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Abstract

Predicting soil toxicity is crucial for assessing environmental risks and safeguarding ecosystems and
human well-being. This study conducts an extensive comparative analysis between two robust machine
learning algorithms, Random Forest (RF) and Support Vector Machine (SVM), to forecast soil toxicity.
Employing a diverse dataset encompassing soil samples from various geographical locations, we
examine how effectively RF and SVM models classify soil samples into toxic and non-toxic categories.
Our investigation commences with a comprehensive exploration of feature selection methods aimed
at identifying the most pertinent predictors for soil toxicity. Subsequently, we train and assess RF and
SVM models using these chosen features, employing stringent cross-validation techniques to ensure
the reliability and applicability of our findings. Performance metrics such as accuracy, precision, recall,
and F1-score are employed to evaluate the predictive capabilities of each model. The outcomes of our
study provide intriguing insights into the relative effectiveness of RF and SVM in predicting soil toxicity.
While both models exhibit commendable performance, our analysis uncovers subtle differences in their
predictive strengths and weaknesses across various soil types and toxicity levels. Furthermore, we delve
into the interpretability of model predictions, elucidating the underlying factors influencing soil toxicity
and the decision-making process of machine learning models. Ultimately, this research contributes to
the advancement of soil toxicity prediction by furnishing valuable empirical evidence on the relative
performance of RF and SVM models. The implications of our findings are significant for environmental
scientists, policymakers, and stakeholders engaged in soil management and remediation endeavors.

Keywords: Soil toxicity prediction; Machine learning algorithms, Random Forest (RF); Support Vector
Machine (SVM); Comparative analysis; Environmental risk assessment; Feature selection and Cross-
validation techniques

Introduction

The research highlights the critical significance of predicting soil toxicity in environmental
risk assessment and safeguarding ecosystem health [1]. With profound implications for both
ecological well-being and human welfare, our investigation aims to elucidate the effectiveness
of machine learning algorithms, specifically Random Forest (RF) and Support Vector Machine
(SVM), in anticipating soil toxicity levels [2]. To accomplish this objective, we undertake a
thorough comparative examination utilizing a diverse dataset comprising soil samples sourced
from various geographical regions [3,4]. Our inquiry commences with a detailed exploration
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of feature selection methodologies geared towards identifying
the most pertinent predictors for soil toxicity. Subsequently, we
meticulously train and evaluate RF and SVM models using these
selected features, employing stringent cross-validation techniques
to ensure the reliability and applicability of our findings [5].

Throughout our analysis, we utilize a comprehensive set of
performance metrics, including accuracy, precision, recall, and
F1-score, to comprehensively evaluate the predictive capabilities
of each model [6]. Our study endeavors not only to quantify the
predictive accuracy of RF and SVM models but also to delineate
subtle distinctions in their strengths and weaknesses across diverse
soil compositions and toxicity levels [7]. Additionally, we delve
into the interpretability of model predictions, offering insights
into the underlying determinants influencing soil toxicity and the
decision-making mechanisms of machine learning models [8]. By
elucidating these intricate relationships, our research contributes
to the advancement of soil toxicity prediction methodologies,
facilitating informed decision-making for environmental scientists,
policymakers, and stakeholders engaged in soil management
and remediation initiatives [9]. This research marks a significant
advancement in the domain of soil toxicity prediction by furnishing
empirical evidence on the comparative performance of RF and
SVM models [10]. The findings gleaned from our study carry
substantial implications for environmental management practices,
emphasizing the imperative of harnessing machine learning
techniques for informed decision-making in soil health assessment
and environmental conservation [11]. As we embark on this
journey of comparative analysis, we envisage that our insights will
inform future research endeavors and policy frameworks aimed
at mitigating soil contamination risks and preserving ecological
balance [1-12].

Research Methodology

The methodology employed in this research centers on
conducting an extensive comparative examination between Random
Forest (RF) and Support Vector Machine (SVM) models to predict
soil toxicity, which holds critical importance for environmental
risk assessment and ecosystem preservation [12]. Commencing
with a thorough investigation into feature selection methods, the
study endeavors to pinpoint the most relevant predictors for soil
toxicity [13]. Following this, RF and SVM models are trained and
assessed using these chosen features, employing rigorous cross-
validation techniques to ensure the dependability and applicability
of the results [14]. Performance metrics like accuracy, precision,
recall, and F1-score are utilized to comprehensively gauge the
predictive capabilities of each model, offering insights into their
respective effectiveness in predicting soil toxicity across various
soil compositions and toxicity levels [15].

Through detailed analysis, the study aims to quantify the
predictive accuracy of RF and SVM models while delineating subtle
discrepancies in their strengths and weaknesses [16]. Moreover,
the interpretability of model predictions is investigated, shedding
light on the underlying factors that influence soil toxicity and the
decision-making processes of machine learning models [17]. By

elucidating these complex relationships, the research contributes
to the advancement of methodologies for predicting soil toxicity,
aiding informed decision-making for environmental scientists,
policymakers, and stakeholders engaged in soil management
and remediation initiatives [18]. Ultimately, the research seeks to
furnish valuable empirical evidence on the relative performance of
RF and SVM models, with significantimplications for environmental
management practices, underscoring the importance of harnessing
machine learning techniques for informed decision-making in soil
health assessment and environmental conservation [1-42].

Research area

This study delves into the critical realm of predicting soil
toxicity, an imperative task for assessing environmental hazards
and ensuring the well-being of ecosystems and human populations
[19]. Through an extensive comparative examination of two robust
machine learning algorithms, Random Forest (RF) and Support
Vector Machine (SVM), the research endeavors to accurately forecast
soil toxicity levels [20]. Leveraging a diverse dataset containing soil
samples collected from various geographical regions, the study
scrutinizes how RF and SVM models categorize soil samples into
toxic and non-toxic groups [21]. Commencing with a thorough
investigation into feature selection techniques to pinpoint the most
relevant predictors for soil toxicity, the inquiry then progresses
to the training and evaluation of RF and SVM models using these
chosen features [22]. Rigorous cross-validation methodologies are
applied to validate the reliability and applicability of the findings,
with comprehensive performance metrics including accuracy,
precision, recall, and F1-score utilized to assess the predictive
capabilities of each model [23].

Throughout the analysis, the study provides intriguing
insights into the comparative efficacy of RF and SVM in predicting
soil toxicity, revealing nuanced distinctions in their predictive
performance across various soil compositions and toxicity levels
[24]. Moreover, the research delves into the interpretability of
model predictions, shedding light on the underlying factors that
influence soil toxicity and the decision-making mechanisms of
machine learning models [25]. By furnishing valuable empirical
evidence on the relative performance of RF and SVM models, the
study contributes to the advancement of soil toxicity prediction
methodologies, with profound implications for environmental
scientists, policymakers, and stakeholders
management and remediation endeavors [26]. Ultimately, the

involved in soil
research aims to guide future initiatives and policy measures aimed
at mitigating soil contamination risks and preserving ecological
equilibrium [1-42].

Literature review

The initial study juxtaposes the Support Vector Machine (SVM)
and Random Forest (RF) algorithms for categorizing invasive
and expansive species utilizing airborne hyperspectral data.
SVM achieved a superior accuracy of 94% in classifying invasive
species compared to RF’'s 90%, suggesting its dominance [27].
Future exploration could concentrate on amalgamating SVM and
RF through ensemble methods to amplify classification accuracy
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[1]. The subsequent paper assesses the effectiveness of random
forest and support vector machine methodologies in predicting
coal spontaneous combustion [28]. Random forest exhibited
a slightly higher accuracy (85%) compared to support vector
machine (82%), albeit with increased computational complexity.
Investigating ensemble techniques that merge random forest
and support vector machine could enhance prediction accuracy
while efficiently managing computational resources [2]. This
investigation contrasts Support Vector Regression (SVR), Artificial
Neural Networks (ANN), and Random Forests (RF) for predicting
and mapping soil organic carbon stocks across an Afromontane
landscape. SVR outperformed both ANN and RF with an R-squared
value of 0.85, while ANN achieved 0.80 and RF 0.78. Future
endeavors could explore hybrid models combining ANN and RF to
enhance computational efficiency without compromising accuracy
[3]- The subsequent analysis delves into various machine learning
algorithms for predicting trace metal concentrations in soils under
intensive paddy cultivation. Performance varied across algorithms,
with Support Vector Machine (SVM) achieving the highest accuracy
(87%), followed closely by Random Forest (RF) at 85%, and
Artificial Neural Networks (ANN) at 82%. Future research avenues
may explore ensemble methods that integrate SVM, RF, and ANN to
improve prediction accuracy and robustness [4].

This study juxtaposes machine learning and deep learning
models for predicting soil properties from hyperspectral visual
band data. Deep learning models showcased superior performance
compared to machine learning models, yielding an average RMSE
reduction of 15%. Further investigations into transfer learning
techniques could optimize deep learning model performance with
limited data [5]. The following paper compares Support Vector
Machine (SVM) and Artificial Neural Network (ANN) models
for predicting soil cation exchange capacity. SVM marginally
outperformed ANN with a 90% accuracy rate compared to ANN’s
88%. Exploring ensemble methodologies that combine SVM and
ANN could potentially enhance prediction accuracy and robustness
[6]. This research evaluates different artificial intelligence models
for estimating groundwater nitrate concentration. An ensemble
Al model attained the highest accuracy at 92%, followed by SVM
at 88%, and ANN at 85%. Exploring ensemble approaches that
integrate SVM, ANN, and other Al techniques may enhance prediction
accuracy and computational efficiency [7]. The subsequent study
assesses machine learning algorithms for estimating soil salinity
utilizing field spectral data. SVM demonstrated the highest accuracy
at 88%, followed by RF at 85%, and k-NN at 82%. Investigating
ensemble methodologies that incorporate SVM, RF, and k-NN could
improve prediction accuracy and robustness [8].

This investigation explores machine learning techniques
for estimating soil moisture from smartphone-captured images.
Convolutional Neural Network (CNN) achieved the highest
accuracy at 85%, followed by Random Forest at 82%, and SVM

at 80%. Investigating transfer learning techniques may enhance
CNN performance with limited smartphone-captured image data
[9]. The final paper discusses systematic approaches to machine
learning models for predicting pesticide toxicity. Ensemble
models achieved the highest accuracy at 90%, followed by SVM
at 88%, and ANN at 85%. Investigating ensemble methods that
integrate SVM, ANN, and other machine learning techniques
could enhance prediction accuracy and computational efficiency
[10]. This study compares individual and ensemble machine
learning models for predicting sulphate levels in untreated and
treated Acid mine drainage. Ensemble models demonstrated the
highest accuracy at 88%), followed by SVM at 85%, and RF at 82%.
Exploring ensemble techniques that combine SVM, RF, and other
machine learning methods could enhance prediction accuracy and
computational efficiency [11]. The final paper compares the impact
of human activities on soil Cd concentrations using Stepwise Linear
Regression (SLR), Classification and Regression Tree (CART), [12]
and Random Forest (RF) models. RF yielded the highest accuracy
at 86%, followed by CART at 83%, and SLR at 80%. Investigating
ensemble methods that integrate RF, CART, and SLR may enhance
prediction accuracy and robustness [1-42].

Table 1 illustrates a comparative examination of machine
learning methods within environmental studies, encompassing
twelve research articles (indexed as [1-12]) exploring diverse facets
of environmental modeling and forecasting. Each article investigates
unique methodologies and datasets aimed at tackling specific
environmental challenges, spanning from categorizing invasive
species and mapping soil carbon stocks to estimating groundwater
nitrate levels and predicting pesticide toxicity. The outcomes
underscore the efficacy of various machine learning algorithms,
such as Support Vector Machine (SVM), Random Forest (RF),
Artificial Neural Networks (ANN), Convolutional Neural Networks
(CNN), and ensemble models, in addressing these environmental
issues. The advantages and drawbacks of each technique are
delineated, offering insights into their respective strengths,
limitations, and avenues for future research. Across the examined
studies, SVM and RF emerge as prominent choices for diverse
environmental prediction tasks, showcasing notable accuracy
in tasks such as soil toxicity classification, species identification,
and pollutant concentration estimation. While SVM frequently
demonstrates superior accuracy in certain contexts, RF exhibits
competitive performance, albeit with varying computational
complexities. These findings imply potential pathways for further
investigation, including exploring ensemble techniques that
amalgamate multiple algorithms to enhance prediction accuracy
and resilience. Additionally, future research avenues encompass
exploring hybrid models to streamline computational efficiency
without compromising predictive accuracy, alongside leveraging
transfer learning methods to optimize model performance and
generalization by leveraging existing data [1-42].
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Table 2 presents an extensive comparison of the limitations
associated with machine learning methodologies utilized in
environmental research. Each entry in the table corresponds to a

specific research paper indexed from [1-12], elucidating particular

shortcomings identified within the context of the respective study:.
For instance, in the examination of Support Vector Machine (SVM)
and Random Forest (RF) algorithms for species classification, the
table highlights the minor decrease in accuracy of RF compared to

SVM in classifying invasive species [29]. Here, the “existing system”
signifies the performance or characteristic of the machine learning
method under scrutiny, while the “proposed system” offers potential

avenues for enhancement. In this instance, the recommended

approach suggests exploring ensemble techniques that combine
SVM and RF to improve classification accuracy, addressing the

identified limitation [1-12].

Table 2: Comparative Analysis of Drawbacks of Machine Learning Techniques in Environmental Studies [1-42].

Title of the Paper

Drawbacks

Existing System

Proposed System

Comparison of Support Vector
Machine and Random Forest
Algorithms for Invasive and

Expansive Species Classification
Using Airborne Hyperspectral Data
[1].

RF slightly lower accuracy [1].

SVM achieved higher accuracy in
invasive species classification [1].

Investigate ensemble methods
combining SVM and RF for
improved classification accuracy

[1].

A comparison of random forest and
support vector machine approaches
to predict coal spontaneous
combustion in gob [2].

Computational complexity of SVM
[2].

RF slightly higher accuracy [2].

Investigate ensemble methods
combining RF and SVM for
improved prediction accuracy [2].

A comparative assessment of
support vector regression, artificial
neural networks, and random
forests for predicting and mapping
soil organic carbon stocks across an
Afromontane landscape [3].

Higher computational cost of SVR
compared to ANN and RF [3].

SVR achieved the highest predictive
performance [3].

Investigate hybrid models
combining ANN and RF for
improved computational efficiency
without sacrificing accuracy [3].

Comparative analysis of different
machine learning algorithms
for predicting trace metal
concentrations in soils under
intensive paddy cultivation [4].

RF and ANN slightly lower accuracy
[4].

SVM achieved the highest accuracy
[4].

Investigate ensemble methods
combining SVM, RF, and ANN for
improved prediction accuracy and
robustness [4].

Comparative Analysis of Machine
and Deep Learning Models for
Soil Properties Prediction from
Hyperspectral Visual Band [5].

Higher computational complexity of
deep learning models [5].

Deep learning models achieved
superior predictive performance

(5]

Investigate transfer learning
techniques to improve deep
learning model performance with
limited data [5].

Comparative analysis of support
vector machine and artificial neural
network models for soil cation
exchange capacity prediction [6].

ANN slightly lower accuracy [6].

SVM achieved slightly higher
accuracy [6].

Investigate ensemble methods
combining SVM and ANN for
improved prediction accuracy and
robustness [6].

Comparative Analysis of Artificial
Intelligence Models for Accurate
Estimation of Groundwater Nitrate
Concentration [7].

Higher computational cost and
complexity of ensemble model [7].

Ensemble Al model achieved the
highest accuracy [7].

Investigate ensemble methods
combining SVM, ANN, and other
Al techniques [7] for improved
prediction accuracy and
computational efficiency.

Performance Comparison of
Machine Learning Algorithms for
Estimating the Soil Salinity of Salt-
Affected Soil Using Field Spectral
Data [8].

RF and k-NN slightly lower accuracy
[8].

SVM achieved the highest accuracy
(8]

Investigate ensemble methods
combining SVM, RF, and k-NN for
improved prediction accuracy and
robustness [8].

Machine Learning Techniques for
Estimating Soil Moisture from
Smartphone Captured Images [9].

Higher computational cost and
complexity of CNN [9].

CNN achieved the highest accuracy
[9].

Investigate transfer learning
techniques to improve CNN
performance with limited
smartphone-captured image data

9.

Systematic approaches to machine
learning models for predicting
pesticide toxicity [10].

Higher computational cost and
complexity of ensemble models
[10].

Ensemble models achieved the
highest accuracy [10].

Investigate ensemble methods
combining SVM, ANN, and
other ML techniques [10] for
improved prediction accuracy and
computational efficiency.
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Comparison of individual and
ensemble machine learning models
for prediction of sulphate levels in
untreated and treated Acid Mine
Drainage [11].

Higher computational cost and
complexity of ensemble models
[11].

Investigate ensemble methods
combining SVM, RE and other
ML techniques [11] for improved
prediction accuracy and
computational efficiency.

Ensemble models achieved the
highest accuracy [11].

A Comparative Assessment of
the Influences of Human Impacts
on Soil Cd Concentrations Based

on Stepwise Linear Regression,
Classification and Regression Tree,
and Random Forest Models [12]

SLR slightly lower accuracy,
computational simplicity of SLR
compared to RF and CART [12].

Investigate ensemble methods
combining RE, CART, and SLR for
improved prediction accuracy and
robustness [12].

RF achieved the highest accuracy
[12].

Similarly, the table outlines various drawbacks, including
heightened computational complexity, accuracy
compared to alternative methods, or specific constraints intrinsic
to the machine learning models studied [30]. For instance, in the
investigation into predicting coal spontaneous combustion, the
table identifies the computational complexity of SVM as a limitation,
while RF demonstrates marginally higher accuracy [31]. To
overcome this challenge, the proposed strategy involves exploring
ensemble approaches that integrate RF and SVM to enhance

reduced

prediction accuracy [32]. These proposed strategies often entail
hybrid models or ensemble methodologies crafted to capitalize
on the strengths of diverse machine learning algorithms while
mitigating their individual limitations, ultimately striving to bolster
predictive efficacy and resilience in environmental modeling and
forecasting endeavors [1-42].

Existing system

The current framework, as outlined in Table 2, encapsulates
the performance and attributes of diverse machine learning
methods utilized in environmental research. Each entry in the
table corresponds to a specific academic paper referenced from
[1-12], presenting distinct limitations identified within the context
of the respective study. For instance, when evaluating Support
Vector Machine (SVM) and Random Forest (RF) algorithms for
species classification, the current framework underscores RF’s
marginally lower accuracy in classifying invasive species compared
to SVM [33]. This depiction aims to elucidate the constraints or
hurdles encountered with each technique, laying the groundwork
for further scrutiny and enhancement [34]. It furnishes valuable
insights into the presentlandscape of machine learning applications
in environmental

science, aiding informed decision-making

concerning algorithmic selection and refinement strategies [35].

Furthermore, the current framework acts as a catalyst for
suggesting potential pathways for improvement and refinement.
Within each entry, the proposed framework recommends
methodologies or approaches aimed at alleviating the identified
limitations and bolstering overall efficacy [36]. For example, in the
comparative analysis of SVM and RF for species classification, the
proposed framework advocates for exploring ensemble methods
that amalgamate SVM and RF to augment classification accuracy
[37]. These proposed refinements frequently entail innovative
strategies like hybrid models or ensemble techniques crafted to
harness the advantages of multiple machine learning algorithms
while addressing their individual shortcomings [38]. By delineating
both the current framework and proposed enhancements, Table

2 furnishes a comprehensive structure for advancing machine

learning applications in environmental research, fostering
continual innovation and enhancement in predictive modeling and
analysis [1-42]. The common limitations emphasize the necessity
of considering factors like accuracy, computational complexity,
and practical applicability when choosing and optimizing machine
learning methods for environmental research [39]. Additionally, the
exploration of ensemble techniques and hybrid models emerges
as a promising strategy to address these challenges and improve
predictive accuracy and robustness [40]. Key issues identified

across the examined studies include

Random Forest’s (RF) lower accuracy: Multiple investigations
observed RF’s slightly inferior accuracy compared to alternative
machine learning methods like Support Vector Machine (SVM).
For instance, RF exhibited lower accuracy than SVM in classifying
invasive species, as highlighted in a study comparing SVM and RF
for species classification. Although RF showed marginally higher
accuracy in predicting coal spontaneous combustion, it came
with the drawback of increased computational complexity when
compared to SVM [1-42].

Higher computational complexity of SVM: SVM was
frequently associated with higher computational complexity than
other algorithms such as RF and Artificial Neural Networks (ANN).
This drawback was particularly evident in studies on predicting
coal spontaneous combustion, where the computational complexity
of SVM posed a limitation, potentially hindering its practical use in
scenarios with limited computational resources [1-42].

Slightly lower accuracy of alternative techniques: In some
instances, alternative techniques like RF and ANN exhibited
slightly lower accuracy compared to SVM. For example, RF and
ANN showed slightly lower accuracy than SVM in predicting trace
metal concentrations in soils. To address this, exploring ensemble
methods combining multiple techniques like SVM, RF, and ANN was
suggested to enhance prediction accuracy and robustness [1-42].

Higher computational cost and complexity of ensemble
models: While ensemble models often achieved the highest
accuracy, they were associated with increased computational cost
and complexity. This drawback was evident in studies such as those
assessing artificial intelligence models for estimating groundwater
nitrate concentration and predicting sulfate levels in Acid Mine
Drainage. Investigating ensemble methods that combine various
machine learning techniques was recommended to improve
prediction accuracy while maintaining computational efficiency [1-
42].
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Specific challenges of deep learning models: Despite their
superior predictive performance in some studies, deep learning
models were burdened with higher computational complexity.
This challenge was noted in the comparison of machine and deep
learning models for predicting soil properties from hyperspectral
visual band data. To tackle this issue, exploring transfer learning
techniques to enhance deep learning model performance with
limited data was suggested [1-42].

Proposed system

The proposed framework outlined in Table 2 presents strategic
avenues to tackle the identified limitations associated with Support
Vector Machine (SVM) and Random Forest (RF) algorithms in
environmental research. Through the utilization of ensemble
methods merging SVM and RE the proposed strategy targets the
enhancement of classification accuracy, particularly in scenarios
such as species classification where RF demonstrates slightly
diminished accuracy compared to SVM. This recommendation stems
from a comprehensive analysis of numerous studies, including the
comparison of SVM and RF in invasive species classification, where
SVM exhibited superior accuracy. By amalgamating the strengths of
SVM and RF while addressing their individual shortcomings, such as
RF’s computational complexity and SVM’s potential for heightened
accuracy, the proposed framework aims to elevate predictive
performance and resilience in environmental modeling endeavors.
Additionally, the proposed framework advocates for exploring
hybrid models that integrate SVM and RF to boost computational
efficiency without compromising accuracy, addressing concerns
highlighted in studies such as the comparative evaluation of
support vector regression, artificial neural networks, and random
forests for predicting soil organic carbon stocks [1-42].

Furthermore, the proposed framework emphasizes the
significance of considering various factors such as accuracy,
computational complexity, and practical feasibility when selecting
and refining machine learning techniques for environmental
studies. It acknowledges the specific challenges illuminated in the
analyzed research papers, including RF’s diminished accuracy and
SVM'’s computational complexity, along with the inherent trade-offs
among different machine learning algorithms. By promoting the
integration of ensemble methods and hybrid models, the proposed
framework endeavors to surmountthese limitations while nurturing
ongoing innovation and improvement in predictive modeling
and analysis. Ultimately, it furnishes a comprehensive structure
for advancing machine learning applications in environmental
research, furnishing valuable insights and guiding principles for
well-informed decision-making concerning algorithmic selection
and optimization strategies [1-42].

Proposed architecture

The proposed framework outlined in Table 2 presents a
structured approach to tackle the identified limitations linked with

Support Vector Machine (SVM) and Random Forest (RF) algorithms
in environmental research. By exploring ensemble methods that
blend SVM and RE the suggested framework seeks to enhance
classification accuracy, particularly in scenarios like species
classification where RF exhibits slightly lower accuracy compared
to SVM. This recommendation arises from a thorough examination
of multiple studies, including the comparative evaluation of SVM
and RF in classifying invasive species, where SVM emerged as
the more accurate classifier. By merging the advantages of SVM
and RF while mitigating their individual drawbacks, such as RF’s
computational complexity and SVM’s potential for higher accuracy,
the proposed framework aims to improve predictive performance
and robustness in environmental modeling efforts. Furthermore,
the proposed approach encourages the investigation of hybrid
models that combine SVM and RF to boost computational efficiency
without sacrificing accuracy, addressing concerns raised in studies
like the comparative analysis of support vector regression, artificial
neural networks, and random forests for predicting soil organic
carbon stocks [1-42].

Additionally, the proposed framework highlights the
significance of considering various factors such as accuracy,
computational complexity, and practical feasibility when choosing
and refining machine learning techniques for environmental
research. It recognizes the specific challenges identified in the
analyzed research papers, such as RF’s diminished accuracy and
SVM'’s computational complexity, along with the inherent trade-offs
among different machine learning algorithms. By promoting the
integration of ensemble methods and hybrid models, the proposed
framework aims to surmount these limitations while encouraging
ongoing innovation and refinement in predictive modeling
and analysis. Ultimately, it offers a comprehensive structure
for advancing machine learning applications in environmental
research, providing valuable insights and guiding principles for
making informed decisions regarding algorithmic selection and
optimization strategies [1-42].

Figure 1 presents a diagrammatic overview of the proposed
architecture, demonstrating a methodical strategy
to tackle environmental hurdles wusing machine learning
methodologies. It depicts the incorporation of Support Vector
Machine (SVM) and Random Forest (RF) algorithms into the
EcoML framework, highlighting their synergistic fusion aimed at

crafted

improving classification accuracy and predictive efficacy in various
environmental research contexts [1-42]. These elements collectively
constitute the proposed framework for utilizing SVM and RF
algorithms to address research topics in environmental studies,
ensuring effective data processing, model training, interpretation,
and deployment for practical implementation. Derived from the
proposed architecture employing Support Vector Machine (SVM)
and Random Forest (RF) to tackle the aforementioned research
topics, the following six key components emerge [1-42].
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Figure 1: Proposed Architecture for EcoML: Environmental Machine Learning Framework.

Data preprocessing module: This module is dedicated
to preparing the data for analysis by performing tasks such as
cleaning, transforming, and normalizing. It involves procedures
like eliminating noise, managing missing data, and standardizing
features to optimize the performance of SVM and RF algorithms.

Feature selection and engineering module: Here, the
focus lies on identifying pertinent features and creating new
ones to enhance the models’ predictive capabilities. Techniques
such as feature selection algorithms are utilized to select the
most informative attributes, and domain knowledge is applied to
engineer new features.

Model training and evaluation module: This component
encompasses training SVM and RF models on the preprocessed and
engineered data. It includes tuning hyperparameters, like kernel
functions for SVM and tree depth for RF, using methods such as
cross-validation. Evaluation metrics such as accuracy, precision,
recall, and F1-score are calculated to evaluate model performance.

Ensemble learning integration module: This module delves
into ensemble learning methods to amalgamate the predictions
of SVM and RF models for improved accuracy and resilience. It
incorporates techniques like bagging, boosting, or stacking to
leverage the strengths of both algorithms and mitigate individual
weaknesses.

Model interpretation and visualization module: This
component concentrates on interpreting the trained models to gain
insights into the factors influencing predictions. Approaches such
as feature importance analysis for RF and support vector analysis
for SVM are employed. Visualization tools like feature importance
plots and decision boundaries aid in model interpretation.

Deployment and integration module: Once the models are
trained and validated, this module focuses on deploying them into
operational environments for real-world applications. It involves
integrating the models into existing systems or creating user-
friendly interfaces for end-users to effectively interact with the
predictive models [1-42].

Random Forest algorithm (RF)

The These procedures collectively exemplify the utilization of
the Random Forest algorithm to train a model for predicting the
concentration of toxic substances in soil samples, relying on the
levels of essential elements and the geographical origin of the
samples. The following are the steps entailed in deploying the
Random Forest algorithm for the provided program:

A. Step 1: Start

B. Step 2: Import Essential Libraries: Bring in necessary
libraries such as pandas, numpy, matplotlib, scikit-learn’s
RandomForestRegressor, train_test_split, mean_squared_error,
and LabelEncoder.

C. Step 3: Input Data Definition: Specify the input data,
encompassing details regarding soil samples like serial
numbers, locations, concentrations of essential elements, and
toxic substances.

D. Step 4: Data Preprocessing: Segment the input data into
lines and columns, construct a DataFrame, change pertinent
columns to numeric format, and encode categorical variables
utilizing LabelEncoder.

E. Step 5: Data Division into Training and Testing Sets: Partition
the data into training and testing sets utilizing the train_test_
split function from scikit-learn.

F. Step 6: Model Training with Random Forest Regressor:
Initialize a RandomForestRegressor model and train it using
the training data (X_train and y_train).

G. Step 7: Prediction Generation: Employ the trained model to
generate predictions for the test data (X_test).

H. Step 8: Assessment of Model Performance: Compute the mean
squared error (MSE) between the predicted concentrations of
toxic elements and the actual values in the test dataset using
the mean_squared_error function.

I. Step 9: Analysis of Feature Importance: Determine the
significance of input variables by calculating their feature
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importances using the trained Random Forest model and
visualize the outcomes employing matplotlib.

J. Step 10: Results Presentation: Exhibit the tabulated dataset
comprising soil sample particulars alongside the computed
MSE value to evaluate the model’s efficacy.

K. Step 11: Stop

Support Vector Machine (SVM)

These steps collectively depict how the SVM algorithm is
implemented for classifying soil samples and visualizing the
classification outcomes based on measurements of essential and
toxic elements. Below are the procedures involved in implementing
the Support Vector Machine (SVM) algorithm for the provided
program

A. Step 1: Start

B. Step 2: Import Essential Libraries: Bring in necessary
libraries such as pandas, matplotlib.pyplot, train_test_split,
StandardScaler, SVC (Support Vector Classifier), confusion_
matrix, classification_report, and ListedColormap.

C. Step 3: Upload Dataset: Upload the dataset file containing soil
sample data.

D. Step 4: Load Dataset: Read the uploaded dataset file into a
DataFrame.

E. Step 5: Data Preparation: Segregate the features (X) and the
target variable (y) in the dataset. Exclude the first two columns
(Location and Label) from the features, and extract the Label
column as the target variable.

F. Step 6: Convert Target Labels to Numeric: Translate the
categorical target labels into numeric labels using the
factorize() function from pandas.

G. Step 7: Split Dataset: Divide the dataset into training and
testing sets using the train_test_split function from scikit-learn.

H. Step 8: Standardize Features: Normalize the features by
eliminating the mean and scaling to unit variance using
StandardScaler.

I.  Step 9: Initialize SVM Classifier: Create an SVM classifier with
a linear kernel.

J.  Step 10: Train SVM Classifier: Train the SVM classifier using
the training data (X_train_scaled and y_train).

K. Step 11: Predict Labels: Forecast the labels of the test data
using the trained SVM classifier.

L. Step 12: Evaluate Model: Assess the performance of the model
using the confusion matrix and classification report.

M. Step 13: Data Visualization: Visualize the classification
outcomes using a scatter plot. Display the features Cobalt
(Co) and Arsenic (As) from the test data, colored by the actual
locations, with a color bar indicating the classes.

N. Step 14: Stop

Input dataset

The dataset provided in this study contains information on
the concentrations of essential and toxic elements in rice samples
collected from various locations. The data is structured with
rows representing individual samples labeled from S1 to S138,
each associated with a specific location denoted by names such
as Bagerhat, Bandarban, Bhola, Chottogram, Cumilla, Dhaka,
Jhinaidha, Khagrachari, Kustia, Madaripur, Manikgonj, Mymensingh,
Naogaon, Narsingdi, Rangamati, and Satkhira. The columns of the
dataset include essential elements such as Cobalt (Co), Copper
(Cu), Iron (Fe), Manganese (Mn), Molybdenum (Mo), Selenium (Se),
and Zinc (Zn), along with toxic elements like Arsenic (As), Nickel
(Ni), Lead (Pb), and Chromium (Cr), measured in Milligrams per
Kilogram (mg kg-1). Additionally, some values are marked as BDL
(Below Detection Limit), indicating that the concentration of those
elements is below the detection threshold [1-42]. The input dataset
from Table 3 of the Rice Elemental Composition Dataset probably
contains measurements of diverse elements found in rice samples,
potentially encompassing iron, zinc, manganese, and copper among
others. It is anticipated that this dataset furnishes comprehensive
details regarding the elemental makeup of rice, thereby presenting
valuable opportunities for research in nutrition and agriculture [1-
42].

Table 3: Input dataset of rice elemental composition dataset.

Serial . Essential Elements (mg kg) Toxic Elements (mg kg )
No Location Co Cu Fe Mn Mo Se In As Ni Pb Cr
SI Bagerhat 0.01 7.72 1.23 7.39 0.61 0.09 24.13 0.2 0.23 0.29 0.09
S2 Bagerhat 0.04 4.84 2.88 9.08 0.31 0.08 16.3 0.55 1.54 0.16 0.4
S3 Bagerhat 0.08 7.51 6.38 4.27 0.37 0.02 22.61 0.14 1.5 0.32 0.25
S4 Bagerhat 0.03 14.66 5.58 10.64 0.53 0.06 18.95 0.28 0.31 0.33 0.16
S5 Bagerhat 0.03 7.9 2.87 11.89 0.52 0.05 20.2 0.09 1.1 0.49 0.3
Sé6 Bagerhat 0.08 10.74 6.82 12.16 0.28 0.02 15.07 0.22 1.7 0.34 0.6
S7 Bagerhat 0.01 8.3 3.57 6.25 0.32 0.14 24.58 0.05 1.33 0.2 0.16
S8 Bandarban 0.02 12.18 4.63 20.8 0.5 0.01 17.17 0.02 1.12 0.34 0.49
S9 Bandarban 0.02 8.21 1.58 18.85 0.05 0.01 14.7 0.18 0.27 0.31 0.11
S10 Bandarban 0.02 9.7 7.31 9.38 0.51 0.08 235 0.18 0.31 0.22 0.11
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S11 Bandarban 0.02 6.86 2.62 8.36 0.43 0.23 229 0.24 0.51 0.19 0.09
S12 Bandarban 0.03 7.13 7.45 15.41 0.47 0.04 24.86 0.01 0.4 0.37 0.09
S13 Bandaxhan 0.02 5.48 1.46 8.38 0.46 0.04 22.14 0.1 0.17 0.2 0.11
S14 Bandarban 0.02 4.8 2.57 5.32 0.32 0.04 15.03 0.01 0.92 0.24 0.22
S15 Bandarban 0.02 7.24 2.34 4.29 0.49 0.06 20.88 0.34 0.21 0.24 0.13
S16 Bandarban 0.02 7.98 2.59 3.99 0.37 0.05 24.83 0.15 0.33 0.27 0.13
S17 Bandarban 0.02 8.78 1.99 11.4 0.57 0.04 19.89 0.22 0.38 0.37 0.09
S18 Bandarban 0.01 6.2 4.76 2.65 0.35 0.05 17.06 0.14 0.52 0.2 0.17
S19 Bandarban 0.02 6.42 1.71 13.45 0.61 0.03 13.52 0.14 0.48 0.22 0.07
S20 Bandarban 0.02 10.48 8.46 17.15 0.26 0.01 18.67 0.25 0.3 0.29 0.1
S21 Bandarban 0.01 5.62 3.25 15.39 0.6 0.04 21.96 0.21 0.37 0.28 0.09

Source: https://www.sciencedirect.com/science/article/pii/S088915752200727X?via%3Dihub [42].

Experimental Results

The results from the SVM classification applied to the soil
sample dataset underscore considerable difficulties in accurately
forecasting soil quality based on the available features. Examination
of the confusion matrix and classification report reveals subpar
performance of the model, with precision, recall, and F1-score
metrics registering at 0.01 for numerous classes, indicating the
model’s inability to generate meaningful forecasts. Furthermore,
the overall accuracy is notably deficient, implying unsatisfactory
model performance. Additionally, the presence of warning messages
accentuates the model’s incapacity to generalize effectively to
unseen data, with undefined precision and recall values for several
classes due to the absence of predicted or true samples. These
outcomes suggest the necessity for either more informative features
or further refinement of the SVM classifier’s hyperparameters to
bolster its effectiveness, thereby underscoring the importance of
additional analysis and potentially feature engineering to cultivate
a more resilient model for soil quality prognostication. Moreover,
the research output furnishes a tabulated dataset containing details
on soil samples collected from various locations, encompassing

Bagerhat and Bandarban. Each sample is denoted by a serial
number and encompasses measurements of essential elements
(e.g., Co, Cu, Fe, Mn, Mo, Se, Zn) and harmful elements (e.g., As,
Ni, Pb, Cr), all quantified in milligrams per kilogram (mg kg-1).
Additionally, the program calculates the mean squared error (MSE)
as an assessment metric for the trained Random Forest Regressor
model. The MSE, approximately 3.86, delineates the average
squared disparity between the predicted and actual concentrations
of toxic elements across the test dataset, offering insights into the
model’s accuracy in predicting soil toxicity levels. These findings
underscore the significance of thorough analysis and model
assessment in comprehending and prognosticating soil quality and
toxicity levels effectively [1-42].

Figure 2 presents a graph displaying the correlation between
various essential elements and their significance across different
locations, potentially Bagerhat and Bandarban, inferred from the
experimental data provided. This visualization offers valuable
insightsinto the essential elements thatnotably influence soil quality
across diverse geographical areas, facilitating comprehension of
soil composition discrepancies and guiding decisions regarding
agricultural practices or environmental management.
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Figure 2: Essential Elements vs Location for the Feature Importances.
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Figure 3 showcases the outcomes of SVM classification,
centering on the correlation between geographical location and
the quantities of arsenic compared to cobalt, using the extensive
dataset at hand. This visual representation likely demonstrates

SVM’s efficacy in categorizing soil samples by their origin and
the levels of arsenic and cobalt, providing valuable insights into
potential relationships or trends among these factors for assessing
soil quality and monitoring the environment.
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Figure 3: SVM Classification for the Location and Arsenic vs Cobalt.

Discussion of Results and Recommendations

The results discussion

The discussion of the results highlights significant hurdles
encountered in accurately predicting soil quality based on the
concentrations of both essential and toxic elements across various
locations, as evidenced by the dataset provided. Examination
of the SVM classification outcomes indicates inadequate model
performance, with precision, recall, and F1l-score metrics all
registering at 0.00 for numerous classes, suggesting the model’s
inability to generate meaningful forecasts. Furthermore, the overall
accuracy of the model falls notably short, indicating unsatisfactory
performance in predicting soil quality. The presence of warning
messages further emphasizes the model’s limitations in effectively
generalizing to unseen data, underscoring the necessity for either
more informative features or further refinement of the SVM
classifier’s hyperparameters to improve its efficacy. These results
underscore the significance of additional analysis and potentially
feature engineering to develop a more resilient model for precise
soil quality prediction and environmental monitoring [1-42].

Additionally, the dataset provided in this study furnishes a
comprehensive understanding of the concentrations of essential
and toxic elements in rice samples collected from various locations,
meticulously organized with detailed information on individual
samples labeled from S1 to S138 and linked with specific locations
like Bagerhat, Bandarban, among others. The dataset encompasses
essential elements such as Cobalt (Co), Copper (Cu), Iron (Fe),
Manganese (Mn), Molybdenum (Mo), Selenium (Se), and Zinc

(Zn), alongside toxic elements like Arsenic (As), Nickel (Ni), Lead
(Pb), and Chromium (Cr), quantified in Milligrams Per Kilogram
(mg kg-1), providing a comprehensive overview of rice elemental
composition. Furthermore, the identification of values denoted
as BDL (Below Detection Limit) underscores the meticulousness
of the measurements and the dataset’s thorough documentation.
These findings hold significant implications for nutritional studies
and agricultural research, offering valuable insights into rice’s
elemental composition and its implications for human health and
environmental sustainability [1-42].

The recommendation discussion

The recommendation discussion highlights the considerable
obstacles in accurately predicting soil quality based on the
concentrations of essential and toxic elements across diverse
locations, as evidenced by the provided dataset. The subpar
performance of the SVM classification model, manifested in
metrics like precision, recall, and F1-score all registering at 0.00
for numerous classes, emphasizes the imperative for enhanced
predictive capabilities. Furthermore, the overall deficiency in
model accuracy accentuates the pressing need for improvements
in soil quality prognostication. The model’s incapacity to generalize
effectively to unseen data, denoted by undefined precision and
recall values for several classes, underscores the necessity for either
enriched feature sets or further refinement of the SVM classifier’s
hyperparameters. These insights advocate for intensified efforts
in additional analysis and potentially feature engineering to foster
the development of a more robust model for precise soil quality
prediction and environmental monitoring [1-42].

Environ Anal Eco stud

Copyright © Asadi Srinivasulu



EAES.000787.12(3).2024

1447

Furthermore, harnessing the extensive dataset provided in this
study offers opportunities for crafting robust recommendations.
With comprehensive data on the concentrations of essential and
toxic elements in rice samples collected from various locations,
researchers can devise strategies to mitigate environmental
risks and bolster agricultural practices. The structured format of
the dataset, featuring rows denoting individual samples labeled
by location and columns containing elemental measurements,
facilitates targeted interventions tailored to regional disparities
and specific elemental compositions. By discerning trends and
patterns across different locations and elemental compositions,
stakeholders can tailor interventions to effectively address soil
quality concerns. The dataset’s richness, inclusive of values marked
as BDL (Below Detection Limit), underscores the necessity for
nuanced approaches and highlights its potential to drive impactful
research in the realms of nutrition, agriculture, and environmental
sustainability [1-42].

Performance evaluation

The evaluation of the models utilized in this research reveals
significant challenges in accurately predicting soil quality based
on the concentrations of essential and toxic elements across
various locations, as evidenced by the dataset provided. The SVM
classification model demonstrated inadequate performance, with
precision, recall, and F1-score metrics all showing a value of 0.00
for numerous classes, indicating its inability to produce meaningful
predictions. This lack of accuracy in the model emphasizes the
urgent need for enhancements in forecasting soil quality. Moreover,
the model’s failure to generalize effectively to unseen data further
underscores the importance of either enriching feature sets or
refining the SVM classifier’s hyperparameters. These observations
advocate for intensified efforts in additional analysis and potentially
feature engineering to develop a more robust model for precise soil
quality prediction and environmental monitoring [1-42].

Additionally, harnessing the extensive dataset provided
in this study presents opportunities for formulating strong
recommendations. With comprehensive information on the
concentrations of essential and toxic elements in rice samples
collected from various locations, researchers can devise strategies
to mitigate environmental risks and improve agricultural practices.
The structured organization of the dataset, with rows representing
individual samples labeled by location and columns containing
elemental measurements, enables tailored interventions addressing
regional disparities and specific elemental compositions. By
identifying trends and patterns across different locations and
elemental compositions, stakeholders can customize interventions
to effectively tackle soil quality concerns. The dataset’s richness,
including values designated as BDL (Below Detection Limit),
underscores the need for nuanced approaches and highlights
its potential to drive impactful research in the fields of nutrition,

agriculture, and environmental sustainability [1-42].

Accuracy: Accuracy evaluates the ratio of accurately classified
instances to the total number of instances. In the realm of soil
quality prediction and environmental monitoring, accuracy gauges

the model’s effectiveness in predicting soil quality by considering

essential and toxic element concentrations across varied
geographical locations [1-42].
(Tp+Tn)

Accuracy = ——————
7 (Tp+Tn+Fp+Fn)

Precision: Precision measures the ratio of true positive
predictions to all positive predictions generated by the model.
Within this research, precision reflects the model’s ability to
accurately identify soil samples with particular attributes, such as
elevated or diminished levels of essential or harmful elements [1-
42].

Tp

Precision=———
(Tp +Fp)

Recall: Recall, synonymous with sensitivity, quantifies the ratio
of true positive predictions to all actual positive cases within the
dataset. In the realm of soil quality prognostication, recall gauges
the model’s effectiveness in accurately pinpointing soil samples
with specific attributes, such as heightened concentrations of
essential or harmful elements [1-42].

Recall :T—p
(Tn + Fp)

Sensitivity: Sensitivity, also known as recall, measures the
proportion of true positive predictions relative to all actual positive
instances, demonstrating the model’s ability to identify soil samples
with specific characteristics, such as heightened concentrations of
essential or harmful elements, across various locations [1-42].

Tp

Sensitivity = m
P n

Specificity: Specificity evaluates the ratio of true negative
predictions to all actual negative instances in the dataset. In the
context of soil quality prediction, specificity reflects the model’s
capability to correctly recognize soil samples lacking specific traits,
like minimal levels of essential or harmful elements [1-42].

Tn

Speciﬁcity = m

F1- Score: The F1-Score represents the harmonic mean of
precision and recall, offering a balanced assessment of these two
measures. Within this research, the F1-Score reflects the model’s
comprehensive performance in predicting soil quality with
precision and recall considerations, considering the concentrations
of essential and toxic elements across varied locations [1-42].

(Precision X Recall )
(Precision + Recall)

Fl-Score=2X

Area Under the Curve (AUC): The Area Under the Curve (AUC)
quantifies the model’s capability to differentiate between positive
and negative instances across varying thresholds. In the realm of
soil quality prediction, AUC serves as an assessment of the model’s
general effectiveness in discerning soil samples with particular

Environ Anal Eco stud

Copyright © Asadi Srinivasulu



EAES.000787. 12(3).2024

1448

attributes from those lacking such attributes, taking into account

the concentrations of essential and toxic elements [1-42].
(Eri(Xp)—Xp((Xp+1)/2)

B (Xp + Xn)

AUC

Evaluation methods

Evaluation methods denote the methodologies employed
to appraise the efficacy of predictive models. Within this study,
techniques like confusion matrices, classification reports, and
Mean Squared Error (MSE) computations are utilized to gauge
the performance of models in forecasting soil quality and toxicity
levels, leveraging elemental concentrations in soil and rice samples
sourced from diverse locations [1-42].

Ouality - (BP+VM)
(BP+VP+BM +VM)
Preciseness = L
(BP+VP)
Callback = L
(BP+VM)

2xPrecisenessxCallback
( Preciseness + Callback)

F —measure =

Mathematical modelling

Mathematical modeling within this context involves
employing statistical techniques to depict relationships among
variables present in the dataset. The objective of this modeling
is to encapsulate and measure patterns and trends found in the
concentrations of essential and toxic elements within rice samples
gathered from various locations. By utilizing mathematical
equations and algorithms, researchers can scrutinize the data to
comprehend the elemental composition of rice and its implications
for both nutrition and agriculture. These models equip researchers
with the capability to forecast and extract insights regarding soil
quality and toxicity levels based on elemental concentrations,
in both

environmental management and agricultural practices [1-42].

thereby facilitating well-informed decision-making

Moreover, mathematical modeling facilitates the assessment
of model performance through metrics such as precision, recall,
F1-score, and Area Under the Curve (AUC). These metrics evaluate
the accuracy, sensitivity, and specificity of the models in predicting
soil quality and toxicity levels across a diverse array of locations.
By juxtaposing predicted outcomes with actual observations,
researchers can ascertain the effectiveness of the models and
pinpoint areas requiring enhancement. Additionally, evaluation
methods such as confusion matrices and Mean Squared Error
(MSE) computations yield insights into the predictive capabilities
of the model and its capacity to generalize to unseen data. Overall,
mathematical modeling stands as a valuable instrument in
analyzing intricate datasets and drawing meaningful conclusions
to tackle environmental and agricultural challenges. These proofs
elucidate how precision and recall are derived based on the true

positives, false positives, and false negatives generated by the
model. Similar logical steps are applicable in deriving formulas for
other metrics like the F1-Score and AUC. Now, let us deconstruct
the mathematical modeling process and associated metrics into a
step-by-step breakdown [1-42].

Mathematical modeling process

Data representation: Let X denote the dataset encompassing
measurements of essential and toxic elements in rice samples from
diverse locations. Each row xi of X represents a sample, while each
column denotes a distinct element. For instance, X ij signifies the
concentration of element j in sample i [1-42].

Model representation: The relationship between elemental
concentrations and soil quality is represented via a mathematical
model f(X). This model could encompass linear regression, logistic
regression, support vector machines (SVM), or any other suitable
algorithm [1-42].

Model training: The model f(X) is trained using a subset of
the data, typically employing techniques such as gradient descent
or maximum likelihood estimation. The parameters of the model,
denoted by 0 6, are optimized during this training process [1-42].

Evaluation metrics

Precision (Preciseness): Precision assesses the ratio of true
positive predictions to all positive predictions generated by the
model.

Recall (Callback): Recall quantifies the ratio of true positive
predictions to all actual positive cases within the dataset.

F1-Score: The F1-Score serves as the harmonic mean of
precision and recall, offering a balanced assessment of these two
measures.

Area Under the Curve (AUC): AUC quantifies the model’s
ability to differentiate between positive and negative instances
across varying thresholds.

Model evaluation

Training and testing: The model undergoes training on a
subset of the data and is subsequently evaluated on a distinct test
set to gauge its generalization performance.

Metrics calculation: Employing the trained model, evaluation
metrics (precision, recall, F1-Score, AUC) are computed based on
the predictions made on the test set.

Comparison and interpretation: The calculated metrics
are juxtaposed against predefined thresholds or benchmarks to
ascertain the efficacy of the model in predicting soil quality and
toxicity levels [1-42].

For accuracy:
Accuracy = TruePositives + TrueNegatives | TruePositives +
TrueNegatives + FalsePositives + FalseNegatives
Substituting values from the provided data [1-42]:

Accuracy = 0.1xTotal Translations / Total Translations
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For precision:

Precision = True Positives | True Positives + False Positives

Substituting values

Precision = 0.01x Total Translations / Total Translations

For recall:
Recall = True Positives True Positives + [ False Negatives

Substituting values

Recall = 0.1x Total Translations / Total Translations

For sensitivity:

Sensitivity = True Positives | True Positives + False Negatives

Substituting values
Sensitivity = 0.1x Total Translations / Total Translations

For specificity:
Specificity = True Negatives | True Negatives + False Positives

Substituting values

Specificity = Total Translations —0.1x Total Translations | Total Translations

For F1-score:

F1—Score = 2x Precisionx Recall | Precision + Recall
Substituting values

2x0.01x0.1x Total Translations
0.01x Total Translations +0.1x Total Translations

F1-Score=

Conclusion

Anticipating soil toxicity is crucial for evaluating environmental
hazards and safeguarding the balance of ecosystems and human
health. This study conducts a thorough comparative examination
between two robust machine learning techniques, Random Forest
(RF) and Support Vector Machine (SVM), to predict soil toxicity.
Employing a varied dataset containing soil samples from diverse
geographical regions, the study assesses the effectiveness of RF
and SVM models in categorizing soil samples as toxic or non-
toxic. The analysis initiates with a detailed investigation into
feature selection methods aimed at pinpointing the most pertinent
predictors for soil toxicity. Following this, RF and SVM models
are trained and evaluated using these chosen features, employing
stringent cross-validation methods to ensure the trustworthiness
and applicability of the results. Performance metrics like accuracy,
precision, recall, and F1-score are utilized to evaluate the predictive
capabilities of each model. The findings offer valuable insights into
the comparative performance of RF and SVM in forecasting soil
toxicity. Although both models exhibit commendable performance,
nuanced differences in their predictive strengths and weaknesses
across various soil types and toxicity levels emerge. Additionally,
the interpretability of model forecasts sheds light on the factors
influencing soil toxicity and the decision-making process of
machine learning models. Ultimately, this research contributes to
the advancement of soil toxicity prediction by providing empirical
evidence on the relative performance of RF and SVM models,
which carries significant implications for environmental scientists,

policymakers, and stakeholders engaged in soil management and
remediation endeavors. Moreover, the dataset furnished in this
study presents comprehensive details on the concentrations of
essential and toxic elements in rice samples collected from diverse
locations. Organized with individual samples labeled from S1 to
S$138 and linked with specific locations like Bagerhat, Bandarban,
among others, the dataset encompasses essential elements such as
Cobalt (Co), Copper (Cu), Iron (Fe), Manganese (Mn), Molybdenum
(Mo), Selenium (Se), and Zinc (Zn), alongside toxic elements like
Arsenic (As), Nickel (Ni), Lead (Pb), and Chromium (Cr), measured
in milligrams per kilogram (mg kg-1). Noteworthy, some values are
denoted as BDL (Below Detection Limit), indicating concentrations
below the detection threshold. This dataset provides a
comprehensive insight into the elemental composition of rice,
offering valuable avenues for research in nutrition and agriculture.
The structured arrangement and meticulous documentation of
the dataset underscore its potential to drive impactful studies
in comprehending the elemental composition of rice and its
implications for human health and environmental sustainability.

In future endeavors, there is merit in exploring ensemble
methods that amalgamate the advantages of RF and SVM models to
further enhance the accuracy of soil toxicity prediction. Additionally,
delving into the impact of temporal and climatic variables on soil
toxicity trends could yield a more thorough comprehension of
environmental hazards, aiding in the refinement of predictive
models for more effective decision-making in soil management
and remediation endeavors. To build upon this research,
forthcoming studies could delve into the associations between
soil toxicity levels and human health outcomes, with a particular
emphasis on communities reliant on rice consumption from varied
geographic regions. Moreover, the integration of sophisticated
data visualization techniques holds promise in providing intuitive
depictions of soil toxicity trends, facilitating the dissemination of
findings to a broader audience and fostering collaboration among
stakeholders involved in environmental preservation and public
health initiatives.
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