A Novel and Modern Experimental Approach to Vibrational Circular Dichroism Spectroscopy and Video Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under White and Monochromatic Synchrotron Radiation

Alireza Heidari*
Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA

*Corresponding author: Alireza Heidari, Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA, Email: Scholar.Researcher.Scientist@gmail.com/ Alireza.Heidari@calsu.us

Submission: December 11, 2017; Published: February 07, 2018

Introduction

In the current study, we have experimentally and comparatively investigated and compared malignant human cancer cells and tissues before and after irradiating of white and monochromatic synchrotron radiation using Vibrational Circular Dichroism Spectroscopy and Video Spectroscopy, respectively. It is clear that malignant human cancer cells and tissues have gradually transformed to benign human cancer cells and tissues under white and monochromatic synchrotron radiation with the passage of time (Figures 1-4) [1-108].

Figure 1: Vibrational Circular Dichroism Spectroscopy analysis of malignant human cancer cells and tissues (a) before and (b) after irradiating of white synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time [1-108].

It can be concluded that malignant human cancer cells and tissues have gradually transformed to benign human cancer cells and tissues under white and monochromatic synchrotron radiation with the passage of time (Figures 1-4) [1-108].
Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under White and Monochromatic Synchrotron Radiation

References


17. Alireza Heidari (2016) Biomedical study of cancer cells DNA therapy

How to cite this article: Alireza Heidari. A Novel and Modern Experimental Approach to Vibrational Circular Dichroism Spectroscopy and Video Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under White and Monochromatic Synchrotron Radiation. Glob J Endocrinol Metab. 1(3). GJEM.000514.2018. DOI: 10.31031/GJEM.2018.01.000514

18. Alireza Heidari (2016) Measurement the amount of vitamin D3 (Ergocalciferol), vitamin D2 (Cholecalciferol) and Absorbable Calcium (Ca++) in Apricot using high-performance liquid chromatography (HPLC) and spectroscopic techniques. J Biom Biostat 7(2): 292.

19. Alireza Heidari (2016) Spectroscopy and quantum mechanics of the Helium Dimer (He2+), Neon Dimer (Ne2+), Argon Dimer (Ar2+), Krypton Dimer (Kr2+), Xenon Dimer (Xe2+), Radon Dimer(Rn2+) and Ununoctium Dimer (Uuo2+) molecular cations. Chem Sci J 17(2): e112.


98. Alireza Heidari, Christopher Brown (2017) Combinatorial therapeutic approaches to DNA/RNA and Benzylpenicillin (Penicillin G), Fluoxetine Hydrochloride (Prozac and Sarafem), Propofol (Diprivan), Acetylsalicylic Acid (ASA) (Aspirin), Naproxen Sodium (Aleve and Naprosyn) and dextromethamphetamine nanocapsules with surface conjugated DNA/ RNA to targeted nano drugs for enhanced anti-cancer efficacy and targeted cancer therapy using nano drugs delivery systems. Ann Adv Chem 1(2): 061-069.


103. Alireza Heidari (2017) Visualizing metabolic changes in probing human cancer cells and tissues metabolism using vivo H or Proton


