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Opinion
Due to industrial revolution and anthropogenic activities carbon-di-oxide (CO2) in the 

atmosphere has increased day by day. Deforestation, burning of fossil fuels, forest fires 
resulting in the enhancement of CO2 in the ocean ecosystem. About 30% of the atmospheric 
CO2 is absorbed by the ocean surface water which results in carbonic acids. The carbonic acids 
formed cause harmful effects to marine aquatic lives including sea animals and seaweeds. 
A series of chemical reactions results in the formation of carbonic acids and bicarbonates 
which has a bad impact on the living creatures. Marine organisms, especially hard shell 
containing species like corals and oysters become more effective as their skeleton is formed 
by the dissolved carbonate and calcium. On the other hand, clownfish have decreased in the 
additional acidic waters than normal marine water. Around 14-17 billion years ago, at the age 
of the middle Miocene, the pH of the ocean was less than 8 which resembles the present day 
environment (https://www.noaa.gov/education/resource-collections/ocean-coasts/ocean-
acidification).

Seaweed are the marine photosynthetic macrophytes that can absorb CO2 for basic 
growth and synthesis of metabolic compounds [1,2]. Fluctuations of CO2 on the surface water 
causes noteworthy influences in the metabolism of seaweeds in early stages of growth and 
development [3]. Study revealed that the brown (Phaeophyceae) and red (Rhodophyceae) 
seaweeds are dominant in marine ecosystems and play an important role in the food web of 
the ocean. Seaweeds sometimes become sensitive to Ocean Acidification (OA). On the other 
hand, OA promotes the growth and other physiological activities of seaweeds. The Atlantic 
Kelp, Saccharina latissima protected blue mussels, juvenile hard clams and eastern oysters 
from OA [4]. Biological activities like polysaccharides, fucoidan and alginate were highly 
synthesized in acidic sites than non-acidic sites [5]. Fluctuating pH in the culture of Ecklonia 
radiata resulted in sufficient growth and photosynthetic activity at juvenile stage [6]. The 
positive and negative impacts of seaweeds on OA has been highlighted in (Table 1).

Table 1: Effects of seaweeds to ocean acidification.

Seaweeds Class Effects to Ocean 
Acidification References

Macrocystis pyrifera Phaeophyceae Sensitive Roleda et al. [7]

Padina pavonica Phaeophyceae Resistant
Celis-Plá et al. [8]

Cystoseira compressa Phaeophyceae Resistant

Ulva lactuca Chlorophyceae Neutralization Ginneken [9]

Sargassum vulgare Phaeophyceae Resistant Kumar et al. [5]

Fucus vesiculosus Phaeophyceae Sensitive Kinnby et al. [10]

Ulva fasciata Chlorophyceae Resistant Barakat et al. [3]

Saccharina latissima Phaeophyceae Sensitive Young et al. [4]

Ecklonia radiata Phaeophyceae No effect

Paine et al. [11]Lenormandia 
marginata Rhodophyceae No effect

Plocamium cirrhosum Rhodophyceae No effect
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Modern technologies have also been suggested to control OA in 
an eco-friendly way. Integrated algal bioreactors with H+ absorbance 
capacity can control OA and are suggested to protect coral reefs and 
seaweeds [9]. Three dimensional kelp forests are very influential 
to OA and help to increase the growth of bivalves of North Atlantic 
origin [4]. It has also been suggested that the co-culture of kelp and 
marine bivalves can reduce OA in the present day and near future.
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