309.11±14.4

One nephron is seen in the Hematoxylin and Eosin Stain (H&E) 
image of non-diabetic kidney tissue (a) (Figure 3). The renal 
corpuscle (glomerulus and bowman capsule) and convoluted 
tubules make up the kidney nephron. The morphology of the 
nephron is normal. The capillary tuft and mesangium in the 
Glomerulus (G) are normal. The Bowman Capsule (BC) that 
surrounds the glomerulus is in good condition. Tubules that were 
Proximal Convoluted (PC) and Distal Convoluted (DC) appeared to 

be normal. Two nephrons can be seen in the H&E image of diabetic 
kidney tissue (b). The morphology of the nephrons appeared to 
be aberrant. The mesangial matrix expansion in the Glomeruli (G) 
is evident. Due to mesangial matrix expansion, areas of Bowman 
space are obstructed. The convoluted tubules at the Proximal (PC) 
and Distal (DC) ends appeared normal. One nephron is visible in the 
H&E picture of renal tissue treated with KBA (c). When compared 
to diabetic kidney mesangial matrix expansion, it exhibits 
considerable recovery with little mesangial matrix expansion. 
The morphology of the nephron is normal. The capillary tuft and 
mesangium in the Glomeruli (G) are normal. The Bowman Capsule 

(BC) that surrounds the glomerulus is in good condition. Bowman 
Space (BS) is a standard size. Convoluted tubules Proximal (PC) and 
Distal (DC) appeared normal. Similarly, one nephron can be seen in 
the H&E image of mouse kidney tissue treated with CHQ (d). The 
morphology of diabetic mice’s nephrons improved after treatment 
with CHQ. When compared to diabetic glomerulus, the mesangial 
matrix of the glomerulus expended less and Bowmam’s space 
recovered partially. The results gleaned from the renal histology 
study revealed that KBA appreciably attenuated the mesangial 
matrix expansion in the glomeruli while CHQ showed moderate 
recovery of glomeruli expansion when compared to the diabetic 
kidney (control group) glomeruli mesangial expansion. Glycation 
of proteins is influenced by glucose levels, which could be the 
mechanism of action of these newly found anti-glycation agents. As 
a result, lesser kidney damage detected in the renal tissue in the 
KBA-treated mice group may be linked to the ability to manage 
blood glucose levels and hypoglycemic effects of KBA. CHQ’s in 
vivo efficacy can be explained by its anti-glycation and antioxidant 
characteristics, which are responsible for reducing kidney damage 
in the renal tissues of the CHQ-treated mice group.
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Conclusion
In short, both 11-keto--boswellic acid and 5-chloro-8-

hydroxyquinoline had strong antiglycation potential and thereby 
attenuated progression of diabetic nephropathy in Streptozotocin 
(STZ)-induced diabetic mice. In comparison to the diabetic mice 
group, histological examinations verified the reduced renal damage 
by lowering mesangial growth in the mice treated with KBA and 
CHQ. The mechanism-based analysis of these recently found 
antiglycation compounds revealed that KBA may minimize renal 
damage by reducing hyperglycemia and improving blood glucose 
levels, whilst CHQ’s antiglycation abilities may benefit renal 
damage. 
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