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Introduction
Today, the detrimental effects of contaminated water and wastewater, as well as 

the depletion of water resources, are undeniable global problems. The most significant 
environmental issues of the twenty-first century are pollution and water recycling. Industrial 
wastewater is defined in a very broad sense and differently from home wastewater. The 
effluent’s composition and characterization are entirely varied and extremely complex 
because of the numerous types of industries and application processes [1]. Industrial 
effluent can be classified into different categories depending on the harm it causes to the 
environment [2]. Electrocoagulation (EC) has been used effectively as a first treatment in the 
elimination and modification of polycyclic aromatic hydrocarbons from industrial effluents 
[3,4]. The Fe or Al anode is oxidized during wastewater treatment electrolysis, yielding 
corresponding metal ions that instantly hydrolyze to polymeric iron or aluminium hydroxide. 
These polymeric hydroxides are good coagulants, and the tiny oxygen and hydrogen bubbles 
created by the anode and cathode may help in particle flocculation in the wastewater [1]. It 
should be noted that water treatment methods seem to be the most effective way to lessen the 
impact of pollution on aquatic and aqueous systems. Every wastewater treatment facility tries 
to address the previously mentioned environmental issues. Physical-chemical treatments are 
the most common type of treatment.

Since they have been used for producing drinkable water for people for ages [5]. The 
harmful substances found in wastewater are now entirely distinct and complex because 
of industrial operations and technological advancement. As a result, research into water 
treatment techniques has been crucial to treating the growing pollution. Table 1 shows the 
breakdown of dangerous compounds found in industrial effluent and their likely sources. 
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[6,7]. Many traditional methods/units are used to treat industrial 
water, coagulation has fewer advantages and disadvantages, so 
scientists introduce the hybrid method called electrocoagulation, 
which is more effective and reasonable than coagulation [6]. 
Electrocoagulation (EC) has been used effectively as a first treatment 
in removing and transforming polycyclic aromatic hydrocarbons 
from industrial effluents. EC is a chemical and physical technique 
that injects ions into wastewater using consumable electrodes such 
as Fe or Al [8]. The Fe or Al anode is oxidized wastewater treatment 
electrolysis, yielding corresponding metal ions that instantly 
hydrolyze to polymeric iron or aluminium hydroxide. These 
polymeric hydroxides are good coagulants, and the tiny oxygen and 
hydrogen bubbles created by the anode and cathode may help in 
particle flocculation in the water [9] (Table 2).

Table 1: Contaminants in wastewater and their potential 
sources.

Contaminant Potential Sources

Heavy metals Mining operations, metal processing, 
electroplating

Organic compounds Chemical manufacturing, petroleum refining

Suspended solids Construction sites, mining operations

pH imbalance Chemical manufacturing, metal processing

Oil and grease Automotive maintenance facilities, oil refineries

Nutrients (e.g., N, P) Agricultural runoff, food processing

Toxic chemicals Pharmaceuticals, pesticide manufacturing

Chlorinated Chlorine-based disinfection, chemical

compounds manufacturing

Bacteria and viruses Food processing, wastewater treatment plants

Radioactive elements Nuclear power plants, radiological laboratories

Table 2: Conventional operational units and their 
description (Yusmartini et al. [19]).

Operational Unit Description

Screening Removal of large solids, such as 
debris and trash

Grit Removal Removal of heavy inorganic 
solids, such as sand and gravel

Primary Sedimentation Settling of suspended solids and 
heavy organic matter

Equalization Tank
Mixing and storage of 

wastewater to balance flow and 
composition

Aeration Tank Introduction of air or oxygen to 
promote biological treatment

Secondary Sedimentation Separation of biological sludge 
and treated wastewater

Filtration Removal of remaining suspended 
solids through media filtration

Disinfection Elimination of pathogens and 
harmful microorganisms

Sludge Treatment Processing of separated sludge 
for further treatment or disposal

This review article aims to focus on the EC affecting factors in 
the cripples & fundamentals of the EC process, theory related to its 
mechanism and potential applications in different areas. Al3

+
(aq) and 

OH-
(aq) ions produced by reactions at electrodes and form numerous 

monomeric species, which changes finally into Al(OH)3 by complex 
precipitation kinetics [10]. The electrostatic antiparticle repulsion 
is reduced to the point that van der Waals attraction takes hold, 
resulting in coagulation. There is no net fee because of the procedure. 
(C) Flocs formation: Colloidal particles that remain in the aqueous 
medium are trapped and bridged by the sludge blanket created by 
merged flocs. In a parallel process, water is electrolyzed to produce 
small bubbles of hydrogen at the cathode and oxygen at the anode. 
[11]. By drawing flocculated particles to them, these bubbles cause 
the pollutants to rise to the surface due to their inherent buoyancy. 
More effective coagulants than those used in chemical dosing are 
hydroxides, ox hydroxides, and polymeric hydroxides. They can 
precipitate or adsorb dissolved contaminating species, destabilize 
colloidal suspensions and emulsions, and create flocs that may be 
removed by flotation or settling/filtration [12] (Figure 1).

Figure 1: Experimental Setup of Electrocoagulation process.
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Principles of electrocoagulation

An electrochemical cell is used in the EC procedure to treat the 
water. An electrochemical cell’s main components are the anode 
and the cathode, which are dissolved in an electrolyte or conducting 
solution and connected by an electrical circuit to provide a current 
source and a control device [5]. The anode’s metallic cations 
hydrolyze to generate hydroxides, poly hydroxides and poly hydroxyl 
metallic compounds with a strong attraction for scattered particles 
and counter ions, causing coagulation. By decreasing the repulsive 
potential of the electrical double layer, they may decrease the net 

surface charge of colloidal particles in suspension [13]. Therefore, 
the repulsive interactions between colloidal particles weaken, 
bringing the particles together to the point where van der Waals 
forces prevails and particle agglomeration occurs. It should be noted 
that, unlike chemical coagulation, the processes of flocculation 
and coagulation in EC happen simultaneously and cannot be 
differentiated from one another. The two processes, flocculation 
and coagulation, are physically separated or differentiated when 
metal salts are used in water treatment facilities based on the 
amount of time required for each (“An Overview of the EC Process 
for the Treatment of Wastewater,” 2018) [14] (Figure 2).

Figure 2: Main principle of EC Procedure.

Fundamentals of electrocoagulation and oxidation 
(Electrocoagulation Oxidation (ECO))

A comprehensive understanding of the fundamentals is 
crucial to comprehend the underlying mechanisms of ECO. 
Electrocoagulation (EC) involves destabilizing and coagulating 
pollutants present in wastewater by applying an electric current 
[15]. The process typically takes place in an electrolytic cell, where 
the wastewater acts as the electrolyte. When a direct current is 
applied, metal species (such as aluminium or iron) are released 
from the electrodes, generating metal hydroxide species. These 
species act as coagulants and aid in removing pollutants through 
coagulation, flocculation, and sedimentation processes [16]. Several 
important variables, such as the electrode material, current density, 
pH, and treatment duration, affect how successful EC is. The kind 
and concentration of metal ions emitted during electrocoagulation 
are determined by the electrode material chosen, therefore 
choosing wisely is essential [17]. Iron and aluminum are frequently 
utilized as electrode materials due to their affordability, availability, 
and effectiveness in generating coagulants. However, other 
materials such as titanium, stainless steel, and graphite have also 
been investigated for their suitability in specific applications [18].

In addition to electrocoagulation, integrating oxidation 
processes with EC has attracted a lot of attention lately, leading 

to the development of Electrocoagulation Oxidation (EC0) as an 
advanced treatment approach. Incorporating oxidation techniques 
aims to increase the degradation and mineralization of recalcitrant 
pollutants that are not effectively removed through traditional 
electrocoagulation alone [19]. Electrochemical oxidation is a widely 
explored technique that utilizes the electrochemical generation of 
most reactive species to degrade organic compounds in wastewater. 
Commonly employed anodes for electrochemical oxidation include 
Boron-Doped Diamond (BDD), Mixed Metal Oxide (MMO), and 
Platinum Group Metal (PGM) electrodes [20]. These anodes 
facilitate the amount of Reactive Oxygen Species (ROS), potent 
oxidants capable of breaking down complex organic molecules 
into more direct, less harmful by-products. Several studies 
have demonstrated electrochemical oxidation’s effectiveness in 
degrading organic dyes, pharmaceuticals, and other persistent 
pollutants [21].

Another promising oxidation technique combined with 
electrocoagulation is photo electrochemical oxidation. This 
approach utilizes the synergistic effects of light and electrochemical 
processes to enhance the degradation of pollutants. Typically, a 
photoactive semiconductor material, such as titanium dioxide 
(TiO2), is incorporated into the EC system [22]. When illuminated 
with UV or visible light, the photo excited electrons and holes 
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generated on the surface of the semiconductor promote redox 
reactions, facilitating the degradation of organic pollutants. 
Photo electrochemical oxidation has shown promising results in 
treating various organic contaminants, including pesticides and 
emerging micro pollutants [21]. Sono-electrocoagulation is another 
innovative approach that combines the application of ultrasound 
with electrocoagulation. Ultrasound waves generate cavitation, 
leading to micro bubbles forming and collapsing in the wastewater 
[23]. The collapse of these micro bubbles produces shockwaves and 
localized high temperatures and pressures, creating an environment 
conducive to oxidation and enhancing pollutant degradation [24].

Numerous investigators have made noteworthy contributions 
to the comprehension and progression of EC0 technology. To 
achieve high removal efficiency, for example, a thorough analysis 
was carried out on the use of EC0 to treat pharmaceutical effluent. 

Their research emphasized the role that optimization factors have 
on EC0 system performance [20]. Furthermore Sari et al. [25] 
centered on treating wastewater containing dyes by combining 
photo electrochemical oxidation and electrocoagulation. Their study 
showed how the integration of light- responsive semiconductor 
materials might facilitate effective electron-hole separation and 
subsequent pollutant oxidation, hence optimizing the degradation 
of dyes by photo electrochemical oxidation. Additionally, Chakchouk 
et al. [22] examined how well sono-electrocoagulation worked to 
remove organic pollutants from wastewater. Comparing their study 
to traditional electrocoagulation, they found that the combined 
effects of ultrasound and electrocoagulation led to higher rates of 
pollutant breakdown. The researchers emphasized the importance 
of optimizing process parameters, such as applied current, pH, and 
ultrasonic frequency, to maximize the sono-electrocoagulation 
efficiency (Figure 3).

Figure 3: Flowchart Showing Electrocoagulation treatment.

Applications of Electrocoagulation
Wastewater treatment

Wastewater treatment is a critical area where Electrocoagulation 
(EC) has gained significant attention due to its effective removal 
of contaminants. This section reviews the work conducted by 
different researchers in exploring the potential applications of 
electrocoagulation. These researchers use different electrodes 
to examine which electrode has more removal efficiency and are 
costlier. Some researchers, like El-Ashtoukhy et al. [26], examined 
the use of EC to remove heavy metals from industrial wastewater 
and emphasized the significance of optimization factors like pH and 
current density Ravadelli et al. [27] explored the application of EC for 
dye-containing wastewater treatment, focusing on the influence of 
electrode material, current density, and initial dye concentration An 
et al. [28] studied the treatment of oil-water emulsions using EC and 
investigated vital factors Zodi et al. [6] conducted a comprehensive 

review of EC for industrial wastewater treatment, covering 
mechanisms, electrode materials, optimization parameters and 
performance evaluation Gil Pavas et al. [29] examined the removal 
of organic pollutants from wastewater using a combination of EC 
and activated carbon adsorption, highlighting the synergistic effects 
of the two processes Zaied et al. [12] investigated the removal 
of pharmaceutical compounds from wastewater using EC and 
discussed the factors affecting their removal efficiency. Ammar et al. 
[30] explored the application of EC for treating petroleum refinery 
wastewater, focusing on removing oil, suspended solids, and heavy 
metals Huda et al. [31] studied landfill leachate treatment using EC 
and evaluated the influence of electrode materials, current density, 
and initial leachate characteristics on the process efficiency Parga 
et al. [32] investigated the removal of arsenic from groundwater 
using EC and discussed the impact of operational parameters on 
arsenic removal efficiency. Moussa et al. [33] examined turbidity 
removal from water using EC and analyzed the effects of various 
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factors, including current density, electrode spacing, and water pH 
Bilińska et al. [34] focused on treating textile wastewater using EC 
and evaluated the influence of electrode material, current density, 
and initial pollutant concentration on the removal efficiency. Alaton 
et al. [35] studied the removal of organic dyes from wastewater 
using EC and discussed the effects of process parameters on 
decolorization efficiency. 

Galvão et al. [36] explored the application of EC for treating 
landfill leachate and discussed the removal efficiency of pollutants 
such as COD, ammonia and heavy metals. Phalakornkule et al. 
[37] investigated the removal of Total Organic Carbon (TOC) from 
industrial wastewater using EC. They discussed the effects of 
electrode material and current density on TOC removal efficiency. 
Zheng [9], Ammar et al. [38] explored the application of EC to treat 
oilfield-produced water and discussed the removal efficiency of oil, 

suspended solids and heavy metals. Song et al. [39] investigated the 
removal of arsenic from groundwater using EC and discussed the 
influence of operational parameters on nitrate removal efficiency. 
Thakur et al. [7] studied dye wastewater treatment using EC and 
evaluated the effects of electrode material, current density, and 
electrolyte concentration on decolorization efficiency. In addition 
to the studies mentioned above, numerous other research papers 
have contributed to the understanding and advancement of 
electrocoagulation for wastewater treatment. These studies have 
explored various aspects, such as pollutant removal mechanisms, 
optimization parameters, electrode materials, and treating specific 
wastewater types. Collectively, these works provide valuable 
insights into the applications and potential of electrocoagulation as 
an efficient and sustainable wastewater treatment technology. The 
Table 3 given below highlights the key points of other researchers.

Table 3: Application and effectiveness of electrocoagulation process for different industrial wastewater.

Sample PH
Current 
Density 
mA/cm2

Operation Time (min)
Dense 

Coagulant 
(mg/l)

Electrode/
Chemical 
Coagulant

Percentage Removal (%) Author

Synthetic 4 40 15 NA Aluminum 
electrodes 99(a) 83(cr) [2]

Potato Chips 5
20 30 NA Aluminum 

electrodes 60(COD) 98(ss) [2]

20 30 NA Iron electrodes 50(COD) 80(ss) [45]

Textile Water

 

EC PH 
6.9 

CC PH 
5.5 

 

10 20 NA Aluminum 
electrodes 63(c0d) NA [46]

10 10 0.8 kg/m3
Aluminum 

electrodes + Poly 
aluminium chloride

80(c0d) NA [46]

10 10 0.8 Aluminum 
electrodes + alum 65(c0d) NA [46]

NA NA 0.32 Poly aluminium 
chloride 78(c0d) NA [24]

NA NA 0.32 alum 72(c0d) 50 [47]

Slaughterhouse 7.31 40v 60 25  
Aluminum electrode 
+ Propyl ammonium 

chloride
37(c0d) 47 (SS) [48]

NA NA 25  Poly aluminium 
chloride 37(c0d)  [49]

Distribution 
Network 10 24 60 NA  Iron electrodes 98(c0d) 97(TOTAL 

HARDNESS) [48]

Restaurant 10-Jun 30-80 NA NA  Aluminum 
electrodes 90(c0d) 94(OIL AND 

GREASE) [50]

Industrial 
Wastewater 

(San 6.6-8 22.35 45 NA  Iron electrode
99.17(Fe) 
99.97(Mn) 
99.35(TS S)

90(cu, Zn, 
Cd) [51]

Rafael-Mins ur 
S.A Mine)

Oil Refinery 
(Conchan) 8-9 50 30 NA  AL Anode

98(NTU) 
60(oil and 

fats)

32.27 
(phenol) [52]

Waste Disposal 
Plant (Be fesa-

Peru)
8-8.3 110 30 NA  Iron anode 95.6(NT U) 45.14(COD) [53]

Industrial 
Wastewater 

(Billet Industry)
5 98 30 NA  AL anode 99(PB) 

99(Cr) 99(zn) [54]
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Wastewater 7 20-25 45   Al anode + cl 99(Cr)  [55]

Sewage Water 7-9 1816 30 NA  Iron electrode 96.14(C0 D) 
96.14(COD) 92(SS) [56]

Sewage Water 7-9 1816 30 NA  Al electrode 97.64(CO D) 
96.17(B0 D) 94.9(SS) [23]

Wastewater 7 44 30 NA  Al + stainless steel 99(Cu,Ni, Cr)  [48]

Sewage Water 7-9 1816 30 NA  Stainless steel 98.07(CO D) 
98.07(BOD) 95.69(SS) [57]

Leachate treatment
Landfilling is the most prevalent and convenient method of 

disposing of solid waste. The dump often receives garbage from 
municipalities close to the site. If the site of trash generation is 
distant from the transfer station, there is a method to cut garbage 
transportation costs. In most cases, waste items from residential, 
business, and institutional areas were mixed. Landfills produce 
three types of outputs: gas, liquid (leachate), and inert solids [40]. 
Leachate is difficult to treat due to its complicated structure and high 
pollutant load. They become the primary pollutant of wastewater 
because it is the most difficult to treat due to the complex and wildly 
varied content created inside landfills [41]. Many different sorts of 
contaminants may be found in leachate wastewater. Biochemical 
Oxygen Demand (BOD), Chemical Oxygen Demand (C0D), ammonia 
and high concentrations of several metals are indicators of 
complex pollution. The presence of these contaminants in high 
concentrations harms the ecosystem. As a result, many therapies 
and pre-treatments work together to prove that they treat Leachate 
[42]. Membrane processes, sophisticated oxidation techniques, 

coagulation- flocculation procedures, and lagoon and wetland 
applications are some well-known technologies used for leachate 
treatment. However, they are costly and difficult procedures, and a 
developing no tendered simple ones. Electrocoagulation is a simple 
technique for successfully treating wastewater [14]. 

Because of its great efficiency and cheap maintenance, this 
electrochemical therapy seems to be a potential therapeutic choice. 
Less effort is needed and results are obtained quickly (Table 4 & 
5). For a particular pollutant, electrocoagulation may supply a 
choice for employee other chemical coagulation like astral salts or 
polymers. The electrode may produce coagulated species and metal 
hydroxide, which help to stabilize and agglomerate suspended 
particles [43]. The hydrogen gas emitted by the cathode, which 
aids in the flocculation of particles in water. The electrocoagulation 
technique is dependable and cost-effective, producing little sludge 
and showing no sensitivity to hazardous metals. A coagulant is 
produced by the electrolytic oxidation sacrificial cathode by using a 
direct current [44] (Figure 4).

Table 4: Leachate properties at different pH.

Sample Current 
Density

Operation 
Time(min)

Dose 
Coagulant(mg/l)

Electrodes/Chemical 
Coagulant Percentage % Removal Author

Leachate (PH4) 10V 100 NA Aluminum electrode 74 (C0D) NA [58]

Leachate (PH5) 75mA/cm2 NA NA Aluminum electrode 48(C0D) NA [19]

Leachate 
(PH5.8) 9V 35 NA Aluminum electrode 96(C0D) 97 (turbidity) [59]

Leachate (PH6) 60mA/cm2 30 NA Iron electrode 81(C0D) 72 (colors) [18]

Leachate 
(PH6.5)

2.98mA/cm2 30 NA Iron electrode 33(C0D) 25 (ammonia)

[60]2.98mA/cm2 30 NA Aluminum electrode 21(C0D) 20 (ammonia)

4.96mA/cm2 90 2319 Iron electrode +sodium 
chloride 93(C0D) 39 (ammonia)

Leachate 
(PH8.65) 10V 120 1.5% (w/v)

Charcoal Composite 
Electrodes (C70-PVC30) + 

sodium chloride
82(C0D) 69 (ammonia) [61]

Leachate 
(PH8.2)

34.8ma/cm2 30 NA
Aluminum electrode 59(C0D) NA

[62]Iron electrode 33(C0D) NA

NA NA 1500 Alum 31(C0D) NA

Table 5: Types of pollutant removal.

Types of 
Wastewaters

Removal 
Parameter Anode-Cathode

Current Density(A/
m2) Current or 

Voltage

Time in 
Minutes PH Max Removal 

Efficiency References

Synthetic dye 
water

Direct black 22, 
acid red 97, cod Fe-fe, al-al 50-100 5-15 8

91.76 

91 

62.5

[63]
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Oil-water Palm oil cod, 
ss, tds Al-al 20-60 5-15 5

72 

64 

53 

43

[53]

Nitrate water Cr 5 Fe, al-al 10-20v 12-60 7 89.5  [64,65]

Domestic 
wastewater

Cod turbidity 
phosphorus Fe-fe, al-al 10-150 5-40 7.8

72 

98 

98

[66]

Textile 
wastewater Cod dyestuff Fe hexagonal 

wire 200 90 7
93 

93
[36]

Textile 
wastewater 4 synthetic dyes Al-al 251.6 60 6.5-9.7 87-97 [67]

Textile 
wastewater Orange II dye Fe-fe 30v 30 7.5-10 60-92 [68]

Domestic 
wastewater Cod, TDS Fe-fe 0.12-0.36A 5-20 6.7

90 

90
[69]

Synthetic 
wastewater polyphosphate Steel 11.5 60 7.2 99.85 [70]

Synthetic 
wastewater

Amp 

shmp
Steel 10-60V 0-5A 60 7-7.5

98.84 

97.95 

97.75

[71]

Dairy 
Wastewater

Cod 

Bod  

TSS

Al-al 80 15-60 7.2 80 [72]

Textile 
wastewater Mb dye Fe-fe 10-40V 10-20 12 80 [73]

Textile WW Azo dye (ry 14) Fe-fe 100-300 10-25 2 99 [74]

Textile WW Rs dye Fe-fe 50-125 0-90 7.1 96.56 [75]

Textile WW Cod turbidity Fe-fe 10-30V 0-60 5-7
79 

96
[56]

Hospital WW Cod Fe-fe, al-al
10-60V 

0-5A
30-60 3-11 87 [76]

Textile WW Br 18 dye Al-al 2-5V 10-60 3-11 97 [77]

Dying WW Rr 195 dye Fe-fe 140-170 0-30 3-12 99 [78]

textile WW Br dye 5001 b 
cod Fe-fe 10-50 0-60 9

76 

95
[54]

textile WW Rg 19 dye Al-al 0.3-24V 10-60 3-11 99 [79]

synthetic WW Polyphosphate Steel 150-250 0-60 7.2 85-99 [44]

textile WW Mb dye Fe-fe, al-al 50-650 2-24 3-9 100 95  [80,81]

dying WW Azo 2 naphthol 
dye Al-al 4.5-10.5V 0-120 7 90 [82,83]

Dying WW Crystal violet 
dye organic dye Al-ss 50-300 10-60 3.5-5.5 99 98 [33]

Sewage WW TSS, TDS, cod Fe-fe 60-140 3-30 5-12 85-99 [2]

Oily WW Cod diesel Fe-fe, al-al 0-100 10-90 3-11 -------- [3]

Synthetic WW Rr 141 dye Fe-fe 15V 0-55 7.2 99 [4]

Synthetic WW Nitrate Al-al 50-200 10-30 3-9 98.8 [5]

Textile WW Color turbidity
Fe-fe 

Al-al
100-250 5-35 7 99.88 [13]
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Textile WW Malachite green 
dye cod ss-ss 13.9-138.9 0-15 3.5-5.5 91 [44]

Textile WW Reactive red 24 
dye cod Fe-fe, al-al 50-200 0-30 5-12

90 

97
[84]

Textile ww Reactive violet 
5 dye

Al-ss 

Fe-ss 

ss-ss

100-250 0-60 3-11
99 

85
 [56,85]

Aqueous 
solution

Brilliant green 
dye Fe-fe 13.9-138.9 15-75 4-12

99.6 

91
[83]

Textile WW Azo RR 29 dyes 
Azo DB 79 dyes ss-ss

15.7-35 

15.7-40
0-60 7-11

22 

91.5
[86]

Dairy WW Conductivity 
turbidity Al-al 5-24V 15-75 2.3-8.8 99 [87]

Contaminated 
WW

Malachite green 
dye Al-al Fe-fe 20-120 0-30 4-10 98 [88]

Textile ww Acid black 194 
dye Fe-fe 5-100 0-60 1.8-10

93 

94
[89]

Paint industry 
ww Cod Al-al 0-20 10-40 5.8 99 [19]

Oily WW
Oil and grease 

suspended 
solids SS

Fe-fe 

Al-al
20-200 10-70 1.5-10 Over 75 [90]

Figure 4: Setup for Leachate treatment.

Factors affecting electro-coagulation
Several variables can alter how effective an EC is at removing 

impurities from wastewater [45-57]. These variables include 
the kind of power source, the spacing between the electrodes, 
the shaking speed, the length of the treatment, the density of the 
current given, the layout of the electrodes, and the material of the 
electrode selected [58-62].

Influnce of current density
The electrode material is selected considering factors like the 

type of contaminant, expected results and chemical orientation of 
the contaminant present [63-75]. The electrode material not only 
affects the efficiency of the process but also affects the cost of the 
system[76-90]. Iron and Aluminum electrodes are extensively 

used for EC while they deionize into respective ions (Fe2
+, Fe3

+, 
Al3

+). Several studies have been carried out to compare the Al 
and Fe electrodes [12,91]. Shen and co-workers while working 
on micro plastic removal reported a high removal efficiency 
of (>98.6%) for four different types of micro plastic including 
(polyethylene, polymethylmethacrylate, cellulose acetate [92]. As 
the electrocoagulation works on the Coulomb’s law of electrostatics, 
the distance between plates affects the electrostatic field and in 
turn the removal efficiency [68,93]. Proposed that an increase in 
the distance between the plates results in a greater removal of 
pollutants because the MOH ions collisions are hindered due to a 
little space between electrodes. While a greater agglomeration is 
possible when ions movement is slow and the possibility of flocs 
increases gradually (Figure 5). Applied current density is related 
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to the generation of MOH ions and power consumption of the unit. 
An optimized current density investigation is thus required to 
operate the system. Galvão et al. [36]; Espinoza- Quinones et al. [67] 
observed a linear increase in the removal efficiency with increase 
in applied current density keeping all other parameters same [66] 
(Figure 6). The coagulant dose and bubble formation rate, the size 
and growth rate of the flocs, the bubble size, the reaction kinetics, 

and the energy consumption of the EC are all influenced by the 
applied current density [26,94]. There is a relationship between 
the voltage and the applied current density. In an electrochemical 
cell, higher voltages cause currents to rise and vice versa; but, in 
certain circumstances, such as when the electrodes are passivized, 
high over potentials cause currents to fall [70,95].

Figure 5: Effect of Al and Fe electrode on removal of micro plastics during electrocoagulation.

Figure 6

Cost Analysis
With so many wastewater treatment alternatives, cost-effective 

electrocoagulation is required [96-106]. Kobya et al. discovered 
that 99.4% cadmium removal, 99.1% nickel removal, and 99.7% 
cyanide removal could be obtained from electroplating rinse 
water. The treatment cost $1.05/m3 for cadmium and $2.45/m3 
for nickel and cyanide if the conditions were best. Remazol Red 
3B decolorization using iron electrodes and discovered that under 
ideal conditions, 99% decolorization was possible. The authors 

discovered that 3.3 kWh/kg dye could be obtained for 0.6euro/m3 
of energy consumption Chen X et al. [106] decided that fluorescent 
penetrant liquid may be treated with aluminum electrodes for non-
destructive testing in the aviation sector. Using electrocoagulation, 
the current treatment achieved 95% (COD), 99% colour, and 99% 
turbidity. This more intensive course of treatment allowed for a 
17-week payback period. (Sallam Mohammed et al. n.d.) conducted 
laboratory experiments and analyses on Oil Bilge Wastewater 
[OBW] using iron and aluminum electrodes in Bipolar (BP) 
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and Monopolar (MP) configurations. Using best circumstances, 
electrocoagulation treatment of oil bilge effluent 93% biochemical 
oxygen demand, 95.6% oil and grease, 99.8% total suspended 
particles and 98.4% turbidity [107]. According to this analysis, the 
costs of oil bilge treatment were $0.46/m3 for energy and electrode 
consumption, chemicals, and sludge disposal.

Amorphous aluminum hydroxides, current densities, and 
electrode density were all considered in the electrochemical 
removal of iron [Fe(II)] from tap water using aluminum electrodes 
The authors discovered that treating a concentration of 15mg/L 
Fe(II) concentration would cost USD 6.05/m3 of tap water. 
Electrocoagulation with mild steel electrodes was used to treat 
agro-industry effluent (meat processing, cereal, and food drinks) 
[21]. In terms of Chemical Oxygen Demand (COD), 82% elimination 
was obtained at treatment costs ranging from $0.95 to USD 4.93/
m3, which formed electrical power, chemical, and electrode use. 
The application might be expanded to include the maritime sector. 
employed bipolar electrode configurations to remove 80% turbidity, 
56% Chemical Oxygen Demand (COD), 90% oil and grease, and 
89% Biochemical Oxygen Demand (BOD) from this sector using 
electrocoagulation-flocculation [22,108].

Advantages and disadvantages of electro-coagulation

Although the advantages of electrocoagulation and its 
achievement to resolve many environmental issues surpass its 
disadvantages, the two decades of research explains both. The 
disadvantages include high electricity consumption, especially in 
countries with high prices of electricity. The formation of oxide 
film leading to a decrease in removal efficiency [23] EC unable to 
treat wastewater with high electrolyte content due to the risk of a 
short circuit. Because of rust, the electrodes need to be changed on 
a regular basis. The development of layers on the electrodes that 
lower the electrocoagulation process’s efficiency [24,109]. There 
is no need for chemical coagulants or microbes in EC because the 
sacrificial anode itself releases ions that act as coagulants. When 
employed as a pretreatment procedure, EC can dramatically 
lower energy usage while raising water quality [110]. The treated 
water or effluent of the EC has its own advantages as it is used in 
agriculture, especially for irrigation purposes [111]. Low volumes 
of sludge are created in EC as opposed to chemical coagulation; this 
sludge can be used as building materials, fertilizers, pigments and 
absorbents [112,113]. The production of denser and hydrophilic 
sludge helps decantation and makes flotation easier. EC finds 
application in different pollutants removal such as heavy metals, 
dyes and microorganisms [34,114,115].

Discussion and Future Perspective
Different electrode materials resulted in varying percentages 

of COD, turbidity, and ammonia removal. According to the review, 
aluminium electrode outperforms iron electrode in terms of 90% 
removal of COD and suspended solids for different wastewater 
treatment. Furthermore, for leachate treatment, aluminium 
electrode outperforms iron electrode in terms of 85% removal 
effectiveness for colour, turbidity, and COD. One of the most crucial 
factors influencing EC performance is current density. Because of 

the creation of bubbles and flocs, high current density resulted 
in greater COD removal. Different electrode materials resulted 
in varying percentages of COD, turbidity, and ammonia removal. 
According to the review, aluminium electrode outperforms iron 
electrode in terms of 90% removal of COD and suspended solids 
for different wastewater treatment. Furthermore, for leachate 
treatment, aluminium electrode outperforms iron electrode in 
terms of 85% removal effectiveness for colour, turbidity, and COD. 
One of the most crucial factors influencing EC performance is 
current density. Because of the creation of bubbles and floc, high 
current density resulted in greater COD removal. Aside from that, 
pH is regarded as a crucial aspect in EC performance [40,115]. The 
cathode’s actions also have an impact on the pH value. Higher EC 
efficiency may be gained if the treatment procedure takes current 
density, electrode type, and pH into account. The cathode’s actions 
also have an impact on the pH value [7,54]. Higher EC efficiency 
may be gained if the treatment procedure takes current density, 
electrode type, and pH into account. Additionally, it might be 
used in combination with other treatment methods to improve 
performance [10]. This connected system may be used to disinfect 
drinking water. Other recent research areas not addressed here 
are the use of porous electrodes, Nano electrodes, and three-
dimensional electrodes. All things considered the EC process is 
thought to be a treatment technique that could get around a few 
obstacles in the process of removing heavy metals from industrial 
wastewater.
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