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Introduction
Metabolic diseases, like Type 2 Diabetes (T2DM), Metabolic-Associated Fatty Liver 

Disease (MASLD), and obesity, pose significant challenges to the global health systems 
and have reached epidemic proportions [1,2]. It is predicted that by 2030, 48.9% of adults 
in the United States will be classified as obese, and 24.2% will be severely obese [3]. The 
prevalence of MASLD and T2D has also been increasing worldwide and is expected to 
continue to rise if current trends are left unchecked [4,5]. These conditions often coexist 
and synergistically contribute to the progression of each other suggesting a common 
pathophysiological pathway [6]. In recent years, the link between T2DM, obesity and MASLD 
has become increasingly evident. Several key pathophysiological mechanisms, including 
insulin resistance, inflammation, and lipotoxicity, underpin the complex interplay between 
these conditions [7]. As researchers strive to uncover the root causes of metabolic disorders 
and identify potential therapeutic targets, a growing body of studies has focused on exploring 
the role of the duodenum in regulating glucose homeostasis.

Studies have shown that the duodenum maintains energy and glucose homeostasis, 
through nutrient-sensing and gut microbiome metabolites. In turn, signals via endocrine, 
paracrine, and enteric nervous system mechanisms orchestrate the metabolic response by 
modulating hepatic and peripheral muscle insulin resistance, hepatic gluconeogenesis, and 
metabolic rate [8,9]. Different animal studies have described the changes of duodenal mucosa 
in response in changes in diet triggering insulin resistance [10,11]. Consequently, these 
factors are believed to be pivotal in the improvement in hyperglycemia, insulin resistance, as 
well as MASLD after certain bariatric procedures including duodenal bypass [12] and novel 
endoscopic therapies such as Duodenal Mucosal Resurfacing (DMR) [13,14]. We aimed to 
write this review article to explore the duodenum’s role as a metabolic center and discuss its 
potential clinical implications for patients.
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Abstract 
Common metabolic diseases, such as type 2 diabetes (T2DM), obesity, and Metabolic Dysfunction-
Associated Steatotic Liver Disease (MASLD), have become a global health burden. In recent years, the 
glucoregulatory function of the duodenum has been more clearly understood, with studies indicating 
that changes in the morphology and function of the duodenal mucosa may significantly contribute to 
the development of metabolic diseases. Interventions such as Roux-en-Y gastric bypass and Duodenal 
Mucosal Resurfacing (DMR) have demonstrated significant improvements in glycemic control, suggesting 
that targeting the duodenum may offer novel therapeutic approaches for managing metabolic diseases. 
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Discussion
Understanding the duodenal histology

The duodenum’s wall consists of four layers similar to those 
found throughout the Gastrointestinal (GI) tract. These layers, from 
innermost to outermost, are the mucosa, submucosa, muscularis 
and serosa. The mucosal layer lines the inner surface of the 
duodenum and comprises the intestinal epithelium, lamina propria, 
and mucosal muscle layer. The intestinal epithelium is a single layer 
of columnar epithelial cells with two distinct parts: villi and crypts. 
The crypts are tubular invaginations found in the epithelial lining of 
the small intestine, and the villi are slender, finger-like projections 
that protrude into the lumen. Each villus contains a central core 
consisting of an artery and a vein, a strand of muscle, a centrally 
located (lacteal), and connective tissue that adds support to the 
structures [15,16].

The duodenum acts as a metabolic signaling hub

The duodenum has been long recognized for not just its crucial 
role in digestion, but also for its broader significance as a metabolic 
hub, orchestrating nutrient absorption, and hormones secretion 
[17]. Recent investigations have delved into its involvement 
in insulin action and, therefore, insulin resistance states, a 
fundamental factor in various metabolic disorders such as T2DM 
and MASLD [18]. Previous studies have reported that in rodents fed 
a high-fat and high-sugar diet, the duodenal mucosa proliferated 
and triggered signals associated with insulin resistance. This 
suggests that dysregulation of duodenum-mediated signaling may 
be a key contributing factor to metabolic diseases [19-21].

In addition, the duodenum is home to a complex ecosystem of 
microorganisms known as the gut microbiota. The gut microbiota 
has been recognized to play a crucial role in maintaining gut health 
and regulating metabolism, by modulating immune responses and 
maintaining gut barrier integrity. Dysbiosis, induced by factors like 
diet and genetics, can lead to metabolic disturbances, including 
insulin resistance and type 2 diabetes [22]. Diabetes in turn causes 
different alterations in the duodenum. Past research has indicated 
that diabetic rats exhibit increased diameter, weight, and length of 
the duodenum compared to normal controls [10,23]. Additionally, 
diabetic rats tend to have elongated duodenal villi, resulting in 
thickening of the duodenal mucosa [11]. These alterations in 
duodenal mucosal growth in diabetic rats were primarily attributed 
to the diabetic condition itself rather than food intake [11,24]. 
Interestingly, insulin was found to reserve the increase in the villus 
length caused by diabetes [24,25].

Clinical Implications

In humans, the metabolic effects of the duodenum might be 
evident in the rapid and significant metabolic improvements 
observed after Roux-en-Y gastric bypass, where the duodenum 
is bypassed. These improvements are often noticed within days 
of the procedure before substantial weight loss occurs. gastric 
bypass restored glucose, insulin, and glycated Hemoglobin 
(HbA1c) to normal levels in 91% of patients with T2DM, which was 

maintained up to 14 years post-surgery [26]. Additionally, there is 
a clear and measurable insulin-sensitizing effect within the first 2 
weeks post-surgery that persists over time [27-30]. This further 
supports the hypothesis that duodenal dysfunction, is at the core 
pathophysiology of certain metabolic diseases.

The metabolic effects of the duodenum are also apparent in 
the Duodenal Mucosal Resurfacing (DMR) procedure. DMR is a 
minimally invasive endoscopic procedure that involves creating a 
circumferential mucosal lift and performing hydrothermal ablation 
of the duodenal mucosa [31]. The hot fluid makes the mucosa 
necrotic and shedding, and then new mucosa grows. The initial 
safety trial in humans demonstrated that DMR is safe and effective 
in improving glycemic control, with the degree of improvement 
being proportional to the length of the ablated duodenal mucosal 
segment [13,32]. It also has shown promise in treating metabolic 
diseases like Type 2 Diabetes (T2D) and nonalcoholic fatty liver 
disease. However, the precise mechanisms underlying DMR’s 
effects on glycemic improvement in T2D patients are yet to be 
fully elucidated. Current research explores changes in duodenal 
morphology, intestinal cells, nerves, glucose transporters, and 
gut microbiota to understand DMR’s mechanisms in improving 
glycemic parameters in T2D [20,32-35].

Conclusion
The duodenum plays a pivotal role in regulating metabolic 

processes, influencing both energy and glucose homeostasis. 
Emerging evidence underscores its significance as a metabolic 
hub, where dysfunction in its morphology and signaling pathways 
can contribute to the development and progression of metabolic 
diseases such as T2DM, obesity, and MASLD. Recent therapeutic 
approaches, including Roux-en-Y gastric bypass and Duodenal 
Mucosal Resurfacing (DMR), highlight the potential for targeting 
the duodenum in the treatment of these conditions, with 
promising results in improving glycemic control and reducing 
insulin resistance. However, the precise mechanisms by which 
the duodenum exerts these effects remain to be fully understood, 
and further research is needed to clarify the underlying processes. 
Ultimately, a better understanding of the duodenum’s role in 
metabolism could pave the way for innovative, more effective 
treatments for metabolic diseases, offering hope for millions of 
individuals affected worldwide.
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