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Introduction
The CEC, spanning from centralized cloud data centers to re-source-constrained edge and 

IoT devices, forms the backbone of modern digital infra-structure. This CEC is not a static 
entity; it is a highly dynamic and heterogeneous environment. European-funded MetaOS 
projects, such as ICOS [1], NEMO, aerOS, NEPHELE, NebulOuS, and FLUIDOS [2] (Figure 1), 
explicitly aim to manage this complexity, addressing dynamic, unpredictable conditions and 
complex orchestration need [3]. These projects are exploring diverse orchestration models, 
ranging from centralized and hierarchical ‘Agent/Controller’ systems to fully decentralized 
‘Peer-to-Peer’ (P2P) networks, adding a further layer of complexity to this management.
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Abstract

The Cloud-Edge Continuum (CEC) represents a paradigm shift towards a heterogeneous, distributed 
computing landscape. This environment is characterized by massively dis-tributed data sources, dynamic 
network conditions, and fluctuating computational loads. Traditional Machine Learning (ML) models, 
trained offline in a centralized manner, are not suited for this reality. They fail to adapt to the constant 
stream of new data, making them vulnerable to concept drift. This leads to inevitable performance 
degradation, creates significant processing bottlenecks, and undermines core Trustworthy AI principles 
of robustness and reliability. This paper argues that Continual Learning (CL) is a critical and necessary 
paradigm for robust and efficient intelligence in the CEC. We review the relevance of CL, data stream 
learning, and integrated concept drift detection as the primary mechanisms for maintaining model 
robustness and resilience. CL, implemented through a combination of data-centric and model-centric 
compression and frugal AI techniques, is vital for achieving both the efficiency and trustworthiness 
demanded by next-generation applications operating in the CEC. These methodologies include iterative 
fine-tuning, model compression, knowledge distillation, and dynamic neural network growth. This 
adaptive intelligence is required not only for end-user applications but also for MetaOS-level orchestration 
across the Cloud–Edge Continuum. This paper concludes by presenting key findings that highlight the 
essential role of adaptive learning across the continuum and outlines future research directions aimed at 
enabling scalable, trustworthy, and resource-efficient continual learning for MetaOS-based orchestration 
and management.

Keywords: Continual learning; Cloud-Edge continuum; Concept drift; Trustworthy AI; Frugal AI; Data 
stream learning; Distillation; Edge AI

Abbreviations: CEC: Cloud-Edge Continuum; ML: Machine Learning; P2P: Peer-to-Peer; RAG: Retrieval-
Augmented Generation; ICL: In-Context Learning; PEFT: Parameter-Efficient Fine-Tuning; MoE: Mixture 
of Experts; GNG: Growing Neural Gas; FL: Federated Learning; DRL: Distributed Reinforcement Learning; 
MetaOS: Meta-Operating System

ISSN: 2694-4391

http://dx.doi.org/10.31031/ICP.2026.04.000586
https://crimsonpublishers.com/icp/


2

Int J Conf Proc       Copyright © Andrés L Suárez-Cetrulo

ICP.MS.ID.000586. 4(3).2026

Figure 1: Illustration of an ICOS instance within the Cloud-Edge Continuum
Source: [1].

A primary challenge in the CEC is the nature of data itself. Data 
is no longer a static batch to be processed; it is an incremental, 
continuous stream, often generated at the extreme edge [4]. 
Processing this data on the go is essential for efficiency and low-
latency decision-making. However, static ML models deployed in 
this continuum are inherently brittle. Their performance degrades 
as the statistical properties of the data streams change over time, a 
phenomenon known as concept drift [5]. This is a central challenge 
in re-al-world operations and changing environments, where 
detecting data drift situations where the incoming data starts to 
differ from the data the model was trained on is critical. Projects 
like MANOLO [6] are actively developing robust data inspection 
techniques, including noise detection and concept drift detection 
algorithms, to identify these shifts.

Apart from this, processing information in large batches and 
training AI models through iterative processes involving substantial 
amounts of data creates a significant bottleneck, not only affecting 
the efficiency of these models but also the reliability of AI-driven 
services. Static, non-adaptive models undermine many of the core 
Trustworthy AI principles [7], such as robustness and reliability, as 
their performance decays unpredictably over time.

The Figure 1 depicts a controller-centric MetaOS architecture in 
which a central controller coordinates multiple distributed agents 
deployed across cloud, edge, and IoT resources. This architecture 
highlights where intelligence and continual learning can be applied 
for adaptive orchestration under dynamic and heterogeneous 
conditions

This paper proposes that training models sequentially within 
the continual learning paradigm, combined with other frugal 
AI techniques, compression, and meta-learning, is the key to 
unlocking robust and efficient intelligence in the CEC. By learning 

incrementally and adapting to data streams in an online manner, 
CL provides a direct solution to the dual challenges of concept drift 
and resource inefficiency. This approach enables the development 
of frugal, adaptive models and resilient intelligent systems, aligning 
perfectly with the vision of a truly adaptive and trustworthy CEC.

Literature review methodology

This review follows a structured, narrative literature review 
methodology to identify and analyze relevant research on Continual 
Learning in the Cloud–Edge Continuum. Scholarly articles were 
primarily retrieved from established academic databases, including 
IEEE Xplore, Scopus, and arxiv, complemented by selective searches 
on Google Scholar to capture emerging and interdisciplinary work.

The review focuses on publications from 2017 to 2025, 
reflecting the period during which continual learning, edge AI, 
and cloud–edge architectures have matured as active research 
areas. Earlier foundational works were included selectively where 
necessary to provide conceptual grounding.

Studies were included if they addressed the following themes:

(i) continual or online learning, (ii) data stream learning and 
concept drift detection, (iii) frugal or re-source-efficient AI, (iv) 
learning in cloud-edge or distributed computing environments, 
or (v) trustworthiness aspects such as robustness, reliability, or 
adaptability. Works focusing exclusively on static, batch-trained 
models without relevance to dynamic or distributed settings were 
excluded.

The selected literature was analyzed thematically to synthesize 
current trends, extract key findings, and identify open challenges 
and future research directions relevant to efficiency and 
trustworthiness in the Cloud-Edge Continuum.
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Continual Learning in the CEC
Addressing data streams and concept drift

Continual Learning is a methodology designed for scenarios 
where data is not available all at once, but instead arrives 
sequentially [8]. This aligns perfectly with the reality of IoT and 
edge devices, which generate data incrementally [4,9]. In the CEC, 
data streams are non-stationary by default. Network conditions 
fluctuate, user behavior changes, and sensors experience new 
environmental states. The field of data stream learning, related to CL 

as it focuses on online lifelong learning, has long focused on concept 
drift detection [5]. Concept drift occurs when the under-lying data 
distribution changes, causing the trained model’s predictions to 
become inaccurate. In the context of the CEC, a drift (e.g., a new 
type of network threat or a change in factory-floor sensor readings 
[10]) that goes undetected can compromise the robustness and 
trustworthiness of the entire system. CL, particularly online 
learning variants, pro-vides the mechanisms to detect these drifts 
and adapt the model accordingly, ensuring that the AI remains 
robust and reliable (Figure 2).

Figure 2: Illustration of concept drift in a data stream over time
Source: [5].

The Figure 2 shows how changes in the underlying data 
distribution between time t1t_1t1 and time t2t_2t2 shift the optimal 
decision boundary, leading to increasing mis-classification when a 
static model is used. This example illustrates real concept drift in 
non-stationary environments and motivates the need for continual 
learning and online model adaptation.

This challenge is a central concern for assessing Trustworthy AI. 
For instance, the MANOLO project explicitly identifies the need to 
detect data drift situations where the in-coming data starts to differ 
from the data the model was trained on as part of its performance 
assessment framework. CL, particularly online learning variants, 
provides the mechanisms to first detect these drifts, often through 
continuous monitoring and alerting tools, and then adapt the 
model accordingly. This adaptive loop, aligned with the MA-NOLO 
project’s goals, ensures the AI remains robust, reliable, and resilient 
throughout its entire lifecycle in the CEC.

Current trends in continual learning

To address the dual challenges of plasticity (learning new 
information) and stability (avoiding catastrophic forgetting), 
the CL landscape offers a spectrum of solutions ranging from 
non-parametric context adaptations to sophisticated parametric 
updates. The lightest end of the spectrum lies In-Context Learning 
(ICL), where models adapt behavior based on examples provided in 
the prompt window. While computationally cheap, it suffers from 
context rot and is strictly limited by the context window size [11]. 

Retrieval-Augmented Generation (RAG) extends this by retrieving 
relevant information from an external buffer. While RAGs provide 
high capacity without altering model weights, they fail to compress 
knowledge, effectively deferring the learning problem to a storage 
and retrieval bottleneck that can be prohibitive for latency-sensitive 
edge applications. 

We also have parametric methods, such as replay and 
regularization, as well as Parameter-Efficient Fine-Tuning (PEFT). 
While the classical parametric approach is fi-ne-tuning with replay, 
where the model is updated on new data mixed with a subset of 
old data, this approach is practical against forgetting. Still, it is 
fundamentally unscalable for lifelong learning at the edge, as the 
rehearsal buffer grows indefinitely, consuming scarce storage and 
compute resources. PEFT techniques, such as LoRA (Low-Rank 
Adaptation) and Adapters, offer a compelling middle ground [12]. 
By freezing the vast majority of the model’s parameters and training 
only small, inserted modules, PEFT achieves targeted updates 
with minimal computational overhead. However, these methods 
have historically been viewed as having low capacity, struggling to 
integrate vast amounts of new knowledge over an extended lifecycle 
without saturation. Finally, a new research trend points towards 
Sparse Memory Architectures [13] and Mixture of Experts (MoE) 
[14]. Unlike monolithic models, these architectures route inputs to 
specific, sparse subsets of parameters (or “experts”). MoEs allow 
for high capacity by adding new experts over time, though they 
can still incur significant memory overhead [15]. Sparse Memory 



4

Int J Conf Proc       Copyright © Andrés L Suárez-Cetrulo

ICP.MS.ID.000586. 4(3).2026

Layers represent a novel “frugal” approach where specific Feed-
Forward layers are replaced by massive, sparse key-value memory 
pools [14].

Efficiency and frugal adaptation

Beyond robustness, the CEC demands efficiency. It is 
computationally and financially infeasible to retrain massive 
models from scratch every time new data becomes available. CL 
offers a path to efficient adaptation. This can be achieved through 
several approaches. One is continual fine-tuning, where a model 
undergoes iterative adaptation to new domains or tasks with 
minimal computational overhead, effectively adapting to new 
contexts without catastrophic forgetting [16].

Another approach is the use of frugal models that are efficient 
by design. The MA-NOLO project [6,17], for instance, proposes 

developing “Trustworthy Efficient AI for Cloud-Edge Computing” 
by focusing on both model-centric and data-centric methods that 
can operate within the energy and computational constraints of the 
edge. Another approach is the use of frugal models that are efficient 
by design.

A key paradigm for achieving this rapid adaptation is meta-
learning [18]. This approach utilizes a meta-learner model, trained 
on a range of learning tasks, to determine the optimal compression 
method or efficient adaptation strategy. This enables a base model 
to be updated for new tasks or domains (e.g., in “Domain Adaptive 
Few-Shot Continuous Learning”) with minimal additional data. 
This high-level learner, as illustrated in Figure 3, can orchestrate 
the update process, deciding how and when to replace or fi-ne-tune 
models at the edge to maintain peak performance and efficiency.

Figure 3: Meta-learning-driven model update and replacement process.

As illustrated in Figure 3, incoming data and model performance 
metrics are continuously monitored by drift detection mechanisms, 
whose outputs inform a meta-learner. Based on detected drift and 
resource constraints, the meta-learner selects an existing model, 
applies continual fine-tuning, or triggers the training of a new 
model, enabling efficient and adaptive learning in dynamic Cloud-
Edge settings.

On the model-centric side, MANOLO investigates techniques to 
reduce the computational footprint of models. This includes model 
compression methods like pruning and quantization. Another 
technique explored is knowledge distillation, wherein a large, 
complex “teacher” model transfers its knowledge to a much smaller, 
computationally cheaper “student” model. This “student” model can 
then be deployed efficiently at the edge, retaining the performance 
of the larger model while meeting resource constraints. This focus 
on adaptation is also reflected in the project’s work on Domain 
Adaptive Few-Shot Continuous Learning, which provides a direct 
mechanism for efficient model updates.

On the data-centric side, MANOLO enhances efficiency by 
improving the quality and relevance of the data used for training. 
This is crucial for CL, as training on irrelevant or poor-quality data 

is a primary source of inefficiency. The project employs multiple 
data inspection techniques, including noise detection algorithms 
to filter data streams. Furthermore, it leverages drift detection 
algorithms (such as ADWIN [5] and Page Hinkley [19]) to identify 
statistical shifts in the incoming data. By detecting such changes, 
the system can trigger model adaptation intelligently and avoid 
wasting resources on retraining when it is not necessary, or on data 
that is anomalous or no longer relevant [15].

Beyond just inspecting and filtering data, data-centric efficiency 
can be achieved by actively compressing the data itself. Techniques 
such as dataset distillation [20] focus on synthesizing a small, highly 
representative dataset from a large, raw data stream. This compact, 
synthetic dataset embeds the core information of the original, 
enabling models to be trained or updated with a fraction of the 
computational cost and memory footprint. These compression and 
distillation techniques stand alongside other dynamic approaches, 
such as the use of growing neural networks. For instance, models 
like the Growing Neural Gas (GNG) are designed to learn online 
and can grow their network structure (neural network growth) 
incrementally as they encounter new data patterns [21]. This 
allows the model to adapt its complexity directly to the data stream, 
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representing an-other highly efficient paradigm for stream-based 
learning in the CEC.

CL at the CEC in Practice: MetaOS and Orchestration
The principles of CL are not only applicable to application 

models but are also increasingly critical to the management of 
the continuum itself. This is a core theme across next-generation 
MetaOS projects, which are building intelligence directly into the 
system’s orchestration layer to manage the inherent dynamism 
and complexity of the CEC. For in-stance, projects like ICOS are 
developing an Intelligent MetaOS that uses a dedicated Intelligence 
Layer for AI-driven optimization, resource management, and 
scheduling [1].

The architectural approaches to this orchestration vary 
significantly, which in turn dictates how CL must be implemented. 
Many projects, including ICOS, NebulOuS, and NEPHELE, adopt a 
resource-sharing model based on an “Agent/Controller” design, 
which is leveraged by MANOLO using a Controller/Node design. 
This architecture, whether implemented as a distributed model 
(like ICOS and aerOS) or a Hierarchical one (like NEPHELE and 
NebulOuS), creates logical points of intelligence where AI-driven 
decisions are concentrated. In the case of ICOS, this is referred to as 
the Intelligence Layer [1].

In contrast, projects like FLUIDOS and NEMO are architected 
with a decentralized orchestration, enabling a P2P resource-sharing 
model. This fundamental design choice avoids a central controller in 
favor of distributed, autonomous agents. This architectural split has 
profound implications for adaptation: the centralized/hierarchical 

models concentrate the need for CL for MetaOS support in their 
controller (although CL may still need to occur at local nodes at the 
application level), while the decentralized models must dis-tribute 
the MetaOS-support-related continual learning process itself. For 
example, NEMO explicitly explores parallel learning mechanisms, 
such as gossip learning [13], where agents continually learn and 
share updates with their peers without a central coordinator.

The orchestration layer (at the controller in distributed 
projects) must be adaptive [22]. The ICOS Intelligence Layer, for 
example, uses AI models to predict resource utilization (e.g., CPU) 
to make proactive scheduling decisions. However, in a dynamic 
environment characterized by fluctuating workloads, network 
states, and resource availability, these predictive models are highly 
susceptible to concept drift [3,22]. A model trained on yesterday’s 
network traffic patterns will likely fail today, resulting in suboptimal 
and inefficient resource allocation. Therefore, the orchestrator’s 
own AI models must be continual learners, constantly updating 
themselves from the stream of system telemetry.

This is reflected in the goals of several MetaOS projects 
[2]. FLUIDOS explicitly plans to consolidate online learning 
capabilities and leverage feedback from telemetry services to refine 
orchestration, which is a textbook implementation of a CL loop 
for system management. Similarly, ICOS is working to extend its 
AI‑driven scheduling and Federated Learning (FL) integration. FL, 
in this context, provides a powerful mechanism for the orchestrator 
to continually learn from distributed nodes without centralizing 
sensitive telemetry data, enhancing both efficiency and privacy [9] 
(Figure 4).

Figure 4: Federated Learning architecture in ICOS.
Source: [1].
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A prime example of this adaptive orchestration is in intelligent 
task placement [22]. This is a complex problem that must adapt to 
real-time network delays and node failures. Research in this area is 
already applying adaptive learning techniques, such as Distributed 
Reinforcement Learning (DRL), to create policies that learn online 
to minimize delay and optimize task offloading [23]. This approach 
is being actively researched in projects like NEMO, which aims to 
use advanced RL algorithms for workload orchestration. This DRL-
based orchestrator is, in effect, a continual learning agent that 
constantly fine-tunes its strategy based on new data about network 
performance.

Ultimately, the principles of trustworthy AI, as outlined in the 
MANOLO project [6], also apply in this context. Just as MANOLO 
calls for continuous monitoring and alerting for application models, 
a trustworthy MetaOS must do the same for its own internal models. 
By applying CL to the orchestration layer itself, the system becomes 
resilient, self-adapting, and capable of maintaining efficiency and 
trustworthiness over its entire lifecycle [17].

Challenges and Trends to Solve Them in the Cloud-
Edge Continuum

Fundamental conflicts between the static nature of traditional 
AI development and the dynamic reality of edge operations obstruct 
the realization of a truly intelligent CEC. This section summaries the 
primary challenges identified across the previous sections, along 
with the specific solutions already mentioned proposed to address 
them.

Non-stationary data and drifts

In the CEC, data is generated as an infinite, high-velocity stream 
rather than being stored in a static repository. Environmental 
conditions, user behaviors, and network states are in constant flux. 
Traditional models, trained offline on historical datasets, operate 
on the assumption that future data will resemble past data. This 
assumption is frequently violated in the continuum, leading to 
concept drift, a phenomenon in which the statistical properties 
of the target variable change over time, resulting in a silent but 
catastrophic degradation in model accuracy [5]. To counter 
this, systems must transition from static deployment to online 
learning, with integrated drift detection, and trigger immediate 
adaptation mechanisms, as discussed earlier. This ensures that the 
model’s knowledge re-mains aligned with the current state of the 
environment, maintaining robustness without requiring human 
intervention.

Resource constraints and training inefficiency

Retraining massive deep learning models from scratch is 
computationally prohibitive and energy-intensive, rendering it 

infeasible for resource-constrained edge devices. Furthermore, 
training on raw data streams often involves processing vast 
amounts of redundant, noisy, or irrelevant information, which 
creates significant processing bottlenecks and wastes energy. The 
solution lies in Frugal AI and Data-Centric Efficiency.

a.	 Firstly, the reviewed techniques, such as continual fine-
tuning and meta-learning, enable models to adapt to new 
tasks with only a few examples, thereby drastically reducing 
the computational requirements for updates. Additionally, 
growing neural networks offer a structural solution, where the 
model architecture itself expands or contracts based on the 
complexity of the incoming data stream.

b.	 In the latter, efficiency may be further enhanced by data 
distillation and noise filtering. By algorithmically selecting 
only the most representative and high-quality data points for 
training, the system reduces the computational burden of the 
learning process itself.

Orchestration complexity and heterogeneity

The CEC is not a monolithic entity; it is composed of diverse 
architectures ranging from centralized clouds to decentralized 
swarms. Orchestrating workloads across this heterogeneity requires 
predicting resource availability (CPU, bandwidth) in real-time. 
However, static orchestration rules fail when network dynamics 
shift, and centralized control mechanisms struggle to scale to the 
sheer number of edge nodes found in P2P environments, such as 
those explored by FLUIDOS and NEMO. Thus, a MetaOS should adopt 
Adaptive Intelligence (e.g., AI-driven Adaptive Orchestration).

This is visible in projects such as ICOS and NEPHELE, where an 
Intelligence Layer continually updates workload prediction models, 
ensuring accurate task placement de-spite changing network 
conditions [1]. Here, FL allows nodes to collaboratively train a 
global model without sharing raw data, thereby preserving privacy.

Key Findings
The review of the state-of-the-art in the Cloud-Edge Continuum 

(CEC), alongside the analysis of current Meta-Operating System 
(MetaOS) projects like ICOS, FLUIDOS, and MANOLO, reveals a 
clear consensus: static intelligence is obsolete in this dynamic 
environment (See a summary in Figure 5). The following key 
findings summarize the critical necessity of CL and its supporting 
technologies for enabling a robust, efficient, and trust-worthy CEC.
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Figure 5: Adaptive Intelligence in the CEC. Challenges (intermediate nodes) and solutions (leaf nodes) leading to 
findings.

a.	 Traditional static ML models are insufficient for the CEC due to 
their inability to adapt to the continuous, non-stationary data 
stream, which leads to concept drift and degrades performance. 
Concept drift is an inherent and pervasive challenge in the 
CEC, driven by fluctuating network conditions, dynamic user 
behaviours, evolving sensor environments, and unpredictable 
workloads.

b.	 Trustworthy AI in CEC requires continuous monitoring, 
alerting, and adaptation loops, extending beyond models to the 
MetaOS itself to ensure long-term robustness and resilience.

c.	 Meta-learning offers an efficient mechanism for rapid 
adaptation, allowing models to autonomously select optimal 
update strategies for new tasks with minimal data.

d.	 Frugal AI techniques are critical for deploying efficient, 
lightweight AI at the edge, where resources are limited.

e.	 Data stream learning and drift detection form the backbone of 
adaptive intelligence in the CEC, enabling models to identify 
and respond to changes in the data quickly.

f.	 Data-centric methods significantly improve training efficiency, 
minimizing wasteful computation and reducing the burden of 
irrelevant or low-quality data.

g.	 CL is required for application-level models and MetaOS-
level orchestration, which must adapt to real-time data and 
changing resource conditions.

h.	 An AI-driven orchestration layer (such as ICOS intelligent 
layer) relies on CL to maintain accuracy in predictive tasks, 

such as workload forecasting and task scheduling, which is 
highly vulnerable to drift.

i.	 FL can enhance continual adaptation in a privacy-preserving 
manner, enabling learning from distributed nodes without 
centralizing sensitive information.

j.	 Different orchestration designs create different CL needs, and 
decentralized systems may leverage other distributed learning 
methods, such as gossip learning.

k.	 Growing neural networks (such as Growing Neural Gas) can 
adjust their size over time, which allows models at the edge to 
adapt their structure as data changes continually.

l.	 CL is essential for maintaining the robustness and reliability of 
the AI system in the CEC, which supports the Trustworthy AI 
principle by enabling real-time adaptation.

These findings have profound implications for the design 
of future continuum plat-forms. They suggest that the current 
separation between system orchestration and AI ap-plication 
lifecycle must be bridged; the MetaOS of the future must be an 
inherent learning system, not just a static manager.

Future Research Directions
While the necessity of CL in the CEC is evident, several research 

avenues remain open to realize the vision of an autonomous, 
self-adaptive MetaOS fully. Future lines of work should focus on 
standardizing interfaces for drift-aware orchestration, allowing ap-
plications to signal MetaOS when they require additional resources 
for retraining. Additionally, significant research is needed into 
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decentralized continual learning protocols that can operate 
robustly in P2P architectures without converging to suboptimal 
states. The integration of Neuro-symbolic AI could also be explored 
to provide explainability alongside the adaptability of CL, further 

solidifying the trustworthiness of autonomous decision-making in 
the continuum. This is summarized in Figure 6 and covered in the 
following subsections.

Figure 6: Future research directions.

Standardization of drift-aware interfaces 

Current orchestration mechanisms operate primarily on 
resource metrics. There is a critical need to standardize “Drift-Aware 
Interfaces” that allow applications to signal their learning state to 
the MetaOS. Future work should define protocols that enable an 
application to report a concept drift event or a confidence drop as a 
standard telemetry metric. This would allow an Intelligence Layer 
or orchestrators to distinguish between a simple resource spike 
and a fundamental need for model retraining, triggering specific 
workflows rather than generic scaling.

From FL to fully decentralized learning 

While FL is a step forward, it often retains a dependency on a 
central aggregator, which contradicts the fully decentralized P2P 
nature of architectures like FLUIDOS and NEMO. Future research 
should focus on alternative learning mechanisms and swarm 
intelligence protocols. These approaches enable edge nodes to 
exchange model updates asynchronously with their neighbors, 
eliminating the need for a central coordinator. Key challenges here 
include ensuring model convergence in unstable networks and 
preventing catastrophic forgetting when learning from independent 
and identically distributed data across heterogeneous peers.

Neuro-symbolic AI for explainable adaptation 

In CEC environments, where an orchestrator transfers a 
critical safety task from the Edge to the Cloud, operators need to 
understand the rationale behind this decision. Future work should 

explore neuro-symbolic AI, combining the adaptive power of neural 
net-works with the transparency of symbolic logic rules. This aligns 
with the Trustworthy AI principles emphasized in MANOLO [6], 
ensuring that the system’s adaptive decisions are not only efficient 
but also verifiable and explainable to human operators.

Environmental-aware carbon-aware continual learning 
efficiency 

While CL avoids full retraining, iterative updates still consume 
energy. Future re-search must develop carbon-aware CL metrics 
that weigh the accuracy gain of a model update against its energy 
cost. The orchestration layer should be capable of delaying a 
learning update if the energy grid is currently dirty or if the expected 
performance boost does not justify the power consumption, 
effectively implementing a “Green Intelligence” policy across the 
continuum.

Cross-MetaOS knowledge transfer 

As different MetaOS projects mature, the continuum will likely 
become a cluster of clusters. A major future challenge is enabling 
knowledge transfer between these heterogeneous systems. A 
model trained on network anomalies in a NEPHELE-managed smart 
factory should ideally be transferable to an ICOS-managed logistics 
hub. Research into standardized model representations (such 
as ONNX for CL) and teacher-student bridges between different 
MetaOS architectures will be essential to prevent knowledge silos 
[24].
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Conclusion
The CEC is a dynamic, stream-based environment that invalidates 

the assumptions of static, batch-trained artificial intelligence. The 
non-stationary data streams and changing environments inherent 
to the CEC mean that static models may likely fail. This failure 
manifests as processing bottlenecks, performance degradation due 
to concept drift, and a critical erosion of Trustworthy AI principles, 
particularly robustness and reliability. To prevent this, a paradigm 
shift is necessary.

CL, in its various forms, is not merely an academic exercise 
but a vital operational necessity. This ranges from data-centric 
approaches, such as the online learning and concept drift detection 
explored in the MANOLO project, to model-centric frugal AI 
techniques. These include efficient continual fine-tuning [16], 
model compression, knowledge distillation, and frugal, growing 
models [21] that can adapt their complexity on the fly.

Furthermore, these principles are fundamental to the intelligent 
MetaOS platforms being developed to manage the complexity 
of the continuum. As platforms like ICOS mature with their 
Intelligence Layer, or as FLUIDOS and NEMO consolidate online 
learning capabilities for orchestration, their internal AI-driven 
components must also be continual learners. They explore this 
through incremental, online learning and reinforcement learning 
paradigms to avoid becoming obsolete. Ultimately, CL is the key to 
delivering on the promise of the CEC and the stated goals of projects 
like MANOLO and ICOS: a system that is simultaneously efficient, 
autonomous, and trustworthy.

The key findings of this study reinforce that continual, 
lightweight, and distributed adaptation is fundamental to 
sustaining performance across both edge-level models and MetaOS 
orchestration mechanisms. Looking ahead, future research should 
focus on developing more interoperable drift-aware mechanisms, 
progressing toward fully decentralized learning architectures, 
enabling more interpretable adaptive models, improving energy-
efficient learning strategies, and supporting knowledge exchange 
across heterogeneous MetaOS ecosystems. Collectively, these 
directions point toward the next generation of scalable, transparent, 
and sustainable continual learning frameworks for the Cloud-Edge 
Continuum.
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