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Introduction
In most modern works, a material deformed under load is considered as a hierarchically 

organized system of elements of different scales. This system evolves during loading and adapts 
to the applied impacts, and the elements of its internal structure the microstructure are capable 
of self-organization. Given the impossibility of considering in detail the interactions of material 
particles of different phases in a representative volume, it is advisable to construct equations 
of connection between macro and microstates that satisfy the laws of thermodynamics and 
the condition of the uniqueness of the solution of the problem of representing real material 
in the model [1,2]. The advantage of phenomenological models built on fundamental 
principles is their generality, regardless of some details about the evolution of the structure, 
deformation mechanisms, etc. To describe the behavior of multiphase polycrystals in the 
reversible region of deformation, two-level models are used [1]. It is assumed that stresses ijt  
and strains ijd  at a given point of a representative volume depend only on the orientation of 
the crystallographic axes of the grain and do not depend on the position of a given point inside 
it. This means that the deformations within the grain are considered homogeneous, which 
excludes the bending and curvature of grains from being considered. In addition, regardless of 
the position of a given grain, the stress and strain in a subset of grains with a given orientation 
of the crystallographic axes are also assumed to be the same. With this formalization of a 
continuous medium, the real environment of the crystallite is replaced by a homogeneous 
medium with effective properties, and the shape of the crystallite is assumed to be ellipsoidal. 
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If an external uniform field is applied to such a medium with an 
inclusion, i.e., a field that in the absence of the inclusion would be 
uniform throughout the entire region of the representative volume, 
then inside the inclusion, as shown in [3], the field will also be 
uniform. As part of this formalization of the environment, Kroner 
the following relationship was established between local ijt , ijd  and 
macroscopic ijt , ijd  stresses and strains.

3 5 7 5( ),
4 5 4 5ij ij ijnm nm nm ijnm ij nm ijnmt t B d d B G G Iν νδ δ

ν ν
− −

− = − = +
− −



Where G is the macroscopic shear modulus ν and is Poisson’s 
ratio.

Krener’s approach was further developed in [4-6]. The 
disadvantages of models based on linear relationships between 
stress and strain fluctuations include inconsistency with the first 
law of thermodynamics. The work [7] shows that ij ij ij ijt d t d≠  
for any variants of the tensor values ijnmB , with the exception 
of the limiting values: 0ijnmB = (uniform stress state), ijnmB = ∞
(uniform deformed state). Note that within the framework of linear 
relationships, only deviatoric quantities change within each phase; 
volumetric stresses and strains change only during the transition 
from one phase to another.

In [7-9], an approach was developed in which the relationship 
between stresses and strains is established without limiting the 
shape of the structural elements. The developed model is based 
both on the classical principles of mechanics and thermodynamics, 
and on three additional principles: averaged connections [7], 
orthogonality of fluctuations of stress and strain tensors [8], 
extremum of discrepancy between macroscopic measures and 
suitable average values of microscopic analogues [9]. Based on 
them, it is possible to describe a wide range of thermorheological 
effects not covered by other models. In particular, the dependence 
of volumetric stresses/strains of sub elements on the orientation 
of the crystal lattice, a decrease in the plasticity of the material 
with decreasing temperature, grain size, increasing strain rate, 
the effect of cyclic loading of maximum normal stresses, in sub 
elements, under monotonic macroscopic influence, etc. Within the 
framework of a model based on nonlinear equations connecting 
local and macroscopic parameters, the behavior of only single-
phase polycrystalline materials was studied. In this work, we 
will consider the pattern of changes in extreme values of stress 
invariants, strains, and energies of shape/volume change in a 
system of sub elements of a multiphase material.

Principles of transition from micro stresses and strains 
to macro stresses and strains

To describe reversible deformation processes, we consider 
a two-level constitutive model. It is assumed that the elementary 
volume of the material consists of an infinite number of 
interconnected sub elements having different thermorheological 
properties. Stresses and strains satisfy the principles of R Hill [10]

00

1 , ,ij ij ij ij ij ij ij pq pq
V

t t t dV d d t d t d
V ∆

= = = =
∆ ∫    

          (1)

where ijt , ijd  stress and strain tensors at each point of the region, 
0V∆  respectively, ijt , ijd macroscopic stress and strain tensors, .

volume averaging sign 0V∆ . Each sub element is identified with a 

set of material particles inside a representative volume that have 
the same characteristics. Particles of the same sub element can have 
different positions in the space of the conglomerate. The number 
of particles in each sub element determines their weight and does 
not change during deformation. It is assumed that the interaction 
between particles of a given sub element with particles of other sub 
elements leads to a state similar in nature to the interaction of a 
sub element with a homogeneous matrix of material with effective 
characteristics. Because of this, a principle has been formulated: 
the interaction between sub elements in a representative volume is 
formed under the influence of only averaged connections.

The problem of the equality of the sum of the deformation 
energies of sub elements and the macroscopic deformation energy 
is solved based on the principle of orthogonality of vibrations of the 
stress and deformation tensors.

( )( ) 0ij ij ij ijt t d d− − =          (2)

the stress and strain tensors into spherical and deviatoric 
components in (2)

0 0 0 0, , ,ij ij ij ij ij ij ij ij ij ij ij ijt d t dσ σ δ ε ε δ σ σ δ ε ε δ= + = + = + = +   

we obtain the following scalar equation for the connection 
between macro and microstates

( )( ) ( )( )0 0 0 03ij ij ij ijσ σ ε ε σ σ ε ε− − = − −               (3)

For fluctuations of stress and strain deviators, we accept the 
simplest expression

( )ij ij ij ijBσ σ ε ε− = −             (4)

Where B is an internal parameter reflecting the inhomogeneity 
of the distribution of stresses and strains in a representative 
volume.

In accordance with [8,9], microscopic variables that have a 
certain physical meaning are divided into two categories: variable 
averaged values of which depend only on the data on the surface of 
the representative volume and variable averaged values of which 
depend not only on the data on the surface of the representative 
volume but also on the structural features of the material. It is 
shown natural macroscopic measures of the energy of change in 
volume and shape do not coincide with the corresponding averaged 
micro measures. It is natural to assume that variables containing 
information about the characteristics of the microstructure of a 
material have certain fundamental properties. In [9], the principle 
of extremum discrepancy between macroscopic measures and 
suitable average values of microscopic analogues is proposed. In 
particular

0 0 0 0, 'ij ij ij ij Extr Extrσ ε σ ε σ ε σ ε∆ = − = ∆ = − =                 (5)

Expressions (1), (3), (5) represent a closed system of equations 
for the relationship between macro and microstates. They do not 
contain references to the properties of the material; therefore, 
they are valid both for describing reversible and irreversible 
deformation processes. On their basis, it is possible to construct 
constitutive equations at the macroscopic level if the constitutive 
equations at the microscopic level are known. Note that in multi-



3

Evolutions Mech Eng       Copyright © Vasile Yu Marina

EME.000608. 5(2).2024

element models, averaging is performed not over volume, but 
over a set of realizations, i.e. the use of the ergodic hypothesis is 
considered legitimate. In the elastic region, the values ijt , ijd are 
determined by averaging over the orientation factor of the crystal 
lattice.

Definition elasticity constants and heterogeneity of a 
polycrystal with a cubic lattice

Let us represent the relationship between stresses and strains 
in crystals with cubic symmetry in the form.

( )
3

0 0
1

12 1 . . , 3 , cos ' ,ij ij qi qj qq ij i j
q

C r r K r x x
A

σ ε ε σ ε
=

  = + − = =  
  

∑                (6)

where C=C44 is the crystal shear constant (relates shear stress to 
shear strains), A is the anisotropy factor 44 11 12( 2 / ))A C C C= − , K is the 
volumetric modulus of elasticity of the crystal, x’i crystallographic 
coordinate system, xi is the global coordinate system. Note that the 
use of constants that have a clear physical meaning simplifies the 
writing of the equations used. We denote the elasticity constants 
of crystals, stress and strain in phase with weight ck through 

4 , ,4 , : , ;k ijk k k k ij kC C A K σ ε=  . Considering these notations in (6), (5), 
after simple transformations we obtain the following relations 
between local and macroscopic deformations.

 1
,

1

2 ,
2 /

' , ( , , )
2 ,
2

q

in jn n
n

ij k i
k k

k

n ijq

in jn n
n

B G r r i j
B

r r
B G r r

C A

C
i j

B

ε
ε ϕ θ ψ

ε

=

=

 +
= += =

+ ≠ +

∑

∑

 

  

 

          (7)

where , ,ϕ θ ψ are the Euler angles (they specify the orientation 
of the orthogonal axes of crystallites relative to the main 
macroscopic coordinate system).

Writing (7) in the global coordinate system and integrating 
over the crystal lattice orientation factor, we obtain.

1

25 3
2 2 2

k

k kk k

n

kC C
A c

G B B A B=

 
= + + + + 
∑             (8)

When deriving (8), we considered the formulas.

1 ( ),
15in jn kn ln ij kl ik jl il jkr r r r δ δ δ δ δ δ

Ω
= + +

2 1
15 15im jm kn ln ij kl ijklr r r r Iδ δ

Ω
= −               (9)

Note that in these formulas summation over n and m is not 
performed.

Considering (7) in (5) and integrating the resulting expression 
considering (9) we find

( ) 2 2

1

2 22 3 5 ,
10 2 2

k

k k

n

nm nm k nm nm
k k

B G AB B G c Extr const
G A B BC C

σ ε σ ε
=

 +   + − + − = =   + +    
∑      (10)

System of equations (7), (10) in the case of single-phase 
polycrystalline materials has a simple analytical solution [9].

3 2 5 2 3, , , 2
5 2 3 (3 2)M V R V R M
A AG G G G C G C B B C

A A A A
+ +

= = = = =
+ +

        (11)

Here GV the shear modulus obtained in [11] within the 
framework of approximation ij ijd d= ; shear modulus obtained 
in [12] within the framework of the approximation ij ijt t= . It is 
important to note that for a single-phase polycrystal with a cubic 
lattice, the discrepancy between the measures nm nmσ ε , nm nmσ ε

, in the reversible region of deformation depends only on the 
anisotropy factor [9].

( ) ( )

2

16
5 2 3 3 2

nm nm nm nm

nm nm

A
A A A

σ ε σ ε
σ ε

 − − =
 + + + 

  

 

For multiphase polycrystals, only a numerical solution is 
possible. Let us consider the patterns of changes in the macroscopic 
shear modulus G and the inhomogeneity parameter B using the 
example of three two-phase materials: Al-Cr, Al-Ni, Al-Cu. Crystals of 
the materials under study have the following elastic characteristics 
[13]: Al(A1=1.215, C1=2.85.h, K1=3.69.h), Cr(A2=0.71, C2=10.1.h, 
K1=16.13.h), Ni(A2=2.54, C2=12.5.h, K2=18.h), Cu(A2=3.21, 
C2=7.54.h, K2=13.7.h), h=104 MPa. The volumetric content of the 
harder phase c2 is denoted by c2=c, In the phase Al-c1=1-c. The 
results of numerical studies for the shear modulus are presented in 
Figure 1. The curve marked in red corresponds to the alloy -Al-Fe, 
lilac -Al-W, brown -Al-Cu. According to Figure 1 macroscopic shear 
modulus G=G(c) increases monotonically with c growth. Numerical 
results for parameter B are presented in Figure 2. Unlike the shear 
modulus G=G(c) expressions B=B(c) have a more complex form. For 
all materials under study, the function B=B(c) is non-monotonic 
with respect to c. The following pattern is observed: at small values 
c of the B parameter increases to a certain maximum value, and 
then both a continuous drop and a new growth are possible.

Figure 1: Dependence of the macroscopic shear modulus G on the volumetric content of the solid phase c.
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Figure 2: Dependence of the heterogeneity parameter B on the volumetric content of the solid phase c.

It is of interest to compare the numerical solution of system (7), 
(10) with the result of calculation using formula (11) generalized to 
the case of two-phase polycrystals.

( ) ( )
( ) ( )

1 2 2 2 1 11 2

1 2 1 2 2 1

2 3 2 3 (1 )
( ) ( ) ( )

3 2 3 2 (1 )M V R

AC A c A C A cC CG c G c G c
A A C A c C A c

+ + + −
= =

+ + + −
         (12)

Where GV(c), GV(c) shear modulus found from (10) for 
two limiting cases: a homogeneous stress state (B=0) and a 
homogeneous deformed state B = ∞ . The calculation results 
for various alloy options showed that the relative deviation

3( ) / 1.5.10MG G G −∆ = − < . Consequently, as a first approximation, 
we can assume that the shear modulus MG G≈ is equal to the 
geometric mean value of the moduli obtained in two limiting cases 
(B=0, B = ∞ ). Based on the approximation MG G≈ and formula (10), 
it is possible to obtain an analytical solution for the parameter. 
After a series of transformations, we establish the following cubic 
equation.

3 2
1 2 3 4( ) ( ) ( ) ( ) 0d c B d c B d c B d c+ + + =          (13)

where coefficients 1( )d c , 2 ( )d c , 3 ( )d c , 4 ( )d c are determined 
based on the expressions.

1 1 2 1 2 2 1 1 2 2 1 2 1 1 2( ) 10 ( ) 5 ( 5 5 ) ,d c G c A A S A A D A S A S A D A D c= + − + − + −

1 2 1 1 2 1 2 2 1 1 2 2 1
2 2 2

2 1 1 2 2 1 1 2 1 2 2 1 1 2

( ) 2 ( )(( 5 5 ) 5 )
( 20 20 ) 5(4 ),
d c G c S A S A D A D A c S A D A
S D S D A C AC c S D A C D D

= − + − + + +

− + − + − +

2 2 2
3 2 1 1 2 1 2 2 1 1 2 2 1

2 2 2 2 2
2 1 1 2 1 2 2 1 1 2

( ) 2 ( )(( 20 20 ) 20 )
4( ) 4 20( ),
d c G c S D S D C A C A c S D C A

S C S C c C C C D C D
= − + − + + +

− + − +

2 2 2 2 2
4 1 2 1 2 1 2 2 1( ) 8 ( )(( ) ) 80 ,d c G c C C C C c C C C C= − + −        (14)

1 1 1 2 2 2 1 1 1 2 2 22(3 2 ) , 2(3 2 ) , 2(1 ) , 2(1 )S A C S A C D A C D A C= + = + = + = +        (15)

Analysis (13), (15) considering the conditions: Ck>0, Ak>0 
showed that the established cubic equation for parameter B has 
three real roots: one positive, which is accepted as a solution to 
the problem, and two-negative. Assuming in (14), G(c)=GM(c) we 
obtain a good analytical method for determining the parameter 
B=B(c). The calculation results for three alloys are presented in 
Figure 2 (solid lines). By comparing the numerical solution, marked 
with dots, with the approximate one solid line, we will establish a 

good coincidence. Deviations of about 4% are observed only in the 
region of the maximum value of parameter B.

Study of the pattern of changes in the invariants of 
deviators of stress and strain tensors in multiphase 
materials

Based on expression (6), the relationship between the 
components of local and macroscopic deformation deviators is 
established. Let us pass in (6) from the components of strain 
deviators to the components of stress deviators we obtain the 
relations.

 
1

,

1

2 ,
2

2 ,
2

q
k

in jn n
nk k

ij k q
k

in jn n
nk

CG B r r i j
C A B G

CG B r r i j
C B G

σ
σ

σ

=

=

 +
= += 

+ ≠ +

∑

∑

 



 
          (16)

Note that in (16) both individual characteristics of phases 
(Ck, Ak) and global characteristics appear, which depend both on 
the elastic characteristics of the phases and on their volumetric 
content. According to [14] along with the main macroscopic 
coordinate system ( )m

ix in which the non-diagonal components of 
the deviator are equal to zero (main coordinate system), there is 
also a system ( )n

ix in which the diagonal components are canceled 
(auxiliary system). The position of the auxiliary coordinate system 

( )n
ix relative to the main system ( )m

ix depends on the parameter 
characterizing the type of stress tensor deviator.

1 3 1 2 3/ , , 0.5 0d dσ σ σ σ σ= ≥ ≥ − ≤ ≤            (17)

The indices for the eigenvalues 1σ  , 2σ  , 3σ in (16) are assigned 
based on the condition that inequality (17) is satisfied. The 
orientation of the auxiliary coordinate system ( )n

ix  relative to the 
main system ( )m

ix is determined by the following values of the Euler 
angles.

1, , ( ) ( ), ( ) 0.17
2 4 2 4 4

dd arccos d
d

π π π πϕ θ ψ ψ+
= = = ≤ ≤ +

+
           (18)

The relationship between the deviator components in the 
auxiliary coordinate system and the main values is determined by 
equalities.
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( ) ( ) ( ) ( ) ( ) ( )
12 21 32 23 13 31 1 2, / 2n n n n n nσ σ σ σ σ σ σ σ σ= = − = = = = 

Extreme values of stress/strain deviator invariants are 
established based on two theorems formulated in [14].

Theorem 1: The maximum values of stress deviator invariants 
(Ak>1) arise in grains whose crystallographic axes are coaxial with 
the macrosystem with zero diagonal components and the minimum 
values occur in grains whose crystallographic axes are coaxial with 
the main coordinate system. If the opposite picture is observed.

Theorem 2: The types of deviators of stress/strain tensors 
in crystals with extreme values of invariants in each phase of a 
polycrystalline material coincide with the macroscopic type of 
deviator, i.e.

3 3 3 3
, ,

, , , ,

det det det det
,ij k ij ij k ij

ij k ij k ij ij ij k ij k ij ij

σ σ ε ε

σ σ σ σ ε ε ε ε
= =



  

According to the formulated theorems, the invariants of Ak>1 
stress/strain deviators vary within

, ,
3

det
( , ) , ( , )

det
ijij k ij k

ij ij ij

M c k N c k
σσ σ

σ σ
σ σ σ

≤ ≤
 

    (19)
2 ( ) ( ) 2 ( ) ( )( , ) , ( , )
2 ( ) ( ) 2 ( ) ( )

k k

k k k

C CG c B c G c B cM c k N c k
C B c A G c C B c G c

σ σ+ +
= =

+ +
       

(20), ,
3

det
( , ) , ( , )

det
ijij k ij k

ij ij ij

N c k M c k
εε ε

ε ε
ε ε ε

≤ ≤
 

       (21)
(2 ( ) ( )) 2 ( ) ( )( , ) , ( , )

2 ( ) 2 ( )
k

k k k

G c B c A G c B cM c k N c k
C B c A C B c

ε ε+ +
= =

+ +
     (22)

If Ak>1 then in (19),(21) the parameters M(c,k) and N(c,k) are 
swapped. Note that in (20) and (22) c refers to the volume fraction 
of the hardest phase; the volume fractions of the remaining phases 
are specified considering the expression 1kc =∑ .

From (19), (22) it follows that the parameter B(c) has a more 
significant influence on the limits of change in the invariants of 
stress/strain deviators than the shear modulus. Due to this, the 
dependences for the invariants of stress and strain deviators are 
also nonmonotonic functions of B(c). In Figure 3 shows diagrams, 

( , )M c kσ  , ( , )N c kσ  for the Al-Ni alloy in the Al (diagrams 3, 4) and 
Ni (diagrams 1, 2) phases. The shaded areas between the diagrams

( , )M c kσ , ( , )N c kσ determine the limits of relative changes in the 
invariants of stress deviators in the phases of the polycrystal.

( , , ) ( , , ) /ij ij ij ijσ ϕ θ ψ σ ϕ θ ψ σ σ    ,

3 det ( , , ) / detij ijσ ϕ θ ψ σ

From those presented in Figure 3 diagrams show that the 
highest values of stress deviator invariants in the Al phase are 
observed at c=0.01, 1.046Nσ = , 0.904Mσ = and in the Ni 
phase c=0.03, 2.544Nσ = , 1.518Mσ = . The limits of changes in 
stress invariants in the Ni phase are significantly greater than in 
the Al phase. The patterns of changes in the limiting values of the 
invariants of strain deviators in Al-Ni alloy grains depending on the 
volumetric content of the Ni phase are shown in Figure 4. From a 
comparison of the results obtained for stress deviators (Figure 3) 
and deformation (Figure 4), we find a qualitative difference. The 
limits of change in stress deviator invariants in the harder phase are 
greater than in the soft phase [15]. For deformation invariants, the 
opposite picture is observed. The patterns of changes in volumetric 
stresses and strains are established based on the postulate about 
the orthogonality of fluctuations of stresses and strains (4). If the 
postulate about the orthogonality of stress and strain fluctuations 
is extended to each phase, then (4), considering (5), can be 
represented in the form:

0, 0 0, 0 , ,( )( ) ( ' ' )( ' ' )k
k k k ij k ij ij k ij

KKK K
B

σ σ σ σ σ σ σ σ− − = − −             (23)

For the quantity, considering (16) we obtain the following 
expression (q=1,2,3)

Figure 3: Patterns of changes in the limiting values of stress deviator invariants in Al-Ni alloy grains depending on 
the volumetric content of the Ni phase.
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Figure 4: Regularities of changes in the limiting values of the invariants of deformation deviators in grains of the Al-
Ni alloy depending on the volumetric content of the Ni phase.

2
, ,

2 2 2 2 2 2 2
1 2 3

2 2 2
1 2 1 3 2 3

( , , , , ) ( ' ' )( ' ' ) [ ( , ) 1]

[( ) ( ) ( ) ] 2[ ( , ) 1]

( ) ( ) ( ) , ( , , )

ij k ij ij k ij

q q q q q q

q q q q q q q q q iq iq

f k M c k

r r r N c k

r r r r r r r r

σ ϕ θ ψ σ σ σ σ σ

σ σ σ σ

σ σ σ ϕ θ ψ

∆ = − − = −

+ + + −

 + + = 

∑ ∑ ∑
∑ ∑ ∑

          (24)

From (23), considering notation (24), we establish formulas for 
volumetric stresses in crystals of arbitrary orientation.

2
0 0 0

( , , , , , )( ) ( )( , , , , ) ( )
2 ( ) 2 ( ) ( )

k qk k K c kK K c K K cf k
K c K c B c

σ ϕ θ ψ σ
σ ϕ θ ψ σ σ

∆+ −
= ± +


        (25)

Both roots of equations (25) have a physical meaning. Formula 
(25) contains an unknown function for the macroscopic volumetric 
modulus of elasticity K(c). The modulus K can be determined using 
the principle of inconsistency of measures for spherical quantities.

22
0 0 0 0 0 0, / /k k

k
Extr K K Extrσ ε σ ε σ σ− = − =∑                 (26)

From (25) there follow two equal values of the volume 2
0kσ  

stresses k, which determine the energy of volume change in the 
crystals. Because of this, in (26) 2

0kσ we will take the average value 
of the energy of volume change. By squaring (25) for each root and 
adding the resulting expressions, after simple transformations we 
obtain. 2 2

2 2
0 02

( , )
2 ( )
k k

k
k

K K K c k
K B c

σσ σ+ ∆
= +

         (27)

2 2
2 ( ) ( ) 2 ( ) ( )( , ) 2 1 3 1
2 ( ) ( ) 2 ( ) ( ) 5

ij ijk k

k k k

C CG c B c G c B cc k
C B c A G c C B c G c

σ σ
σ σ

Ω

    + + ∆ = ∆ = − + −    + +     When integrating by the factor of orientation of crystallographic 
coordinate systems, formulas (9) were used. Considering (25) in 
(26) we establish the following expression for determining the bulk 
elastic modulus (the term ( , )c kσ∆ does not depend on K).

2 2

0 02 1 0
2
k

k
k k

K K c
K KK

σ ε
 +∂

= − = ∂  
∑           (28)

From (28) under the condition 0 0 constσ ε = we find
. / ( / )k k k k

k k
K K K K c c Kσ ε= = ∑ ∑               (29)

Note that the value ( )k k
k

K K cε =∑ is the volumetric modulus 
of elasticity obtained within the framework of the assumption of 
uniformity of strain 0 0kε ε= , and the value1/ ( / )k k

k
K c Kσ =∑ is the 

volumetric modulus of elasticity obtained within the framework of 
the assumption of homogeneity of stresses 0 0kσ σ= . Consequently, 
the bulk modulus of elasticity of a multiphase polycrystal obtained 
from the condition of the extremum of the mismatch of measures 
is equal to the geometric mean value of the moduli obtained in two 
limiting cases: uniform stressed and uniform deformed states (

.K K Kσ ε= ).

By virtue of Theorem 1, the stress and strain invariants receive 
extreme values in the coordinate systems ( ) ( 0),m

ix ϕ θ ψ= = =  
( ) ( / 4, / 2, )n
ix ϕ π θ π ψ α= = = and therefore ( , , , , , )q c kσ ϕ θ ψ σ∆ 

varies within.
2 2( ( , ) 1) ( , , , , , ) ( ( , ) 1)ij ij q ij ijM c k c k N c kσ σ σ σ ϕ θ ψ σ σ σ σ− ≤ ∆ ≤ −

In Figure 5 shows diagrams of changes in the limiting values of 
volumetric stresses in the Ni phase in the Al-Ni alloy, depending on 
the volume content, c calculated based on formula (25). Curves 1 and 
2 correspond to a positive root, and curves 3 and 4 to a negative root. 
Diagrams 1 and 3 0 0( )nσ σ→ refer to Ni crystals the orientation 
of the crystallographic axes relative to the main macroscopic 
coordinate system is determined by the following values of the 
Euler angles / 4ϕ π= , / 2θ π= , ψ α= and diagrams 3, 4-

0ϕ θ ψ= = =  0 0( )mσ σ→ under uniaxial tension (t11=20MPa). 
The region of changes in volumetric stresses depending on the 
orientations of crystallographic coordinate systems is shaded 
in brown. Curve 5 in Figure 5 determines the dependence of the 
width of the zone of changes in volumetric stresses depending 
on the volumetric content c. From those presented in Figure 5 
diagrams show the non-monotonic nature of changes in volumetric 
stresses from c. At the volumetric content of nickel in the solid 
phase, c=c*=0.01 maximum volumetric stress occurs 0 111.8tσ = and 
minimal 0 110.7tσ = − . Diagrams of changes in the limiting values of 
volumetric stresses in the Al phase are presented in Figure 6. The 
numbering diagrams presented in Figure 6 are like the numbering 
of diagrams in Figure 5.
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Figure 5: Diagrams of changes in the limiting values of volumetric stresses in the Ni phase of the Al-Ni alloy 
depending on the volumetric Ni content.

Figure 6: Diagrams of changes in the limiting values of volumetric stresses in the Al phase of the Al-Ni alloy 
depending on the volumetric Ni content.

Regularity of changes in deformation energy in crystals 
of multiphase materials

Let us consider expressions for the energy of change in shape
fU and volume 0U in crystals of a given phase of a polycrystal and a 

body element fU ,
0U .

0 0
, , , 0, 0, 0, 0 0

31 3, , , ,
2 2 2 2

ij ij
f k ij k ij k k k k f fU U U U U U U

σ ε σ εσ ε σ ε= = = = = +   

Considering the expression for the energy of shape change in 
(7) and (16) and considering notations (20), (22) we obtain

  ( )( ) ( )( ) ( )( )2 2 2 2 2 2
, 1 1 2 2 3 3

1 2 1 2 1 3 1 3 2 3 2 3

1( ) ( , ) ( , )
2

( , ) ( , ) ( )( ) ( )( ) ( )( )

f k q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q

U c M c k M c k r r r r r r

N c k N c k r r r r r r r r r r r r

σ ε σ ε σ ε σ ε

σ ε ε ε ε ε ε ε

 = + + + 

 + + 

∑ ∑ ∑ ∑ ∑ ∑
∑ ∑ ∑ ∑ ∑ ∑



  (30)

Based on equalities

2
3 1 2 1 3 1 2 1 1 1 1. , (1 ) , . , (1 ) , / 2 , / 2(1d d d d G d dσ σ σ σ ε ε σ ε ε σ σ σ= = − + = = − + = = + +

relation (30) can be represented as ( , ) ( , )M c k M c kσ ε

[ ],
2

( ) 1 ( , ) ( , ) ( , , , ) ( , ) ( , ) ( , , , )
2(1 )

f k

f

U c
M c k M c k Rm d N c k N c k Rn d

U d d
σ ε ϕ θ ψ σ ε ϕ θ ψ= +

+ +



  (31)

Where,
2

11 21 12 22 13 23
2 2

11 31 12 32 13 33 21 31 22 32 23 33

( , , , ) ( (1 ) )
( (1 ) ) ( (1 ) )
Rn d r r d r r dr r
r r d r r dr r r r d r r dr r
ϕ θ ψ = − + + +

− + + + − + +
      (32)

2 2 2 2 2 2 2 2 2
11 12 13 21 22 23 31 32 33( , , , ) ( (1 ) ) ( (1 ) ) ( (1 ) )Rm d r d r dr r d r dr r d r drϕ θ ψ = − + + + − + + + − + +     (33)

To shorten the entries, the variables , ,ϕ θ ψ at rij in (26) are 
not indicated. According to (25) and (26), the relative energy 
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of shape change in a given grain depends on two factors: the 
orientation of the crystallographic coordinate system relative to 
the main macroscopic system and the type of stress tensor deviator

3 1/d σ σ= (the numbering of the axes is chosen in accordance with 
inequality (17)). According to the theorems formulated, limiting 
invariant quantities arise in grains of orientation of crystallographic 
systems of which (relative to the main macroscopic coordinate 
system) are determined by the following Euler angles: 0ϕ θ ψ= = =
, / 4ϕ π= , / 2θ π= ,ψ α= . Let us denote the energies of change 
in shape and volume in the coordinate system

( ) ( 0)m
ix ϕ θ ψ= = =

by, 0( , ), ( , )fm mU c k U c k  and in the system ( ) ( / 4, / 2, )n
ix ϕ π θ π ψ α= = =

through, 0( , ), ( , )fn nU c k U c k  . Then from (25), (32) and (33) we obtain 
the following formulas for extreme values of the energy of change 
in shape and volume.

2

22 2

0 0

( , ) 2 ( ) ( ) ,
2 ( ) ( )

( ) ( )2 ( )( , )
2 ( ) ( ) 2 ( )

fm k k

f k k

k k k
m f

k k k

U c k A CG c B c
U C B c A G c

K c K C G c AB cU c k U U
K K c G c C B c A

 +
=  + 

 + −
= +  + 





           (34)

2

22 2

0 0

( , ) 2 ( ) ( ) ,
2 ( ) ( )

( ) 2 ( ) 2( )( , )
2 ( ) ( ) 2 ( )

fn k

f k

k k
n f

k k

U c k CG c B c
U C B c G c

K c K G c CG cU c k U U
K K c B c C B c

 +
=  + 

 + −
= +  + 





            (35)

From (34) and (35) it follows that the type of deviators of 
the stress/strain tensors does not affect the extreme values of 
the shape change energy. The patterns of changes in the limiting 
values of the energy of shape change in crystals of the Al-Ni alloy 
(at Uf=1) are presented in Figure 7. Curves 1 and 2 establish the 
limits of variation in the energy of shape change in crystals of the Ni 
phase, and curves 3, 4 in the Al phase [16]. From those presented in 
Figure 7 diagrams show that the energy of shape change in crystals, 
depending on the volumetric Ni content, changes according to very 
complex laws. The largest value ( , )fnU c k occurs in the Ni phase 
at c=0.04 (max( ( , ) 1.44 )fn fU c k U= and the smallest in the Al phase 
at 1c → . The width of the zone of change in the energy of shape 
change in crystals of the Al phase is greater than in crystals of the 
Ni phase.

Figure 7: Diagrams of changes in the energy of shape change in crystals of the Al-Ni alloy.

Diagrams of changes in the energy of volume change in crystals 
of the Al-Ni alloy are presented in Figure 8. Numerical studies show 
a significantly more complex nature of changes in the components of 
strain energy in sub elements compared to variations in stress and 
strain invariants. Curves 1 and 2 establish the limits of variation in 
the energy of volume change in crystals of the Ni phase, and curves 
3, 4 in the Al phase. Note that between the patterns of variation 
in the energy of shape change and the energy of volume change, 
there is not only a quantitative but also a qualitative difference. In 
particular, the width of the zone of variation in the energy of volume 
change is significantly greater in the Ni phase than in the Al phase.

The average value of the shape change energy Usf is determined 
by integration (30) over the orientation factor Ω.

2 2( ) 2 2 ( ) ( ) 3 2 ( ) ( )
5 2 ( ) ( ) 5 2 ( ) ( )

sf k k k
k

kf k k k

U c A C CG c B c G c B c c
U C B c A G c C B c G c

    + + = +    + +     
∑         (36)

There are simple relationships between the average and 
extreme values of the energy of shape change (Usf, Umf, Unf), volume 
(Us0, Um0, Un0) and deformation energy (Us, Um, Un).

0 0 00.4 0.6 , 0.4 0.6 , 0.4 0.6sf mf nf s m n s m nU U U U U U U U U= + = + = +

Patterns of variation in the average value of shape change 
energy at a constant value of the macroscopic measure of shape 
change energy Usf. For three alloys: Al-Cr (curve - 1), Al-Ni (curve 
- 2), Al-Cu (curve - 3) are shown in Figure 9. For the alloy Al-Cr, the 
largest relative discrepancy in the shape change energy is 0.872 at 
a volume content of `~ 0.5Cr and in the Al-Ni alloy-at volumetric 
content `~ 0.58Ni  In the Al-Cu alloy, a monotonous increase in the 
mismatch of measures is observed, reaching the highest value-0.922 
at volumetric content Consequently, the patterns of change in the 
mismatch of measures in alloys differ not only quantitatively but 
also qualitatively.
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Figure 8: Diagrams of energy changes in the volume of Al-Ni alloy crystals.

Figure 9: Patterns of variation in the average value of the shape change energy at a constant value of the 
macroscopic measure for three alloys: Al-Cr (curve - 1), Al-Ni (curve - 2), Al-Cu (curve - 3).

Conclusion
A system of equations is obtained based on which the influence 

of the concentration of phases with their mechanical properties on 
the macroscopic shear modulus and the heterogeneity parameter 
of the alloys is studied. General expressions have been established 
for extreme values of invariants of stress/strain deviators 
in polycrystal phases, which include both individual phase 
characteristics (anisotropy factor and crystal shear constant) and 
global characteristics. It is shown that when the anisotropy factor is 
greater than one, the maximum values of stress deviator invariants 
appear in grains, the crystallographic axes of which are coaxial 
with the macrosystem, in which the diagonal components are equal 
to zero, and the minimum - in grains, the crystallographic axes 
of which are coaxial with the main coordinate system. When the 
anisotropy factor is less than one, the opposite picture is observed. 
The nonmonotonic nature of the change in the invariants of the 

deviators of the stress tensors with increasing volume content of 
the harder component in two-phase polycrystalline materials has 
been established. The largest deviations of the limiting values of the 
invariants of the deviators of the stress tensors in the sub elements 
are observed at very low values of the concentration of the solid 
phase c~0.01÷0.06. The width of the zone of change in the limiting 
values of invariants increases with increasing phase anisotropy 
factor. The strain deviator invariant takes the greatest values in 
crystals with the lowest stress deviator invariant values.

Based on the principle of orthogonality of fluctuations of stress 
and strain tensors, a quadratic equation for volumetric stresses is 
obtained, the roots of which are taken as a solution to the problem. 
In pure macroscopic shear, the roots differ only in sign. In this case, 
external pressure has a nonlinear effect on the patterns of changes 
in the limiting values of volumetric stresses in the phases of a 
polycrystal. Extreme values of volumetric stresses arise in grains 
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with extreme values of stress deviator invariants. As in the case of 
stress deviator invariants, the extreme values of local volumetric 
stresses change non-monotonically with increasing concentration 
of the harder phase. The patterns of changes in the energy of 
changes in the shape and volume of sub elements have been studied 
depending on the orientation factor of the crystallographic axes and 
the elastic characteristics of the phases. Numerical studies show a 
significantly more complex nature of changes in the components 
of strain energy in sub elements compared to changes in stress 
and strain invariants. The influence of the elastic characteristics of 
phases and their volumetric content on the discrepancy between 
macroscopic measures of the energy of change in shape and volume 
and the average values of microscopic measures is analyzed. For the 
Al-Cr alloy, the largest relative deviation of the shape change energy 
is 0.872 at the volumetric content of chromium, and for the Al-Ni 
alloy-at the volumetric content. In the Al-Cu alloy, a monotonic 
increase in the divergence of measures is observed, reaching the 
highest value-0.922 at volumetric content. The patterns of change 
in the divergence of measures in alloys differ not only quantitatively, 
but also qualitatively.
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