Relevance of Meiobenthic Research: Indian Perspectives

Susanta Kumar Chakraborty* and Tridip Kumar Datta
Department of Zoology, Vidyasagar University, India

*Corresponding author: Susanta Kumar Chakraborty, Department of Zoology, Vidyasagar University, Midnapore (West)-721102, India

Submission: September 14, 2017; Published: May 08, 2018

Introduction
Coastal and marine biodiversity play a crucial role in economy by virtue of their resources, productive habitats and rich biodiversity. Within sixty kilometres of the shoreline more than half of the world’s population lives, and this could rise to three quarters by the year 2020 [1,2]. The population surge along the narrow coastal strip is the ultimate driver for escalating pressures on the world’s coastal area, which are dominated by sandy beaches [1]. Thus, much of today’s and near future anthropogenic pressure on global ecosystem is directed at coastal wetlands. India has a coastline of about more than 7500km of which the mainland accounts for 5422km, Lakshadweep coast extends up to 132km and Andaman and Nicobar Islands have coastline of 1962km. More than two hundred fifty million people live within a distance of fifty kilometres from the coast. The dissimilarities between the west and east coasts are remarkable. The west coast is generally exposed with heavy surf and rocky shores and headlands whereas the east coast is generally shelving with beaches, lagoons, deltas and marshes [3].

The benthic system comprehends a highly diverse community, composed of bacteria, micro- meio- and macrobenthos, with the classification of benthic organisms generally relying on the organism size. The term “meiofauna” is actually derived from the Greek word meio meaning “smaller”. Research on meiofaunal fauna have been known since the 18th century. The study of meiofauna was probably initiated during the eighteenth century and was carried out by Loven [4] who described the worm under new genus. The other eminent pioneer meiofaunal researchers are Moore & Neil [7] and Moore [8].

The term “meiobenthos” was introduced and defined in 1942 by Mare [5] in her account of the benthos of muddy substrates off Plymouth, England [5,9] to indicate those benthic metazoans smaller than the ‘macrobenthos’, but larger than ‘microbenthos’. In practice, meiobenthic organisms consist of animals with size ranging from 63µ to 500µ [10] and are also named as maiofauna. The meiofauna are by no means a homogenous ecological group of meiobenthos. Meiofauna inhabits in an array of diversified habitats and niche of freshwater and marine water bodies. Sediments of all kinds from the softest of muds to the coarsest shell gravels and all those in between harbour meiofauna. Meiofauna plays an important role in maintaining ecological balance by preying within their community.

According to Higgins & Thiel [9], at least twenty two phyla out of thirty three metazoans phyla include meiofauna which remain distributed worldwide [9]. The taxa belonging to meiobenthic faunal groups are Sarcomastigophora, Ciliophora, Cnidaria, Turbellaria, Nemartina, Nematoda, Gastrotricha, Rotifera, Loricifera, Priapulida, Kinorhyncha, Polychaeta, Oligochaeta, Sipuncula, Tardigrada, Cladocera, Ostracoda, Mystacocarida, Copepoda, Synarida, Thermosbaenacea, Isopoda, Tanaidacea, Amphipoda, Cumacea, Halacarida, Mysidacea, Ostracoda, Cirripedia, Bivalvia, Holothuroidea and Tunicata. A complicating factor in the taxonomy of meiofauna is not only of their small size, often associated with structural simplification, but also high percentage of morphologically similar or even identical species within related groups [11,12].

Meiofauna, or more generally, the interstitial benthic invertebrates distinguished from macro benthos by their smaller sizes, shares tremendous amount of total benthic biomass in marine habitats. These are exclusively important within any estuarine and marine systems since they facilitate biomineralization, support various higher trophic levels and show a high sensitivity to anthropogenic actions, making them excellent organisms for pollution bio-monitoring. However, their large abundance attracts a considerable number of fin-fishes and shell fishes which used to visit the coastal belts in order to gain energy from the benthic habitats, mostly in the intertidal and sub tidal zones.
The response of ecosystem to environmental impacts are typically complex and diverse. It has been recognized that chemical and physical measurements are unable to properly assess impacts. The use of faunal diversity as indicator of environmental health, is the most effective, advantageous and cost-effective approach. Benthic infaunal monitoring is widely accepted as the fundamental step to most recent interdisciplinary studies of contaminant effects on ecosystems. Responses of the infauna are representative of overall ecosystem status, because the infauna generally depends upon and interact with biological process in the water column. The Phylum, Nematoda was used as an indicator for assessing the ecological quality of marine ecosystems by the European Water Framework Directive (WFD), Directive 2000/60/EC [13,14].

Not only in pollution monitoring, meiofauna also plays important roles in benthic community processes such as bioturbation (organic decomposition, nutrient cycling, redistribution of organic material, oxygenation of the sediment) and an effective link in food web [15]. These organisms are also being used as indicator for global climate change. Meiobionta stimulate bacterial growth by mechanically breaking down the detrital particles, excrete nutrients or by producing slime trails through the secretion of mucus. The significant top-down control of meiofauna in microbial mineralization of polycyclic aromatic hydrocarbon such as naphthalene has already been proved using molecular tools like RFLP etc. High concentration of Sodium Channel Blockers (SCB), a group of neurotoxin such as tetradotoxin (TTX) and saxitoxin (STX), in free-living marine nematodes were already confirmed using a tissue culture bioassay and their role in accumulation and transfer in marine environment has been proved significant. The analysis of mitochondrial Cytochrome oxidase subunit 1 (COI) gene, nuclear rDNA, rRNA etc. are used generally to reveal the cryptic diversity, intra-genomic variation as well as identification of the meiofaunal groups and new procedures are still waiting to add the accuracy in phylogenetic analysis. Different laboratory cultural procedures were developed for meiofauna, depending on their feeding and behavioural ecology [16-18]. Therefore, smaller marine meiofaunal organisms like free-living nematoda, gastrotrichia, ostracoda, foraminifera, oligochaeta, nemaertea etc. can be effectively utilized in translational and regenerative biological research.

Dhivya & Mohan [19] gave beautiful picture of meiofaunal study of India. In this present article we have tried to provide only some recent and previous works on meiofauna from India. According to the published reports, Dr. Nathan Annandale was the pioneer in benthic study of Indian subcontinent and the scientific exploration on benthos of the Indian subcontinent was initiated at the southern part of the Bengal delta [20]. Post Annan dale scientific exploration of the benthos was initiated by Panikkar and Aiyar (1937), who studied the brackish water fauna of the Madras coast. Seshappa [21], Ganapati & Rao [22] worked along Malabar Coast and north east coast of India respectively for benthic research.

Kurien [23-25] also undertook some informational works on meiofauna from India. The meiobenthic fauna of south-east coast of India along the Andhra coast was primarily studied by Ganapati & Rao [26]. Studies on the interstitial fauna of the Southwest coast of India were attempted by Govindan Kutty & Nair [27], Desai & Kutty [28-30], Rajan [31], McIntyre [32], Thiel [33] and Sanders [34] did important quantitative studies of meiofauna from the East and West coasts of India; and Central Indian Ocean was explored mainly by Ingle [35], Kure in (1972) in his study on the ecology of benthos of the Cochin backwaters showed that meiofauna are more numerous in the finer sediments and their abundance is not affected by the tidal changes. Ansari & Parulekar [36], Ansari [37], Rao & Murthy [38], Vijayakumar [39,40] did some studies on meiofauna from different coastal areas and backwaters of east coast of India.

Damodaran [41,42], Ansari [43,44], Abdul Aziz & Nair [45], Reddy & Hariharan [46,47], Ingle [48], Ansari & Parulekar [49] did some effective works at the western coast of India. Some knowledge on meiofaunal diversity in India was limited to the other works previously done by Krishnaswami [50], Rao & Ganpati [51], Rao & Nagabushanam [52], Rao [53], Rao [54-58], Sarma & Rao [59], Sarma [60], Murty & Kondalarao [61], Wells & Rao [62], Ansari & Gauns [63], Ansari & Parulekar [64], Ingle & Parulekar [65] etc. Sen et al. [66] worked on benthic foraminifera of Sunderbans. Sivaleela & Venkataraman [67-74] worked on different groups of meiofauna in Tamil Nadu coast. Ansari et al. [75] published some meiobenthic works on lagoonal ecosystem.

Free-living marine nematodes represent the major faunal group in respect of their density and divsity in any meiobenthic fanal assemblage. In a recent report, Ghosh and Mandal (2016) published a huge compilation list of free-living nematodes (288 species) recorded from India but need a through revision. Some interesting works on meiobenthos including nematodes were provided by Sinha & Choudhury [76], Sinha et al. [77]. The occurrence of stylet bearing nematodes from Gangetic delta reported by Sinha & Choudhury [78] from Sagar island, West Bengal were not actually free-living forms. Sinha et al. [77] discovered free-living marine nematode Anoplostoma macrospiculum from Indian coast after independence. Some research studies undertaken by Datta et al. [79], Datta et al. [80-82], Jacob et al. [83-85] have been able to describe some free-living marine nematodes in recent time from North-East coast, West coast and around Andaman sea of India respectively.

Most of the meiobenthic researches from several coastal sites of Indian coastal tract have been concentrated basically on ecological work. Free-living nematofaunal taxonomy relative to ecological work was largely neglected for long time. Some new records and checklists of free-living nematode were published in different journals, but clear taxonomic identity was neither given nor clear taxonomic description provided [86]. Therefore the true taxonomic information of marine nematodes at the northern part of east coast of India as well as from whole Indian coast is still very scant.

Ecological articles cannot be proper one if are not based on correct prove the taxonomic identification. A huge number of literatures published on meiofaunal account from India based
only on ecology. But in reality, most of the times, it is difficult
to get same organisms from those study sites because of the
improper taxonomic validation [87]. When a good portion of the
recorded data falls into uncertain and incorrect confirmation then
the subsequent checklist and the distributional record becomes
irrelevant. Museum collection and subsequent registration of the
specimens cannot be achieved for the living organisms. For the
higher faunal groups, this process cannot be supported sometimes
because of conservational purpose. But, for the very delicate
meiobenthic fauna, the morphological study without preservation
is difficult.

Therefore, the organisms must be euthanized prior to
taxonomic work. From this point of view, the demand of the time is
to stop the improper way of biodiversity recording and at the same
time, it is imperative to develop and adopt better parallel scientific
procedures to record the taxonomic diversity by which the scientific
community of the world can be benefitted. For such, the proper
way of biodiversity recording by comparative morphology can be
achieved by detail morphological description as best as possible,
clear and unimaginable illustration with photographic support,
ecological data and proper registration for museum collection [87].

Acknowledgement

Authors are thankful to the authority of Vidyasagar University,
Midnapore-721102, West Bengal, India for facilities.

Reference

1. Schlacher TA, Schoeman DS, Dugan J, Lastra M, Jones A, Scapini F, Mc-
Lachlan A (2008) Sandy benthos ecosystems: key features, sampling
issues, management challenges and climate change impacts. Marine Ecol-
ogy 29(Suppl 1): 70-90.
3. Venkataraman K (2008) Coastal and Marine wetlands in India. Proceed-
Akad Forh 1: 112-116.
5. Mare MF (1942) A study of a marine benthic community with special
reference to the microorganisms. Journal of the Marine Biological Asso-
ciation of the United Kingdom 25(3): 517-554.
6. Remane A (1940) Introduction to the zoological ecology of the North
and Baltic Seas 1: 1-238.
Journal of Marine Biological Association of United Kingdom 16(2): 589-
594.
8. Moore HB (1931) The muds of the Clyde Sea area. III. Chemical and
physiological conditions, rate and nature of sedimentation, and fauna.
Journal of Marine biological Association of the United Kingdom 17(2):
325-358.
Smithsonian Institution Press, USA, p. 486.
10. Coull BC (1973) Estuarine meiofauna - A review, trophic relationships
and microbial interactions. In: Stevenson LH, Colwell RR (Eds.), Estu-
arine Microbial Ecology. University of South Carolina Press, Columbia,
USA, pp. 499-511.
MJ (Ed), Galápagos Marine Invertebrates. Taxonomy, Biogeography and
12. Giere O (1993) Meiobenthology-the microscopic fauna in aquatic sedi-
ments. Springer-Verlag, Berlin, Germany, p. 328.
The use of nematodes is assessing ecological quality status in Mediterr-
patterns of distribution of meiofaunal and nematode assemblages in the
Huvadhoo lagoon (Maldives, Indian Ocean). Journal of the Marine Bio-
logical Association of the United Kingdom 94 (7): 1377-1385.
Aged Eelgrass, Zostera marina, detritus by the Polychaete Nephthys in-
neurotoxin in free-living marine nematodes. Mar Ecol Prog Ser 136:
147-151.
the Use of Cytochrome Oxidase Subunit I (COI) for DNA Barcoding
Meiofaunal Taxonomy in Translational and Regenerative Research.
Abstract published at One Day International Symposium on Frontiers in
Translational & Regenerative Biology (FTTRB 2016). Organized by Immu-
nology & Regenerative Medicine Research Unit, Department of Zoology,
University of Calcutta.
20. Annandale N (1907) The fauna of the Brackish Ponds at Port Canning,
Lower Bengal, 1. Introduction and Preliminary account of the fauna. Re-
21. Seshappa G (1953) Observations on the Physical and biological features of
the inshore sea bottom along the Malabar Coast. Proceedings of the
National Institute Sciences of India 19: 257-279.
22. Ganapatia PN, Rao LMV (1959) Preliminary observations on the bottom
fauna of the continental shelf of the northeast coast of India. Proceed-
ings of the First AI/India Congress of Zoology, Part III: pp. 8-
23. Kurien CV (1953) A preliminary survey of the bottom fauna and bottom
deposits of the Trancobar coast within 15 fathom line. Proceedings in
National Institute of Sciences of India, 19: 746-775.
24. Kurien CV (1967) Studies of the benthos of the southwest coast of India.
Bulletin National Institute of Sciences of India 38: 649-656.
the Indian National Science Academy, Section B 38 (3-4): 156-163.
the sandy beaches of Waltair Coast. Journal of Marine Biological Asso-
27. Govindanukthy AG, Nair NB (1966) Preliminary observations on the in-
terstitial fauna of the southwest coast of India. Hydrobiologia 28(1):
101-122.
28. Desai BN, Kutty MK (1967a) Studies on the benthic Fauna of Cochin
Backwater. Proceedings of the Indian Academy of Science-Section B
66(4): 123-142.
29. Desai BN, Kutty MK (1967b) A Comapron of the marine and Estuarine
How to cite this article: Susanta K C, Tridip K D. Relevance of Meiobenthic Research: Indian Perspectives. Examines Mar Biol Oceanogr. 1(4). EIMBO.000523.2018.


