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Anomalous Diffusion Through Homopolar 
Membrane: One-Dimensional Model

Introduction

Electrodialysis is an electrochemical separation process that 
uses ion-selective membranes as separation agents. Therefore, 
electrodialysis is a technique in which the separation of substances 
is accelerated by the application of an adequate electric field. In 
this way, the ions are transported through these membranes from 
one solution to another, by means of an electric field as a driving 
force, without the need of the addition of chemical reagents. 
Then, cation and anion membranes are organized alternately, to 
form dilute and concentrated flows between the membranes. In 
a recent work, [1] stated the electroneutrality condition can be 
understood as the fixed and mobile charge have, both, a local null 
charge. However, this condition is not valid for the entire process 
of electrodialysis separation and it is not a necessary condition, 
instead of electroneutrality, [2,3] have shown that Mean Field 
Approximation reproduce better the well-known behavior of 
polarization curve of electrodialysis membrane. In this work, we 
investigate the validity of the Mean Field Approximation with the 
aid of a fractional calculation to analyze the ionic transport through 
a membrane. This correspond to the anomalous diffusion case 
[4]. The anomalous diffusion models have a lot of applications in 
Biology and Medicine Peng et al. [5]; Paiva et al. [6]; Hidalgo & Tello 
[7], Physics, Astrophysics and Seismology Combe et al. [8]; Wegler 
[9]; Hughes [10], just to cite a few examples.

Mathematical Model for Anomalous Diffusion

There are many approaches to anomalous diffusion, and also 
many mathematical definitions of it, see [4] and references there 
in. The most widely used is a time dependent stochastic process of  

 
random variable x  which the mean square displacement is a lin-
ear function of time ( )t , for 0t  , i.e. 2 , x Dtα α≈  determines the 
diffusion type, if 1α =  normal diffusion, 1α <  sub-diffusion and 

1α >  super-diffusion. An important approach to anomalous diffu-
sion is obtained by the porous media equation [11], it is given by:
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where  is the probability density, and  is a constant with dimen-
sion of ( )( ) 2Time Length
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− .  is related with  by the Tsallis-Bukman 

scaling law [12],
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the stationary solution of Eq. (1) for an initial delta function is 
given by:
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where pN  is a normalizing constant that depends on qA  [11] 
and qA  is a fit parameter that depends on q . The distribuition Eq. 
(3) is the so called q-Gaussian, that is due to the fact that 

1
lim qq
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 is the 
usual Gaussian. It is usual to define the 1

q
qA

β = .

Anomalous Electrodialysis Diffusion Model

In this section, we use the transport equation for the separation 
process in a cell, where a constant electric field ( )E

  is applied in 
the studied system. In a recent work, [4] suggested that, since the 
mean field approximation 0E E=




, i.e. constant in space directions, 
was used to support the non-electroneutrality condition, the study 
should focus on transport in stationary state. To perform the an-
alyzes, we consider that the ions are immersed in a fluid that can 
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be modeled by a diffusion term. In this way, we use the equation 
and continuity of Nerst-Plank, where the flow of particles can be 
expressed, in dimensionless form, as:

k
k k k k

cj d z c E
x

∂ = − − ∂ 
(4)
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where is an arbitrary scale factor, and all variables and fields 
are defined in a dimensionless form. Thus, is the dimensionless flux 
density of the ion, is the diffusion coefficient of ion divided by, is the 
ion concentration, is the ion valence, is the time, is the position in 
a opposite direction of the membrane’s surface scaled by the mem-
brane thickness. We are interested in the steady state, so we use the 
fractional equation similar to the stationary equation for the diffu-
sion with Mean Field Approximation, given by: We are interested 
in the steady state, so we use the fractional equation similar to the 
stationary equation for the diffusion with Mean Field Approxima-
tion, given by:	
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For a general case using ( ) ( )kc u t y x=
 then:, 	
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where 0λ > , 
2w

D
λ = . Thus, for the spatial part, we will have:	
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Thus, the equivalent fractional equation will be given by:
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where 0k zE= − , ( ]0,1∈ò  and [ ]0,x L∈ . Therefore, to solve 
the Eq. (9) we will make use of the Laplace Transform. In this way:
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Then, term by term, we have:
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For the fractional term, we have:
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defining sxu e−=  and 
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Finally, the integration can be obtained by (Camargo & Oliveira, 
2015) as: 

	 ( ) ( )1

0

0sx d ys e dx s y s s y
dx

∞
− += −∫

ò
ò ò

ò
(15)

Therefore, after applying the Laplace Transform in all terms of 
Eq. (9), we have:
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have: 
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The solution can be obtained by inverting Eq. (17), we use the 
result of [13], where we have: 
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where ( ),
uE zα β  is the three parameter Mittag-Leffler [14-18]. 

Finally, we can write Eq. (17) as: 

	 ( ) ( ) ( )1 2y s y s y s= + (19)
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Now, using Eq. (18), we obtain ( )1y s  as: 
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For ( )2y s , we get: 
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Finally, the general solution is:

	 ( ) ( ) ( )1 2y x y x y x= + (26)

a.	 Case 1=  and 0=k
First we consider only the case 1=ò . In this way, the Eq. (9) 

is now:
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then, the solution can be obtained in a form 
rxy e= . The char-

acteristic polynomial is: 

	 2 2 0r kr ω+ + = (28)

with 2 24k ω∆ = −  and with three possible cases, 0∆ > , 
0∆ <  and 0∆ = . Then solution is:
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b.	 Case 0=k
Now, considering 0k = , we have:

	 ( ) ( ) ( )( )21
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	 ( ) ( ) ( )2  0 cos  y x y xω= (32)

Conclusion

As a general remark, we point out that it was possible to gen-
eralize the model of to include the anomalous diffusion ingredients 
[19-22]. The generalization was carried out with the aid of the Frac-
tional Calculus and its usual techniques. We found a general solu-
tion in terms of three parameter Mittag-Leffler function and it was 
possible to demonstrate that the general solution yields the correct 
result obtained by for the non-anomalous case. Since membrane 
are widely used in many applications and naturally appears in bio-
logical systems, then we believe that this result can useful to many 
other researchers.
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