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Abstract

The Cloud-Edge Continuum (CEC) represents a paradigm shift towards a heterogeneous, distributed
computing landscape. This environment is characterized by massively dis-tributed data sources, dynamic
network conditions, and fluctuating computational loads. Traditional Machine Learning (ML) models,
trained offline in a centralized manner, are not suited for this reality. They fail to adapt to the constant
stream of new data, making them vulnerable to concept drift. This leads to inevitable performance
degradation, creates significant processing bottlenecks, and undermines core Trustworthy Al principles
of robustness and reliability. This paper argues that Continual Learning (CL) is a critical and necessary
paradigm for robust and efficient intelligence in the CEC. We review the relevance of CL, data stream
learning, and integrated concept drift detection as the primary mechanisms for maintaining model
robustness and resilience. CL, implemented through a combination of data-centric and model-centric
compression and frugal Al techniques, is vital for achieving both the efficiency and trustworthiness
demanded by next-generation applications operating in the CEC. These methodologies include iterative
fine-tuning, model compression, knowledge distillation, and dynamic neural network growth. This
adaptive intelligence is required not only for end-user applications but also for MetaOS-level orchestration
across the Cloud-Edge Continuum. This paper concludes by presenting key findings that highlight the
essential role of adaptive learning across the continuum and outlines future research directions aimed at
enabling scalable, trustworthy, and resource-efficient continual learning for MetaOS-based orchestration
and management.

Keywords: Continual learning; Cloud-Edge continuum; Concept drift; Trustworthy Al; Frugal Al; Data
stream learning; Distillation; Edge Al

Abbreviations: CEC: Cloud-Edge Continuum; ML: Machine Learning; P2P: Peer-to-Peer; RAG: Retrieval-
Augmented Generation; ICL: In-Context Learning; PEFT: Parameter-Efficient Fine-Tuning; MoE: Mixture
of Experts; GNG: Growing Neural Gas; FL: Federated Learning; DRL: Distributed Reinforcement Learning;
MetaOS: Meta-Operating System

Introduction

The CEC, spanning from centralized cloud data centers to re-source-constrained edge and
IoT devices, forms the backbone of modern digital infra-structure. This CEC is not a static
entity; it is a highly dynamic and heterogeneous environment. European-funded MetaOS
projects, such as ICOS [1], NEMO, aerOS, NEPHELE, NebulOuS, and FLUIDOS [2] (Figure 1),
explicitly aim to manage this complexity, addressing dynamic, unpredictable conditions and
complex orchestration need [3]. These projects are exploring diverse orchestration models,
ranging from centralized and hierarchical ‘Agent/Controller’ systems to fully decentralized
‘Peer-to-Peer’ (P2P) networks, adding a further layer of complexity to this management.
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Figure 1: Illustration of an ICOS instance within the Cloud-Edge Continuum
Source: [1].

A primary challenge in the CEC is the nature of data itself. Data
is no longer a static batch to be processed; it is an incremental,
continuous stream, often generated at the extreme edge [4].
Processing this data on the go is essential for efficiency and low-
latency decision-making. However, static ML models deployed in
this continuum are inherently brittle. Their performance degrades
as the statistical properties of the data streams change over time, a
phenomenon known as concept drift [5]. This is a central challenge
in re-al-world operations and changing environments, where
detecting data drift situations where the incoming data starts to
differ from the data the model was trained on is critical. Projects
like MANOLO [6] are actively developing robust data inspection
techniques, including noise detection and concept drift detection
algorithms, to identify these shifts.

Apart from this, processing information in large batches and
training Al models through iterative processes involving substantial
amounts of data creates a significant bottleneck, not only affecting
the efficiency of these models but also the reliability of Al-driven
services. Static, non-adaptive models undermine many of the core
Trustworthy Al principles [7], such as robustness and reliability, as
their performance decays unpredictably over time.

The Figure 1 depicts a controller-centric MetaOS architecture in
which a central controller coordinates multiple distributed agents
deployed across cloud, edge, and IoT resources. This architecture
highlights where intelligence and continual learning can be applied
for adaptive orchestration under dynamic and heterogeneous
conditions

This paper proposes that training models sequentially within
the continual learning paradigm, combined with other frugal
Al techniques, compression, and meta-learning, is the key to
unlocking robust and efficient intelligence in the CEC. By learning

incrementally and adapting to data streams in an online manner,
CL provides a direct solution to the dual challenges of concept drift
and resource inefficiency. This approach enables the development
of frugal, adaptive models and resilient intelligent systems, aligning
perfectly with the vision of a truly adaptive and trustworthy CEC.

Literature review methodology

This review follows a structured, narrative literature review
methodology to identify and analyze relevant research on Continual
Learning in the Cloud-Edge Continuum. Scholarly articles were
primarily retrieved from established academic databases, including
IEEE Xplore, Scopus, and arxiv, complemented by selective searches
on Google Scholar to capture emerging and interdisciplinary work.

The review focuses on publications from 2017 to 2025,
reflecting the period during which continual learning, edge Al,
and cloud-edge architectures have matured as active research
areas. Earlier foundational works were included selectively where
necessary to provide conceptual grounding.

Studies were included if they addressed the following themes:

(i) continual or online learning, (ii) data stream learning and
concept drift detection, (iii) frugal or re-source-efficient Al, (iv)
learning in cloud-edge or distributed computing environments,
or (v) trustworthiness aspects such as robustness, reliability, or
adaptability. Works focusing exclusively on static, batch-trained
models without relevance to dynamic or distributed settings were
excluded.

The selected literature was analyzed thematically to synthesize
current trends, extract key findings, and identify open challenges
and future research directions relevant to efficiency and
trustworthiness in the Cloud-Edge Continuum.
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Continual Learning in the CEC
Addressing data streams and concept drift

Continual Learning is a methodology designed for scenarios
where data is not available all at once, but instead arrives
sequentially [8]. This aligns perfectly with the reality of IoT and
edge devices, which generate data incrementally [4,9]. In the CEC,
data streams are non-stationary by default. Network conditions
fluctuate, user behavior changes, and sensors experience new
environmental states. The field of data stream learning, related to CL

as it focuses on online lifelong learning, has long focused on concept
drift detection [5]. Concept drift occurs when the under-lying data
distribution changes, causing the trained model’s predictions to
become inaccurate. In the context of the CEC, a drift (e.g., a new
type of network threat or a change in factory-floor sensor readings
[10]) that goes undetected can compromise the robustness and
trustworthiness of the entire system. CL, particularly online
learning variants, pro-vides the mechanisms to detect these drifts
and adapt the model accordingly, ensuring that the Al remains
robust and reliable (Figure 2).
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Figure 2: [llustration of concept drift in a data stream over time
Source: [5].

The Figure 2 shows how changes in the underlying data
distribution between time t1t_1t1 and time t2t_2t2 shift the optimal
decision boundary, leading to increasing mis-classification when a
static model is used. This example illustrates real concept drift in
non-stationary environments and motivates the need for continual
learning and online model adaptation.

This challenge is a central concern for assessing Trustworthy Al.
For instance, the MANOLO project explicitly identifies the need to
detect data drift situations where the in-coming data starts to differ
from the data the model was trained on as part of its performance
assessment framework. CL, particularly online learning variants,
provides the mechanisms to first detect these drifts, often through
continuous monitoring and alerting tools, and then adapt the
model accordingly. This adaptive loop, aligned with the MA-NOLO
project’s goals, ensures the Al remains robust, reliable, and resilient
throughout its entire lifecycle in the CEC.

Current trends in continual learning

To address the dual challenges of plasticity (learning new
information) and stability (avoiding catastrophic forgetting),
the CL landscape offers a spectrum of solutions ranging from
non-parametric context adaptations to sophisticated parametric
updates. The lightest end of the spectrum lies In-Context Learning
(ICL), where models adapt behavior based on examples provided in
the prompt window. While computationally cheap, it suffers from
context rot and is strictly limited by the context window size [11].

Retrieval-Augmented Generation (RAG) extends this by retrieving
relevant information from an external buffer. While RAGs provide
high capacity without altering model weights, they fail to compress
knowledge, effectively deferring the learning problem to a storage
and retrieval bottleneck that can be prohibitive for latency-sensitive
edge applications.

We also have parametric methods, such as replay and
regularization, as well as Parameter-Efficient Fine-Tuning (PEFT).
While the classical parametric approach is fi-ne-tuning with replay,
where the model is updated on new data mixed with a subset of
old data, this approach is practical against forgetting. Still, it is
fundamentally unscalable for lifelong learning at the edge, as the
rehearsal buffer grows indefinitely, consuming scarce storage and
compute resources. PEFT techniques, such as LoRA (Low-Rank
Adaptation) and Adapters, offer a compelling middle ground [12].
By freezing the vast majority of the model’s parameters and training
only small, inserted modules, PEFT achieves targeted updates
with minimal computational overhead. However, these methods
have historically been viewed as having low capacity, struggling to
integrate vastamounts of new knowledge over an extended lifecycle
without saturation. Finally, a new research trend points towards
Sparse Memory Architectures [13] and Mixture of Experts (MoE)
[14]. Unlike monolithic models, these architectures route inputs to
specific, sparse subsets of parameters (or “experts”). MoEs allow
for high capacity by adding new experts over time, though they
can still incur significant memory overhead [15]. Sparse Memory
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Layers represent a novel “frugal” approach where specific Feed-
Forward layers are replaced by massive, sparse key-value memory
pools [14].

Efficiency and frugal adaptation

Beyond robustness, the CEC demands efficiency. It is
computationally and financially infeasible to retrain massive
models from scratch every time new data becomes available. CL
offers a path to efficient adaptation. This can be achieved through
several approaches. One is continual fine-tuning, where a model
undergoes iterative adaptation to new domains or tasks with
minimal computational overhead, effectively adapting to new
contexts without catastrophic forgetting [16].

Another approach is the use of frugal models that are efficient
by design. The MA-NOLO project [6,17], for instance, proposes

developing “Trustworthy Efficient Al for Cloud-Edge Computing”
by focusing on both model-centric and data-centric methods that
can operate within the energy and computational constraints of the
edge. Another approach is the use of frugal models that are efficient
by design.

A key paradigm for achieving this rapid adaptation is meta-
learning [18]. This approach utilizes a meta-learner model, trained
on a range of learning tasks, to determine the optimal compression
method or efficient adaptation strategy. This enables a base model
to be updated for new tasks or domains (e.g., in “Domain Adaptive
Few-Shot Continuous Learning”) with minimal additional data.
This high-level learner, as illustrated in Figure 3, can orchestrate
the update process, deciding how and when to replace or fi-ne-tune
models at the edge to maintain peak performance and efficiency.

outputs + actual or

Incoming data forecasted metric Drift detection
» Current > - domain
model - task
- class

Model registry

drift state / model outputs / incoming data

/ list of algos

Meta learner

Select existing model,

algo, or train a new one

Figure 3: Meta-learning-driven model update and replacement process.

Asillustrated in Figure 3, incoming data and model performance
metrics are continuously monitored by drift detection mechanisms,
whose outputs inform a meta-learner. Based on detected drift and
resource constraints, the meta-learner selects an existing model,
applies continual fine-tuning, or triggers the training of a new
model, enabling efficient and adaptive learning in dynamic Cloud-
Edge settings.

On the model-centric side, MANOLO investigates techniques to
reduce the computational footprint of models. This includes model
compression methods like pruning and quantization. Another
technique explored is knowledge distillation, wherein a large,
complex “teacher” model transfers its knowledge to a much smaller,
computationally cheaper “student” model. This “student” model can
then be deployed efficiently at the edge, retaining the performance
of the larger model while meeting resource constraints. This focus
on adaptation is also reflected in the project’s work on Domain
Adaptive Few-Shot Continuous Learning, which provides a direct
mechanism for efficient model updates.

On the data-centric side, MANOLO enhances efficiency by
improving the quality and relevance of the data used for training.
This is crucial for CL, as training on irrelevant or poor-quality data

is a primary source of inefficiency. The project employs multiple
data inspection techniques, including noise detection algorithms
to filter data streams. Furthermore, it leverages drift detection
algorithms (such as ADWIN [5] and Page Hinkley [19]) to identify
statistical shifts in the incoming data. By detecting such changes,
the system can trigger model adaptation intelligently and avoid
wasting resources on retraining when it is not necessary, or on data
that is anomalous or no longer relevant [15].

Beyond justinspecting and filtering data, data-centric efficiency
can be achieved by actively compressing the data itself. Techniques
such as dataset distillation [20] focus on synthesizing a small, highly
representative dataset from a large, raw data stream. This compact,
synthetic dataset embeds the core information of the original,
enabling models to be trained or updated with a fraction of the
computational cost and memory footprint. These compression and
distillation techniques stand alongside other dynamic approaches,
such as the use of growing neural networks. For instance, models
like the Growing Neural Gas (GNG) are designed to learn online
and can grow their network structure (neural network growth)
incrementally as they encounter new data patterns [21]. This
allows the model to adapt its complexity directly to the data stream,
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representing an-other highly efficient paradigm for stream-based
learning in the CEC.

CL atthe CECin Practice: MetaOS and Orchestration

The principles of CL are not only applicable to application
models but are also increasingly critical to the management of
the continuum itself. This is a core theme across next-generation
MetaOS projects, which are building intelligence directly into the
system’s orchestration layer to manage the inherent dynamism
and complexity of the CEC. For in-stance, projects like ICOS are
developing an Intelligent MetaOS that uses a dedicated Intelligence
Layer for Al-driven optimization, resource management, and
scheduling [1].

The architectural approaches to this orchestration vary
significantly, which in turn dictates how CL must be implemented.
Many projects, including ICOS, NebulOuS, and NEPHELE, adopt a
resource-sharing model based on an “Agent/Controller” design,
which is leveraged by MANOLO using a Controller/Node design.
This architecture, whether implemented as a distributed model
(like ICOS and aerOS) or a Hierarchical one (like NEPHELE and
NebulOuS), creates logical points of intelligence where Al-driven
decisions are concentrated. In the case of ICOS, this is referred to as
the Intelligence Layer [1].

In contrast, projects like FLUIDOS and NEMO are architected
with a decentralized orchestration, enabling a P2P resource-sharing
model. This fundamental design choice avoids a central controller in
favor of distributed, autonomous agents. This architectural split has
profound implications for adaptation: the centralized /hierarchical

models concentrate the need for CL for MetaOS support in their
controller (although CL may still need to occur at local nodes at the
application level), while the decentralized models must dis-tribute
the MetaOS-support-related continual learning process itself. For
example, NEMO explicitly explores parallel learning mechanisms,
such as gossip learning [13], where agents continually learn and
share updates with their peers without a central coordinator.

The orchestration layer (at the controller in distributed
projects) must be adaptive [22]. The ICOS Intelligence Layer, for
example, uses Al models to predict resource utilization (e.g., CPU)
to make proactive scheduling decisions. However, in a dynamic
environment characterized by fluctuating workloads, network
states, and resource availability, these predictive models are highly
susceptible to concept drift [3,22]. A model trained on yesterday’s
network traffic patterns will likely fail today, resulting in suboptimal
and inefficient resource allocation. Therefore, the orchestrator’s
own Al models must be continual learners, constantly updating
themselves from the stream of system telemetry.

This is reflected in the goals of several MetaOS projects
[2]. FLUIDOS explicitly plans to consolidate online learning
capabilities and leverage feedback from telemetry services to refine
orchestration, which is a textbook implementation of a CL loop
for system management. Similarly, ICOS is working to extend its
Al-driven scheduling and Federated Learning (FL) integration. FL,
in this context, provides a powerful mechanism for the orchestrator
to continually learn from distributed nodes without centralizing
sensitive telemetry data, enhancing both efficiency and privacy [9]
(Figure 4).
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Figure 4: Federated Learning architecture in ICOS.
Source: [1].
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A prime example of this adaptive orchestration is in intelligent
task placement [22]. This is a complex problem that must adapt to
real-time network delays and node failures. Research in this area is
already applying adaptive learning techniques, such as Distributed
Reinforcement Learning (DRL), to create policies that learn online
to minimize delay and optimize task offloading [23]. This approach
is being actively researched in projects like NEMO, which aims to
use advanced RL algorithms for workload orchestration. This DRL-
based orchestrator is, in effect, a continual learning agent that
constantly fine-tunes its strategy based on new data about network
performance.

Ultimately, the principles of trustworthy Al, as outlined in the
MANOLO project [6], also apply in this context. Just as MANOLO
calls for continuous monitoring and alerting for application models,
atrustworthy MetaOS must do the same for its own internal models.
By applying CL to the orchestration layer itself, the system becomes
resilient, self-adapting, and capable of maintaining efficiency and
trustworthiness over its entire lifecycle [17].

Challenges and Trends to Solve Them in the Cloud-
Edge Continuum

Fundamental conflicts between the static nature of traditional
Al development and the dynamic reality of edge operations obstruct
the realization of a truly intelligent CEC. This section summaries the
primary challenges identified across the previous sections, along
with the specific solutions already mentioned proposed to address
them.

Non-stationary data and drifts

In the CEC, data is generated as an infinite, high-velocity stream
rather than being stored in a static repository. Environmental
conditions, user behaviors, and network states are in constant flux.
Traditional models, trained offline on historical datasets, operate
on the assumption that future data will resemble past data. This
assumption is frequently violated in the continuum, leading to
concept drift, a phenomenon in which the statistical properties
of the target variable change over time, resulting in a silent but
catastrophic degradation in model accuracy [5]. To counter
this, systems must transition from static deployment to online
learning, with integrated drift detection, and trigger immediate
adaptation mechanisms, as discussed earlier. This ensures that the
model’s knowledge re-mains aligned with the current state of the
environment, maintaining robustness without requiring human
intervention.

Resource constraints and training inefficiency

Retraining massive deep learning models from scratch is
computationally prohibitive and energy-intensive, rendering it

infeasible for resource-constrained edge devices. Furthermore,
training on raw data streams often involves processing vast
amounts of redundant, noisy, or irrelevant information, which
creates significant processing bottlenecks and wastes energy. The
solution lies in Frugal Al and Data-Centric Efficiency.

a. Firstly, the reviewed techniques, such as continual fine-
tuning and meta-learning, enable models to adapt to new
tasks with only a few examples, thereby drastically reducing
the computational requirements for updates. Additionally,
growing neural networks offer a structural solution, where the
model architecture itself expands or contracts based on the
complexity of the incoming data stream.

b. In the latter, efficiency may be further enhanced by data
distillation and noise filtering. By algorithmically selecting
only the most representative and high-quality data points for
training, the system reduces the computational burden of the
learning process itself.

Orchestration complexity and heterogeneity

The CEC is not a monolithic entity; it is composed of diverse
architectures ranging from centralized clouds to decentralized
swarms. Orchestratingworkloads across this heterogeneity requires
predicting resource availability (CPU, bandwidth) in real-time.
However, static orchestration rules fail when network dynamics
shift, and centralized control mechanisms struggle to scale to the
sheer number of edge nodes found in P2P environments, such as
those explored by FLUIDOS and NEMO. Thus, a MetaOS should adopt
Adaptive Intelligence (e.g., Al-driven Adaptive Orchestration).

This is visible in projects such as ICOS and NEPHELE, where an
Intelligence Layer continually updates workload prediction models,
ensuring accurate task placement de-spite changing network
conditions [1]. Here, FL allows nodes to collaboratively train a
global model without sharing raw data, thereby preserving privacy.

Key Findings

The review of the state-of-the-art in the Cloud-Edge Continuum
(CEC), alongside the analysis of current Meta-Operating System
(MetaOS) projects like 1COS, FLUIDOS, and MANOLO, reveals a
clear consensus: static intelligence is obsolete in this dynamic
environment (See a summary in Figure 5). The following key
findings summarize the critical necessity of CL and its supporting
technologies for enabling a robust, efficient, and trust-worthy CEC.
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Figure 5: Adaptive Intelligence in the CEC. Challenges (intermediate nodes) and solutions (leaf nodes) leading to
findings.

Traditional static ML models are insufficient for the CEC due to
their inability to adapt to the continuous, non-stationary data
stream, which leads to concept driftand degrades performance.
Concept drift is an inherent and pervasive challenge in the
CEC, driven by fluctuating network conditions, dynamic user
behaviours, evolving sensor environments, and unpredictable
workloads.

Trustworthy Al in CEC requires continuous monitoring,
alerting, and adaptation loops, extending beyond models to the
MetaOS itself to ensure long-term robustness and resilience.

Meta-learning offers an efficient mechanism for rapid
adaptation, allowing models to autonomously select optimal
update strategies for new tasks with minimal data.

Frugal Al techniques are critical for deploying efficient,
lightweight Al at the edge, where resources are limited.

Data stream learning and drift detection form the backbone of
adaptive intelligence in the CEC, enabling models to identify
and respond to changes in the data quickly.

Data-centric methods significantly improve training efficiency,
minimizing wasteful computation and reducing the burden of
irrelevant or low-quality data.

CL is required for application-level models and MetaOS-
level orchestration, which must adapt to real-time data and
changing resource conditions.

An Al-driven orchestration layer (such as ICOS intelligent
layer) relies on CL to maintain accuracy in predictive tasks,

such as workload forecasting and task scheduling, which is
highly vulnerable to drift.

FL can enhance continual adaptation in a privacy-preserving
manner, enabling learning from distributed nodes without
centralizing sensitive information.

Different orchestration designs create different CL needs, and
decentralized systems may leverage other distributed learning
methods, such as gossip learning.

Growing neural networks (such as Growing Neural Gas) can
adjust their size over time, which allows models at the edge to
adapt their structure as data changes continually.

CL is essential for maintaining the robustness and reliability of
the Al system in the CEC, which supports the Trustworthy Al
principle by enabling real-time adaptation.

These findings have profound implications for the design
of future continuum plat-forms. They suggest that the current
separation between system orchestration and Al ap-plication
lifecycle must be bridged; the MetaOS of the future must be an
inherent learning system, not just a static manager.

Future Research Directions

While the necessity of CL in the CEC is evident, several research
avenues remain open to realize the vision of an autonomous,
self-adaptive MetaOS fully. Future lines of work should focus on
standardizing interfaces for drift-aware orchestration, allowing ap-
plications to signal MetaOS when they require additional resources
for retraining. Additionally, significant research is needed into
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decentralized continual learning protocols that can operate
robustly in P2P architectures without converging to suboptimal
states. The integration of Neuro-symbolic Al could also be explored
to provide explainability alongside the adaptability of CL, further

in CEC

solidifying the trustworthiness of autonomous decision-making in
the continuum. This is summarized in Figure 6 and covered in the
following subsections.

Rt
— S

{mmm
Distributed Nodes

(

Figure 6: Future research directions.

Standardization of drift-aware interfaces

Current orchestration mechanisms operate primarily on
resource metrics. There isa critical need to standardize “Drift-Aware
Interfaces” that allow applications to signal their learning state to
the MetaOS. Future work should define protocols that enable an
application to report a concept drift event or a confidence drop as a
standard telemetry metric. This would allow an Intelligence Layer
or orchestrators to distinguish between a simple resource spike
and a fundamental need for model retraining, triggering specific
workflows rather than generic scaling.

From FL to fully decentralized learning

While FL is a step forward, it often retains a dependency on a
central aggregator, which contradicts the fully decentralized P2P
nature of architectures like FLUIDOS and NEMO. Future research
should focus on alternative learning mechanisms and swarm
intelligence protocols. These approaches enable edge nodes to
exchange model updates asynchronously with their neighbors,
eliminating the need for a central coordinator. Key challenges here
include ensuring model convergence in unstable networks and
preventing catastrophic forgetting when learning from independent
and identically distributed data across heterogeneous peers.

Neuro-symbolic Al for explainable adaptation

In CEC environments, where an orchestrator transfers a
critical safety task from the Edge to the Cloud, operators need to
understand the rationale behind this decision. Future work should

explore neuro-symbolic Al, combining the adaptive power of neural
net-works with the transparency of symbolic logic rules. This aligns
with the Trustworthy Al principles emphasized in MANOLO [6],
ensuring that the system’s adaptive decisions are not only efficient
but also verifiable and explainable to human operators.

Environmental-aware carbon-aware continual learning
efficiency

While CL avoids full retraining, iterative updates still consume
energy. Future re-search must develop carbon-aware CL metrics
that weigh the accuracy gain of a model update against its energy
cost. The orchestration layer should be capable of delaying a
learning update if the energy grid is currently dirty or if the expected
performance boost does not justify the power consumption,
effectively implementing a “Green Intelligence” policy across the
continuum.

Cross-MetaOS knowledge transfer

As different MetaOS projects mature, the continuum will likely
become a cluster of clusters. A major future challenge is enabling
knowledge transfer between these heterogeneous systems. A
model trained on network anomalies in a NEPHELE-managed smart
factory should ideally be transferable to an ICOS-managed logistics
hub. Research into standardized model representations (such
as ONNX for CL) and teacher-student bridges between different
MetaOS architectures will be essential to prevent knowledge silos
[24].
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Conclusion

The CECisadynamic,stream-based environmentthatinvalidates
the assumptions of static, batch-trained artificial intelligence. The
non-stationary data streams and changing environments inherent
to the CEC mean that static models may likely fail. This failure
manifests as processing bottlenecks, performance degradation due
to concept drift, and a critical erosion of Trustworthy Al principles,
particularly robustness and reliability. To prevent this, a paradigm
shift is necessary.

CL, in its various forms, is not merely an academic exercise
but a vital operational necessity. This ranges from data-centric
approaches, such as the online learning and concept drift detection
explored in the MANOLO project, to model-centric frugal Al
techniques. These include efficient continual fine-tuning [16],
model compression, knowledge distillation, and frugal, growing
models [21] that can adapt their complexity on the fly.

Furthermore, these principles are fundamental to the intelligent
MetaOS platforms being developed to manage the complexity
of the continuum. As platforms like ICOS mature with their
Intelligence Layer, or as FLUIDOS and NEMO consolidate online
learning capabilities for orchestration, their internal Al-driven
components must also be continual learners. They explore this
through incremental, online learning and reinforcement learning
paradigms to avoid becoming obsolete. Ultimately, CL is the key to
delivering on the promise of the CEC and the stated goals of projects
like MANOLO and ICOS: a system that is simultaneously efficient,
autonomous, and trustworthy.

The key findings of this study reinforce that continual,

lightweight, and distributed adaptation is fundamental to
sustaining performance across both edge-level models and MetaOS
orchestration mechanisms. Looking ahead, future research should
focus on developing more interoperable drift-aware mechanisms,
progressing toward fully decentralized learning architectures,
enabling more interpretable adaptive models, improving energy-
efficient learning strategies, and supporting knowledge exchange
across heterogeneous MetaOS ecosystems. Collectively, these
directions point toward the next generation of scalable, transparent,
and sustainable continual learning frameworks for the Cloud-Edge

Continuum.
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