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1Evolutions in Mechanical Engineering

Introduction
Aluminum alloys, lightweight metals, are frequently employed in aerospace and 

automotive industries due to the critical need for weight reduction [1]. FSW is gaining 
increased interest in industrial applications and research as a solid-state welding method 
[2]. The need for supply in many applications of FSW is rising among engineers, producers, 
and the market, prompting researchers and analysts to respond. Experimental research is 
both time-consuming and expensive. Simulation and modeling methods will provide a more 
thorough, cost-effective, and efficient understanding of the process in this scenario, which 
has been recently introduced as a novel solid-state welding method. The process occurs at 
temperatures below the material’s melting point when the rotating tool’s shoulder scrapes on 
the alloy surface of workpieces while submerged in water. The tool pin generates sufficient 
heat through friction to melt the workpiece, facilitating the swirling of the melted material 
and inducing plastic deformation to create a weld connection [3,4].

Review of Literature
Heirani F et al. [5] employed the “slipping and sticking” technique with 1100-H14. They 

analyzed torque oscillations that occur at the same frequency as the tool rotation because 
of the cyclic material transfer in butt welds. Their analysis did not encompass oscillations of 
lower frequencies. Liu W et al. [6] concentrated their research on the issue of keyhole formation 
near the end of the welded workpiece, leading to material wastage. Hewidy AM et al. [7] 
determined that the paper discusses the UWFSW of stir-cast aluminum-based alloy (Al 6061) 
by varying weight percentages of silicon carbide (5%, 10% and 18%). He confirmed this by 
carrying out validation experiments. The current investigation found that the UTS is 984MPa, 
and the microhardness is 89.9HV, which aligns with previous effectiveness investigations. 
Gad Allah N et al. [8] The paper discusses the UWFSW of Al 6063 alloy using three levels for 
process parameters. The current investigation found that Al 6063 pipe can be welded utilizing 
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the UWFSW process by a maximum welding competence of 92.7%. 
Sabry et al. [9]. The research examines the viability of using FSW 
and UFSW to join Al 6061/5, Al 6061/10 and Al 6061/18wt. %SiC 
composites generated using the reinforced stir casting technique. 
Two rotating rates, 1000 and 1800rpm and speed of traverse 10mm 
per minute were analyzed. Composite plates, each 10mm thick, 
were effectively welded using FSW. The study found that the UTS 
of the welded connection using FSW and UFSW at a rotation speed 
of 1800rpm for (Al 6061/18 wt. %SiC composites) was 195MPa 
and 230MPa, respectively. The UTS of the welded joint using FSW 
and UFSW on Al 6061/18 wt.% SiC composites were 165MPa and 
180MPa, respectively. Thekkuden DT et al. [10] The research aims 
to explore the potential of UWFSW for creating high-quality welded 
pipe joints. The research first concentrated on creating a system 
with appropriate components and fixtures connected to the vertical 
milling machine for UWFSW of pipes. UTS is determined through 
experimental analysis of tensile tests. The predictive performance 
of machine learning methods such as ANN, ANFIS, and adaptive 
neuro-fuzzy inference system with Harris optimization (ANFIS-
HHO).

El-Zathry NE et al. [11] this study examines the UTS of Al 
6063-T6 material utilizing UWFSW with Three parameters that 
were altered throughout the creation of test specimens. Utilizing 
ANN-GA and ANFIS-GA. The outcomes of this study hybrid models 
created can be utilized to forecast and optimize particular process 
parameters and effects across various industrial scenarios. 
Nader Zaafarani et al. [12] This study analyzed the differences in 
parameters between FSW and UWFSW on the weld joint, including 
tool rotation speed, transverse speed and wall thickness. The 
UTS of the weld joint was compared through experimental work 
conducted on FSW and UWFSW using a newly modified fixture to 
address post-process issues. The study found that using UWFSW 
results in higher UTS than regular FSW. Abdel-Mottaleb M et al. 
[13]. This study discusses the creation of a fuzzy model to predict 
weld quality, and the main criteria that significantly impact the 
quality of UWFSW are process parameters. Weld quality is assessed 
based on UTS and VH utilizing fuzzy logic and the outcomes are 
contrasted with statistical analysis. Confirmatory experimental 
findings demonstrate that the fuzzy model can forecast output 
more accurately than statistical analysis. Ahmed M El-Kassas et 
al. [14] designed new equipment to implement UFSW on Al 1050 
pipes effectively. A study was conducted to determine and forecast 
the UWFSW process parameters’ impact on the mechanical 
qualities of the welded joint. A hybrid model combining Response 
Surface Methodology and Fuzzy logic was developed and assessed 
to anticipate the desired outcome of the UWFSW process. This 
model demonstrated superior predictive accuracy compared to the 
Artificial Neural Network model.

 Abdel-Hamid Ismail Moura et al. [15] this research examines 
the application of UWFSW and traditional FSW on AL 6063 pipe 
junctions using specially designed equipment. The fixtures are 
created and constructed to support the two pipes securely. Welding 
settings are determined through a series of trials to achieve 
high-quality welding. The immaculate welds demonstrate the 

effectiveness of the underwater friction stir procedure for welding 
pipes. Submerged FSW is an enhanced version of FSW that is 
conducted in a medium like water or brine. Based on prior studies, 
the authors of [16] have thoroughly examined the benefits and 
drawbacks of submerged FSW compared to FSW conducted in the 
air. Aluminum alloy materials are extensively utilized in maritime 
and shipbuilding industries because of their exceptional corrosion-
resistant qualities. Multiple studies have investigated the UWFSW 
of lightweight materials such as aluminum alloy [17], aluminum 
pipe [18] and magnesium alloy [19]. In addition, welding other 
materials like aluminum alloy and magnesium alloy [20], aluminum 
and steel [21], aluminum and stainless steel [22], and composite 
materials have been studied in underwater environments 
previously [23]. Raising the speed of rotational tool and decrease 
the welding speed in UWFSW has a notable positive impact on 
the mechanical qualities of the joints, similar to conventional 
FSW [24]. Majumder S et al. [25] discovered that the sequence 
in which the process factors impact the hardness of underwater 
welded joints was rotating speed, traverse speed, and pin length. 
Microcracks and porosity were detected through dye penetrant 
testing in the UWFSW joints created at minimum speeds but not 
at maximum speeds. Grain refinement is crucial in UWFSW due to 
the rapid cooling rate and reduced peak temperature, resulting in 
enhanced UTS and VH [26,27]. The heat generated causes dynamic 
recrystallization, forming fine equiaxed grains that enhance the 
mechanical characteristics of the welded joints. In traditional FSW, 
voids are present. In UWFSW, also known as submerged FSW, the 
void size and fractional void area decrease, which helps to postpone 
fracture caused by cavities [28].

 Khalaf et al. [29] found that the FSW of aluminum alloy 
produces greater heat than the UFSW in both experimental and 
computational studies. FSW produces greater heat, which leads to 
increased material softening compared to UFSW. Increased cooling 
rate and regulated heat output in underwater settings decreased 
residual stress and strain. The authors studied the FSW of 1 mm 
thick titanium in air and water and analyzed the tensile properties 
of the joints created under various process settings [30]. The yield 
strength and tensile strength of the SFSWed joints are significantly 
greater than those of the FSW joints. The enhanced tensile qualities 
of SFSW result from effective stirring for complete mixing and 
the strengthening impact of the aqueous environment. Warpage 
occurred following welding in both FSW and Self-Reacting FSW 
due to the 1mm thickness of the sheet material. The primary 
constraints of the SFSW process are the increased torque and 
power consumption.

Uses, benefits and restrictions of UFSW

The main uses of the UWFSW method include constructing 
large ships that exceed the capabilities of current harbors, 
ship maintenance and repairs, emergency ship reconstruction, 
retrieving sunken containers and offshore pipeline construction. 
The benefits of the UWFSW method include high-quality and strong 
joints produced quickly, no need for filler metals or shielding gases, 
compatibility with various metals, ease of operation, and flexibility 
in all positions due to simple automation. Additionally, the UFSW 
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method can weld various incompatible materials, create fine-
grained forged joints by eliminating weld inclusions or dilution, and 
make reliable welds using less energy in the joining process. UFSW 
poses challenges in inspecting welded connections compared 
to standard FSW, making it more difficult to ensure high-quality 
joints and increasing the possibility of inadequate fault detection. 
Additionally, it necessitates costly machinery and machine tools 
[31].

Potential future of UFSW

Prior extensive research has been conducted to enhance 
the underwater FSW method’s control techniques and process 
performance. However, numerous conflicts need to be resolved and 
the UWFSW exploration should concentrate on extensively studying 
the characteristics of welded material and process optimization. 
Research on UWFSW should focus on utilizing robot manipulators 
for underwater FSW joints with complicated geometry to enhance 
the automation of joining and inspection processes. Additionally, 
efforts should be made to expand the applicability of UWFSW to 
big and complex structures [32]. This technique should focus on 
thermal management, including closed-loop temperature control 
and thermal boundary condition modification. It should also aim 
to enhance in-process weld quality assurance, expand the use of 
UWFSW to various engineering materials, and improve control 
techniques for continuous welding.

Literature Review Gaps
Based on the literature review, it is evident that minimal 

research has been conducted on underwater FSW. It is a highly 
sophisticated welding method. The optimization approach has 
been underutilized in friction stir welding research, especially in 
UFSW. UFSW remains unexplored.

Synopsis and Viewpoints
UWFSW is an advanced and sophisticated joining technology in 

the current era. The literature study reveals few studies conducted 
on the UWFSW process. UWFSW is recognized as a sophisticated 
welding method, and only a few studies have utilized optimization 
techniques in this sector. UWFSW has not been thoroughly 
investigated yet. By directing future research toward it, we may 
improve and achieve high-quality weld joints under cost-effective, 
environmentally friendly, and safe welding conditions.
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