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Abstract

Common metabolic diseases, such as type 2 diabetes (T2DM), obesity, and Metabolic Dysfunction-
Associated Steatotic Liver Disease (MASLD), have become a global health burden. In recent years, the
glucoregulatory function of the duodenum has been more clearly understood, with studies indicating
that changes in the morphology and function of the duodenal mucosa may significantly contribute to
the development of metabolic diseases. Interventions such as Roux-en-Y gastric bypass and Duodenal
Mucosal Resurfacing (DMR) have demonstrated significant improvements in glycemic control, suggesting
that targeting the duodenum may offer novel therapeutic approaches for managing metabolic diseases.

Introduction

Metabolic diseases, like Type 2 Diabetes (T2DM), Metabolic-Associated Fatty Liver
Disease (MASLD), and obesity, pose significant challenges to the global health systems
and have reached epidemic proportions [1,2]. It is predicted that by 2030, 48.9% of adults
in the United States will be classified as obese, and 24.2% will be severely obese [3]. The
prevalence of MASLD and T2D has also been increasing worldwide and is expected to
continue to rise if current trends are left unchecked [4,5]. These conditions often coexist
and synergistically contribute to the progression of each other suggesting a common
pathophysiological pathway [6]. In recent years, the link between T2DM, obesity and MASLD
has become increasingly evident. Several key pathophysiological mechanisms, including
insulin resistance, inflammation, and lipotoxicity, underpin the complex interplay between
these conditions [7]. As researchers strive to uncover the root causes of metabolic disorders
and identify potential therapeutic targets, a growing body of studies has focused on exploring
the role of the duodenum in regulating glucose homeostasis.

Studies have shown that the duodenum maintains energy and glucose homeostasis,
through nutrient-sensing and gut microbiome metabolites. In turn, signals via endocrine,
paracrine, and enteric nervous system mechanisms orchestrate the metabolic response by
modulating hepatic and peripheral muscle insulin resistance, hepatic gluconeogenesis, and
metabolic rate [8,9]. Different animal studies have described the changes of duodenal mucosa
in response in changes in diet triggering insulin resistance [10,11]. Consequently, these
factors are believed to be pivotal in the improvement in hyperglycemia, insulin resistance, as
well as MASLD after certain bariatric procedures including duodenal bypass [12] and novel
endoscopic therapies such as Duodenal Mucosal Resurfacing (DMR) [13,14]. We aimed to
write this review article to explore the duodenum’s role as a metabolic center and discuss its
potential clinical implications for patients.
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Discussion
Understanding the duodenal histology

The duodenum’s wall consists of four layers similar to those
found throughout the Gastrointestinal (GI) tract. These layers, from
innermost to outermost, are the mucosa, submucosa, muscularis
and serosa. The mucosal layer lines the inner surface of the
duodenum and comprises the intestinal epithelium, lamina propria,
and mucosal muscle layer. The intestinal epithelium is a single layer
of columnar epithelial cells with two distinct parts: villi and crypts.
The crypts are tubular invaginations found in the epithelial lining of
the small intestine, and the villi are slender, finger-like projections
that protrude into the lumen. Each villus contains a central core
consisting of an artery and a vein, a strand of muscle, a centrally
located (lacteal), and connective tissue that adds support to the
structures [15,16].

The duodenum acts as a metabolic signaling hub

The duodenum has been long recognized for not just its crucial
role in digestion, but also for its broader significance as a metabolic
hub, orchestrating nutrient absorption, and hormones secretion
[17]. Recent investigations have delved into its involvement
in insulin action and, therefore, insulin resistance states, a
fundamental factor in various metabolic disorders such as T2DM
and MASLD [18]. Previous studies have reported that in rodents fed
a high-fat and high-sugar diet, the duodenal mucosa proliferated
and triggered signals associated with insulin resistance. This
suggests that dysregulation of duodenum-mediated signaling may
be a key contributing factor to metabolic diseases [19-21].

In addition, the duodenum is home to a complex ecosystem of
microorganisms known as the gut microbiota. The gut microbiota
has been recognized to play a crucial role in maintaining gut health
and regulating metabolism, by modulating immune responses and
maintaining gut barrier integrity. Dysbiosis, induced by factors like
diet and genetics, can lead to metabolic disturbances, including
insulin resistance and type 2 diabetes [22]. Diabetes in turn causes
different alterations in the duodenum. Past research has indicated
that diabetic rats exhibit increased diameter, weight, and length of
the duodenum compared to normal controls [10,23]. Additionally,
diabetic rats tend to have elongated duodenal villi, resulting in
thickening of the duodenal mucosa [11]. These alterations in
duodenal mucosal growth in diabetic rats were primarily attributed
to the diabetic condition itself rather than food intake [11,24].
Interestingly, insulin was found to reserve the increase in the villus
length caused by diabetes [24,25].

Clinical Implications

In humans, the metabolic effects of the duodenum might be
evident in the rapid and significant metabolic improvements
observed after Roux-en-Y gastric bypass, where the duodenum
is bypassed. These improvements are often noticed within days
of the procedure before substantial weight loss occurs. gastric
bypass restored glucose, insulin, and glycated Hemoglobin
(HbA1c) to normal levels in 91% of patients with T2DM, which was

maintained up to 14 years post-surgery [26]. Additionally, there is
a clear and measurable insulin-sensitizing effect within the first 2
weeks post-surgery that persists over time [27-30]. This further
supports the hypothesis that duodenal dysfunction, is at the core
pathophysiology of certain metabolic diseases.

The metabolic effects of the duodenum are also apparent in
the Duodenal Mucosal Resurfacing (DMR) procedure. DMR is a
minimally invasive endoscopic procedure that involves creating a
circumferential mucosal lift and performing hydrothermal ablation
of the duodenal mucosa [31]. The hot fluid makes the mucosa
necrotic and shedding, and then new mucosa grows. The initial
safety trial in humans demonstrated that DMR is safe and effective
in improving glycemic control, with the degree of improvement
being proportional to the length of the ablated duodenal mucosal
segment [13,32]. It also has shown promise in treating metabolic
diseases like Type 2 Diabetes (T2D) and nonalcoholic fatty liver
disease. However, the precise mechanisms underlying DMR'’s
effects on glycemic improvement in T2D patients are yet to be
fully elucidated. Current research explores changes in duodenal
morphology, intestinal cells, nerves, glucose transporters, and
gut microbiota to understand DMR’s mechanisms in improving
glycemic parameters in T2D [20,32-35].

Conclusion

The duodenum plays a pivotal role in regulating metabolic
processes, influencing both energy and glucose homeostasis.
Emerging evidence underscores its significance as a metabolic
hub, where dysfunction in its morphology and signaling pathways
can contribute to the development and progression of metabolic
diseases such as T2DM, obesity, and MASLD. Recent therapeutic
approaches, including Roux-en-Y gastric bypass and Duodenal
Mucosal Resurfacing (DMR), highlight the potential for targeting
the duodenum in the treatment of these conditions, with
promising results in improving glycemic control and reducing
insulin resistance. However, the precise mechanisms by which
the duodenum exerts these effects remain to be fully understood,
and further research is needed to clarify the underlying processes.
Ultimately, a better understanding of the duodenum'’s role in
metabolism could pave the way for innovative, more effective
treatments for metabolic diseases, offering hope for millions of
individuals affected worldwide.
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