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Introduction
The current knowledge of the molecular mechanisms driving and sustaining cellular 

functions is mostly based on studies with model organisms established over the last century 
[1]. Regardless of being uni- or multi-cellular, it is generally considered a model organism, 
any organism of non-human species displaying inherently convenient features for tackling 
questions across the cell and developmental biology, as well as biomedicine, evolution, and 
behavioral sciences (Figure 1). Basically, a model organism should represent a larger group of 
organisms beyond itself and serve to explore different processes that should be shared across 
different taxa [2]. An ideal model organism possesses traits favoring its domestication and 
adaptation to the laboratory environment. Additionally, it should be easily cultivated/bred 
under controlled laboratory conditions, with a small size and a short generation time, and 
ultimately be genetically tractable [3]. Over the years the list of eukaryotic model organisms 
has grown enormously. Among the different model organisms, the protists, lower unicellular 
eukaryotic organisms that are not animal, plant, or fungus, display many of the model systems’ 
compelling features [4]. Furthermore, protists represent the predominating biomass hosted 
in the oceans and are major contributors to that of the terrestrial environment [5].
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Figure 1: Model organisms are tools to unravel different questions ranging from basic research to biomedicine and 
social sciences. Schematics of some of the most representative model organisms are shown in the inner core of the 
octagonal shape (S.c.: Saccharomyces cerevisiae; D.d.: Dictyostelium discoideum; C.r.: Chlamydomonas reinhardtii; 
V.c.: Volvox carteri; A.t.: Arabidopsis thaliana; C.e.: Caenorhabditis elegans; D.m.: Drosophila melanogaster; M.m.: 

Mus musculus). Double-headed arrows symbolize collaborative communication among the different model organisms 
and their communities. Different scientific fields benefitting from model organisms research are depicted aside from 

the edges of the polygon.

A Short Glance at a Few Eukaryotes Model 
Organisms

Due to their specific properties, model organisms might exhibit 
their strongest impacts in rather different areas of biology. Among 
those that significantly contributed to expanding cell biology 
knowledge, and finding a role for an intracellular compartment, 
whose function was so far unknown, the marine unicellular alga 
Acetabularia mediterranea (or A. acetabulum) -J.V. Lamour, 1812- 
deserves a distinctive place. In those early days, by means of simple 
experiments involving the separation of the unicellular alga into 
nucleate and anucleate parts, enabled the collection of compelling 
evidence leading to suggest a role for the nucleus, namely, hosting 
the blueprint of the species [6,7]. Later, the multicellular alga 
Volvox carteri -F.R. Stein, 1878- has been broadly exploited as 
a model to investigate multicellularity and to untangle its role 
during evolution. Its hallmarks of complex multicellularity (e.g., 
asymmetric cell divisions, dimorphic sexes, coordinated tissue-

level morphogenesis, etc…) enabled to characterize the molecular 
basis of multicellularity, including genetic control of cell number, 
cell adhesion molecules, acquisition of organismal polarity, 
morphogenetic shape changes and conversion of the cell wall into 
the extracellular matrix, which are features shared with mammals. 
Unambiguously, the fruit fly Drosophila melanogaster -J.W. Meigen, 
1830- has proven to be an excellent system to carry out genetic 
screening, and it is currently used to unravel the underlying 
mechanisms of morphogenesis and nervous system development. 
Interestingly, by taking advantage of fruit flies at the larval stage, 
it has been recently mapped the first entire connectome from the 
brain [8]. 

Nonetheless, an excellent model organism does not need to 
be multi-cellular as it occurs for yeasts (Saccharomyces cerevisiae 
-F.J.F. Meyen and E.C. Hansen, 1883- and Schizosaccharomyces 
pombe -U. Leupold, 1946-). Yeasts have been pioneers for decades 
in investigating very basic cell biology issues that have been 
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later implied in causing and sustaining different human diseases. 
Furthermore, they represent an outstanding model to identify and 
characterize the molecular players controlling the cell cycle, as 
well as intracellular vesicular trafficking and protein interaction 
network [9]. Unique features are displayed by the social amoebae. 
The latter, whose most popular representative is Dictyostelium 
discoideum -K.B. Raper, 1934-, usually live as unicellular organisms 
but upon food depletion, they cease proliferating and gather to 
form a multicellular structure undergoing morphogenetic changes 
and differentiation [10]. D. discoideum is recognized as leading 
model to unravel the molecular mechanisms driving cell motility, 
including chemotaxis alongside other motility-linked processes 
such as cytokinesis and phagocytosis [11-13]. More recently, it has 
emerged as a powerful simple model for social evolution and for 
host-pathogen interaction and microbial infection [14].

Emerging Promising Aquatic Protists Model 
Organisms

Though marine unicellular lower eukaryote, protists, play major 
roles in the marine ecosystems, and occupy key positions in the tree 
of life, our knowledge of their cell biology remain scant. Currently, 
a handful of terrestrial and freshwater protists are considered 
model organisms including the amoebozoan Dictyostelium, the 
chlorophyte Chlamydomonas -G.M. Smith, 1945- and the ciliates 
Paramecium -O.F. Mull, 1773- and Tetrahymena -A. Lwoff, 1923- 
but there are no marine protists. This is a major drawback in our 
understanding of how they accomplish their functions, and in 
exploiting them to attain new insights into cell biology.

Among the various field of science, including cell biology, 
to increase our knowledge two main strategies are commonly 
foreseen: i) increasing the depth and ii) breadth. While going 
deeper into well-established biological model/s (i.e., yeast, fly, 
etc.,) is often achieved by technical innovations, the attaining of a 
broader view on long-studied processes is achieved by exploring 
the biological diversity. In this regards, marine protists have, 
recently, offered great inspiration. For instance, thanks to the 
genome sequencing of some Choanoflagellates (i.e., Monosiga 
brevicolis -Kent, 1880-) [15], which are considered the closest 
living organisms to animals, were identified several gene families 
formerly considered to be exclusively animal-specific, including 
Notch and Semaphorin/Plexins signalling pathways [15,16]. 
Furthermore, among Choanoflagellates the Salpingoeca rosetta 
-Dayel, 2011-has been recently recognized as a suitable model 
to investigate processes that are considered important from the 
physiological and pathological point of view in human (i.e., oxygen 
sensing and directional migration toward it, namely aerotaxis) 
[17]. Additionally, Choanoflagellates, possess an extraordinarily 
kinome repertoire [18]. Conversely, the marine protist Creolimax 
fragrantissima -W.L. Marshal, 2008- has shown to harbour a very 
low complexity kinome, but with unique feature that is a single 
cytoplasmic tyrosine kinase homolog of c-Src. Intriguingly, the C. 
fragrantissima Src -CfrSrc- primary structure displays a notable 
difference when compared with those of mammalian Src and 
receptor tyrosine kinases family members. At the level of the 

gatekeeper residue, in the active site cleft, CfrSrc harbours a leucine 
instead of a threonine residue that, on the contrary, characterize 
mammals’ tyrosine kinases [19]. Interestingly, clinically relevant 
tyrosine kinases mutations within the gatekeeper increases the 
affinity for ATP, as it occurs for EGFR in patients with advanced 
non-small cell lung cancer, thus contributing to drug resistance (i.e., 
tyrosine kinase inhibitors) [20].

Eventually, the enzymatic activity of CfrSrc is under the control 
of a phosphatase instead of being under the control of the kinase 
Csk, as it occurs for mammals. Overall, C. fragrantissima emerges 
as peculiar model to investigate the adaptation of tyrosine kinase 
signalling and regulatory mechanisms, as well as potential tool for 
high-throughput screening inquiry aimed to identify new tyrosine 
kinase inhibitors. Among the marine protists, the dinoflagellates 
(i.e., Hematodinium sp.-Chatton & Poisson 1930-) display 
alternative cell biological features, meaning derived solutions for 
conserved tasks. Indeed, apart harbouring huge amount of DNA 
when compared to mammals, their chromosomes are strikingly 
peculiar for two reasons: i) they are permanently condensed 
displaying liquid crystalline characteristics and ii) though they 
harbour histone encoding genes their protein amount is barely 
detectable. Consistently, their chromatin is packaged not with 
histones, but with the help of non-histone basic proteins known 
as dinoflagellate viral nucleoproteins (DNVPs) [21]. Beside of 
such kind oddness, it is amazing that such organisms stopped to 
use histone to package DNA, not because they lost histone genes, 
but because they acquired new proteins with overriding functions. 
Noteworthy, when DNVPs are expressed in a host system (i.e., 
yeast) they displace the endogenous histone [22], suggesting an 
even higher affinity than that displayed by endogenous histones 
towards DNA. Overall, these findings lead to some considerations. 
One above all is: to what extent histones paly role/s other than 
mediating chromatin condensation? Some insights from their role 
in guiding the DNA repair machinery to the damaged DNA site have 
already established, but dinoflagellates suggest that others remain 
to be unveiled. Though, aquatic unicellular lower eukaryotes 
look appealing for cell biology inquiries, for quite a long time 
they have been lagging behind in terms of genetic manipulation. 
Thanks to the efforts of many scientists, and to the Gordon and 
Betty Moore foundation EMS program, such a major hindrance 
has been recently vanquished [23]. With the setting up of growth 
laboratory conditions and protocols for exogenous DNA delivery 
a new era has started, letting surmise genome wide screening, 
functional genomics inquiries alongside their potential future use 
in biotechnology applications throughout genome-editing.

Conclusions
In the last years marine and aquatic organisms (e.g., sponges, 

microorganisms) have been regarded as potentially resourceful for 
many purposes, including drug discovery [24]. In this respect, the 
rich diversity provided by aquatic protists, alongside that coming 
from those that continue to be discovered, is vast and in the future 
hopefully will help us to address unanswered questions in different 
fields. Besides the detailed understanding of the cell biology of 
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aquatic protists from their very recent genetic manipulation several 
potential benefits are expected in different fields ranging from aquatic 
science to evolutionary studies up to medicine and pharmacology. 
Through the establishment of suitable transformation protocols, 
by functional genomics and genome-editing it will be possible to 
shed light on the function of species-specific genes which likely 
reflect important niche-specific adaptations in dynamic marine 
ecosystems. Ultimately and noteworthy, the use of aquatic protists 
as alternative and novel laboratory model organisms fulfill the 3Rs 
policy, namely, refinement of design aimed to adopt alternative 
methods that alleviate animal distress, reduction of experiments 
with mammals whenever possible, and replacement with other 
approaches. Overall, though we are just experiencing the dawn of 
this novel era, for aquatic marine protists the outlook for the future 
is genuinely encouraging.
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