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Genomic Medicine and Endocrine Autoimmunity  
as Key to Mitochondrial Disease

Editorial
The diabetes epidemic and the induction of various chronic 

diseases are expected to affect approx. 592 people by the year 
2035. Diabetes and its connections to endocrine autoimmunity 
[1-3] has become important to metabolic disease with relevance 
to the non alcoholic fatty liver disease (NAFLD) epidemic and 
neurodegenerative diseases [4]. The urgency to prevent the largest 
diabetes epidemic in history has now assessed multiple risk factors  

 
involved with induction of Type 3 diabetes connected to various 
chronic diseases [4]. Interest in Type 3 diabetes has accelerated in 
the past 15 years with the critical importance of anti-aging genes 
[5,6] with relevance to autoimmune disease and mitophagy [7] 
and the global diabetes epidemic. The regulation of these genes is 
controlled by the heat shock gene Sirtuin 1 (Sirt 1) that is connected 
to appetite, immune and core body temperature regulation with 
relevance tomitophagy in NAFLD and metabolic disease.
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Figure 1: Genomic medicine and regulation of the heat shock gene Sirtuin 1 (Sirt 1) is connected to Type 3 diabetes, endocrine autoimmunity 
and mitochondrial disease. Unhealthy diets and lifestyle changes determine defective suprachiasmatic nucleus regulation (SCN) relevant to 
Type 3 diabetes/endocrine autoimmunity and the predicted diabetes pandemic by the year 2035.
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Diabetes as an endocrine disease now indicates stress [8] as a 
major factor in the induction of brain aging and Type 3 diabetes 
connected to endocrine autoimmunity [9]. The increased global 
susceptibility to insulin resistance associated with brain aging and 
neurodegenerative diseases now indicate neuron vulnerability 
to mitophagyis critical to the reversal of the diabetes pandemic. 
Interests in Sirt 1 in Type 3 diabetes with relevance to insulin 
resistance and autoimmune disease has accelerated to prevent 
accelerated mitochondrial apoptosis (Figure 1) and brain aging [7]. 
Sirt 1 is a nicotinamide adenine dinucleotide (NAD +) dependent 
class III histone deacetylase (HDAC) and as a heat shock gene [5,10] 
is involved in the deacetylation of heat shock factor 1 (HSF 1), 
regulation of heat shock proteins (HSP) and nitric oxide metabolism 
connected to natural killer cell activity, mitophagy and autoimmune 
disease in neuro degeneration and various chronic diseases. 	

Type 3 diabetes and endocrine autoimmunity now involves 
attack by the immune system and implicates the major 
histocompatibility complex (MHC) to be relevant to diabetes 
and endocrine autoimmunity.MHC molecules are cell‐surface 
glycoproteins that regulate adaptive immune responses and 
interference with MHC gene expression at the level of transcription 
is involved with autoimmune disease [11,12]. Recent advances 
in genetics now reveal Sirt 1 to be involved with immune and 
endocrine disturbances (Figure 1) in these diseases [7,10]. Sirt 1 as 
a deacetylase targets transcription factors to adapt gene expression 
to immune regulation, metabolic activity and insulin resistance. Sirt 
1 regulates the major histocompatibility complex class II (MHC-
II) genes at the level of transcription important to the immune 
recognition and autoimmune disease in various species [13-16]. 
Sirt 1 deacetylates the master regulator CIITA (adaptive immune 
response) that determines the expression ofMHC-II genes and 
autoimmune disease [14, 16-18].

The connections between diabetes, endocrine dysfunction 
and mitochondrial disease involve Sirt 1 and various hormones 
involved with endocrine autoimmunity and mitochondrial disease 
[19-22]. Sirt 1 is involved in mitochondrial biogenesis [23] and 
its regulation of the suprachiasmatic nucleus (SCN) is connected 
to various brain hormones and immunological diseases [7]. Sirt 1 
regulation of hormones such as apelin, brain derived neurotrophic 
factor, growth hormone, neuropeptide Y, adiponectin and fibroblast 
growth factor 21 are connected to prevention of autoimmune 
disease [7,24-26]. The accelerated brain aging in the current global 
diabetes pandemic may now be relevant to endocrine autoimmune 
disease, mitophagy and cancer [19-22]. Endocrine treatment of 
mitochondrial disease [27-32] may be completely inhibited by 
Sirt1transcriptional dysregulation and relevant to mitochondrial 
HSP-antigen presentation [33-35].	

Genomic medicine and maintenance of the SCN is critical 
for prevention of endocrine autoimmunity with relevance to 
mitochondrial disease (Figure 1). Core body temperature [36], 
unhealthy diets [37] and lifestyle changes/stress [8] in diabetes 
can inactivate the SCN with accelerated Type 3 diabetes and 

neuro degeneration. The connections between endocrinology and 
autoimmune disease are determined by Sirt 1 repression of MHC 
genes that may involve the induction of antigenic and immunogenic 
proteins [38] and lipids [7] with relevance to mitochondrial 
apoptosis. Specific diets with Sirt 1 activators/Sirt 1 inhibitors 
[4,38] in the developing world are required to reverse Sirt 1 
repression and maintain immune recognition essential for human 
survival and prevention of diabetes and various chronic diseases. 
Sirt 1 as the anti-aging gene now determines longevity [39] in 
various species with its repression connected to the induction 
of endocrine autoimmunity and hyperglycemic mitochondrial 
apoptosis in the global diabetes epidemic [2,3].

Conclusion
Genomic medicine treatment of diabetics is critical in the 

current global diabetes epidemic to prevent the expected diabetes 
pandemic predicted to occur by the year 2035. The major concern 
with Type 3 diabetes in the global population is related to a 
defective SCN with relevance to uncontrolled peripheral glucose 
levels and endocrine autoimmune disease. Appetite regulation 
and genomic medicine are critical to Sirt 1’s regulation of the MHC 
genes with relevance to maintenance of immune recognition and 
endocrine hormone treatment of mitophagy. In the developing 
world the major concern for a diabetes pandemic is mitophagy and 
will require diets with Sirt 1 activators to prevent Type 3 diabetes, 
endocrine autoimmunity and mitochondrial disease.
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