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1Evolutions in Mechanical Engineering

Introduction
The origin of human use of fire is unknown but evidence specific to the use of fire dates 

back to at least over a million years. Initially what began as a source of protection did eventually 
lead to both fueling the economy and concurrently revolutionizing the landscape of every 
aspect on this planet up until the current day. It is certain that initially there was little scientific 
knowledge and the numerous intricacies specific to heat transfer and thermodynamics. 
However, there definitely did exist some logical understanding of an object being either hot 
or cold. These observations in synergism with a series of experiments eventually motivated 
the people involved to take advantage of these processes over time for the primary purpose 
of increasing human comfort. Similarly, is the case with the other elements of nature resulting 
in the emergence and growth of concepts, such as (i) hydraulics and pneumatics, (ii) fluid 
mechanics, and (iii) fluid dynamics, to name just a few. Throughout this course of evolution, 
man has seen various stages of development. Methods similar to subtractive manufacturing 
were developed and used to shape stones as tools in the era of the stone age. With better 
understanding coupled with an application of improved processing techniques specific 
to metals did result in a spectrum of advanced machining operations that are in use today. 
More observations and better understanding of the material along with material behavior 
did eventually result in alloying, casting, forging and other aspects of materials science and 
metallurgy. Invention of the wheel, lever mechanism, concepts of pulleys, screw, and the gear 
mechanism did result in the design of complex drive-trains and the emergence and acceptance 
of concepts specific to both kinematics and dynamics. 

A continuous sharing of knowledge gained over the centuries did result in integrated 
research along with massive scale of development culminating in establishing both a better 
design and manufacturing. It is obvious that the core knowledge specific to science and 
mathematics has significantly elevated each of these fields of study to levels never imagined 
before. The invention of an analytical engine did transform the eco-system of science and 
engineering by speeding up the progress. A machine that used to perform simple calculations 
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has transformed both itself and the world to a stage where 
arguments of it being sentient is not applicable. This transformation 
did fuel and carry every other field of science and technology, 
which in turn has led to its development and exciting emergence. 
An increased power of computation did introduce new avenues of 
science and engineering that enabled critical evaluation and newer 
ways of thought process coupled with an approach to various 
problems. Techniques, such as finite element methods and fracture 
mechanics, were integrated into engineering design. Concepts 
specific to (i) automation, (ii) inspection, (iii) quality control, and 
(iv) design of experiments, did bring about noticeable changes in 
the manufacturing sector.

Today, both Artificial Intelligence [AI] and Machine Learning [ML] 
are gradually taking over the world. Machine learning can be safely 
categorized to be an inter-disciplinary field of statistics, computer 
science and mathematics that is both concerned and involved in 
building algorithms from the data fed to the machine(computer). 
The machine aids in identifying the dependencies of the various 
parameters of any random process, with the patterns identified 
in the data. Similar to various other inventions the inspiration for 
Machine Learning (ML) was taken from nature coupled with the 
cognition capability of animal brain, which continuously learns 
and improves its decision-making ability based on experience. 
The ability of Machine Learning (ML) to automate a task and make 
surprisingly accurate predictions did result in the following:

A.	 Predictive analytics

B.	 Recommendation systems

C.	 Image recognition and computer vision

D.	 Natural language processing

E.	 Anomaly detection and fraud prevention

F.	 Drug discovery and medical diagnosis

G.	 Personalized learning and education

H.	 Financial forecasting and trading

I.	 Scientific discovery and research in the field of robotics

J.	 Other automation

K.	 Various creative and artistic tasks

This review paper does provide a clean, clear and cohesively 
complete overview of the various possible applications of Machine 
Learning (ML) in mechanical engineering.

Current Research in Mechanical Engineering
From the previous discussion it is clear that mechanical 

engineering is an ever-evolving and constantly adapting field that 
attempts to embrace new challenges and opportunities. Artificial 
Intelligence [AI] can cater to all of the problems currently prevailing 
and even more. All the data that has been collected over the years 
can be valuable in classifying, clustering, predicting and automating 
the numerous processes in various sectors. Many algorithms are 

being continuously developed for the purpose of practical use to 
achieve useful methods of learning. Data mining engineers have 
used Machine Learning (ML) algorithms to find and extract useful 
data from large commercial databases that contain the following: (i) 
process information, (ii) equipment and maintenance information, 
(iii) medical records, (iv) financial records, and few others [1]. The 
current or ongoing research being actively pursued in the domain 
specific to mechanical engineering can be broadly grouped under 
these categories:

Additive manufacturing

Additive Manufacturing (AM), or 3-D printing, has enabled 
a revolution in engineering due to its unique “user friendly 
approach”. Production of customized products on-demand is a 
noteworthy advantage of the Additive Manufacturing process over 
the conventional subtractive manufacturing process. It allows 
for the physical components to be made from virtual Three-
Dimensional (3D) computer models by successfully building the 
component layer-by-layer until the part is complete [2-5]. The 
American Society for Testing and Materials (ASTM) F42 has broadly 
listed the following under the category of AM processes: (i) VAT 
photopolymerization, (ii) material jetting, (iii) binder jetting, (iv) 
powder bed fusion, (v) material extrusion, (vi) sheet lamination, 
(vii) direct energy deposition. and (viii) robotics, can result in 
realizing the industry 5.0. However, a number of challenges arise 
not only from the complexity specific to manufacturing systems 
but the concurrent demand for increasing complexity and high-
quality products, in terms of the following: (i) design principles, 
(ii) standardization and (iii) quality control. Integrating additive 
manufacturing (AM) with artificial intelligence (AI) / machine 
learning (ML) does certainly seem to be the future for the purpose 
of addressing these challenges and well-reviewed in the published 
literature [6-9].

Robotics and automation

Integrating digital technology to manufacturing and 
industrial processes is the current trend. This is made possible 
by implementing Artificial Intelligence (AI) powered robots for 
a spectrum of processing-related tasks. Automation of various 
repetitive tasks coupled with tasks that could prove to be dangerous 
for humans by the introduction of robots could contribute to 
increasing the productivity while concurrently ensuring a safe 
working environment. Applications of Machine Learning (ML) in 
advanced robotics has made possible the following: (i) autonomous 
navigation, (ii) object recognition and manipulation, (iii) natural 
language processing, (iv) predictive maintenance, (v) optimizing 
robotic manufacturing, (vi) military robotics, (vii) service robots, 
and (viii) robotic surgery possible [10]. A visual of AI powered 
robots in the industry is as shown in Figure 1. An Internet-of-Things 
[IoT]-based implementation monitoring energy consumption 
in machines and appliances coupled with prediction of future 
anomalous behavior using decision tree algorithm providing 78% 
efficiency in the prediction was reported by Sujatha and co-workers 
[11,12].
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Figure 1: Applications of Artificial Intelligence (AI) powered robots [11].

Unmanned vehicles: Aerospace industry is always at the 
fore-front of all technologies and innovation. The current research 
focuses on building technologies for faster and safer travel across 
the globe and beyond. The recent endeavor specific to space travel 
did introduce new avenues to reduce the cost while concurrently 
increasing safety of the passengers. Use of sustainable energy, 
sustainable materials and implementing innovative methods of 
damage tolerance design and structural health monitoring is of 
prime focus. Driverless cars and robotic delivery systems are also 
being introduced in certain parts of the world for the purpose of 

short distance commuting. A drone delivery system in action is 
shown in Figure 2. This eases both the effort and requirement for 
man-power that could be put to effective use elsewhere. Sensing 
technologies, such as (i) image sensing, (ii) acoustic sensing, (iii) 
radar, and (iv) lidar, are being increasingly used with an integration 
of the machine learning (ML) algorithms, such as (i) CNN, (ii) auto-
encoders, (iii) DBN, and (iv) reinforcement learning, to achieve 
the following: (i) Navigation. (ii) Object recognition, (iii) Scene 
classification, (iv) Path planning, and (v) Feature extraction [13,14]. 

Figure 2: Artificial Intelligence-based robotic delivery system in action [14].
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Sustainable energy: Depleting fossil fuels in synergism with 
increasing pollution and global warming have provided the much-
needed incentive while concurrently demanding newer, renewable 
and sustainable energy sources. Solar, wind, tidal energy has 
always been abundantly available but harnessing it for everyday 
use often gets increasingly expensive and complicated. Therefore, 
the hunt for newer and novel technologies to both harness and 
extract power are the vital current generation problems specific to 
research. Search for alternate ways to power automobiles is also 
another thriving area of research currently centered around the use 
of hydrogen power. Therefore, search for cleaner and eco-friendly 
technologies did capture the focus of scientists and researchers 
towards sustainable materials. Ahmad and co-workers have 
proposed the use of smart power grids developed using Machine 
Learning (ML) techniques in synergism with smart meters and 
sensors providing real-time energy consumption. Further, the 
smart grid mitigates issues specific to failure of the grid, thereby 
enabling users to avoid service interruptions. Also, energy forecast 
made using neural network-based models can be used to conserve 
both energy and resources in the event or need for renewable 
energy generation [15].

Structural health monitoring

Structural Health Monitoring (SHM) is a process of extensively 
and continuously assessing the health and integrity of structural 
components. The sole purpose of Structural Health Monitoring 
(SHM) is to detect and diagnose any damage, or deterioration, in 
the structure before it reaches a critical stage that often culminates 
in failure. Major focus of structural health monitoring (SHM) 
includes the following: (i) aero-space, (ii) naval, (iii) nuclear, and 
(iv) predictive maintenance. Adopting SHM techniques has proven 
to be beneficial as it led to the following: (i) optimized design, (ii) 
reduced maintenance cost, (iii) extended service life, and even (iv) 
improved safety. Machine Learning (ML) integrated inspection for 
the purpose of SHM in pipelines does have the capability to pin-
point the location of defect, while earlier an inspection gauge had 
to be manually moved through the entire length of the pipeline 
to identify and/or locate a defect [16]. Machine Learning (ML) 
algorithms are being used at every stage of Structural Health 
Monitoring (SHM), i.e., damage detection, damage assessment and 
damage prediction [16-19]. The Machine Learning (ML) models are 
being increasingly used for the purpose of predictive maintenance 
in the manufacturing industry by monitoring the vibration in 
machine drives and shafts. 

Popular algorithms

Machine learning is rapidly transforming the field of 
mechanical engineering, providing powerful tools for design, 
analysis, and optimization across a wide range of applications. 
Its ability to analyze large datasets, identify patterns, and make 
useful predictions is proving to be invaluable for the following: 
(i) optimizing processes, (ii) enhancing product performance and 
(iii) solving complex engineering problems. Machine Learning 
(ML) algorithms in general can be categorized into two separate 
classifications:

a)	 Based on type of prediction the algorithm is supposedly 
going to make, and 

b)	 Based on the type of data fed to the algorithm for training.

Both these classifications are shown in Figure 3. In the first type 
of classification, the ML algorithms are used for either classification 
or regression tasks. When the algorithm predicts the outcome as 
one of the predetermined classes based on the patterns identified 
in the data then it is referred to as classification algorithm. In the 
case of regression algorithms, the patterns identified are used to 
predict a continuous value. Similarly, the other classification for 
Machine Learning (ML) algorithms are the supervised learning 
algorithms and unsupervised learning algorithms. The supervised 
learning algorithms are fed with training data wherein both 
the input and the output are available. However, for the case of 
unsupervised learning, the input data fed to the algorithm for the 
purpose of training are only the input parameters. In this case, 
clusters are formed based on the identified patterns in the data 
to make further prediction. Each of the algorithms in Machine 
Learning [ML] identify and form a unique representation from the 
patterns identified in the data. These representations are adopted 
from the various concepts of mathematics and statistics, such as 
(i) linear algebra, (ii) probability and information theory, and (iii) 
other basic numerical computations. The algorithms based on (i) 
Bayesian learning, (ii) Decision trees, (iii) Instance-based learning, 
(iv) Genetic algorithms, (v) Reinforcement learning, and (vi) Deep 
learning (DL) are often used. Various restrictions and drawbacks of 
regular machine learning algorithms are overcome by using deep 
learning (DL) algorithms. Artificial neural networks (ANN) are 
the core of Deep Learning. Neural networks, such as (i) the back 
propagation neural networks, (ii) radial basis function network, (iii) 
extreme learning machine, and (iv) convolutional neural networks 
are currently being chosen for use in various applications in the 
domain of the field of mechanical engineering. Combinations of 
multiple algorithms are being used for research to achieve certain 
representations that would be difficult for any of the standard 
algorithms to achieve [2-5].

Figure 3: Categories specific to classification of 
machine learning.

Conclusion
A.	 This technical manuscript provides a cohesively complete 
summary of Machine Learning (ML) technologies that are 
currently on demand and their integration with various core 
problems in the field of ever-evolving mechanical engineering.

B.	 The discussions provided also highlight the capability and 
potential of Machine Learning (ML) in solving these problems.

C.	 It is certain that an implementation of Machine Learning 
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(ML) can improve the current technologies by several order 
while concurrently reducing the risk and burden of several 
professions, and thereby creating a safe working environment.

D.	 The techniques of Machine Learning (ML) also ensure an 
efficient use of energy, resources and available capital thereby 
improving the stability of both the process and the organization.

E.	 Overall, it is evident that the ongoing era of Machine 
Learning (ML) integrated technologies in emerging frontiers of 
mechanical engineering is promising a simpler, easier, efficient 
and well-connected “intelligence-on-move” environment for 
humanity.
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