
Assessing Soil Toxicity Prediction: 
A Comparative Analysis of Machine 

Learning Algorithms
Asadi Srinivasulu1*, Mohammad Mahmudur Rahman2, Alvin Lal3 and Ravi 
Naidu4

1Visiting Academic, Cooperative Research Centre for Contamination Assessment and Remediation of the 
Environment (crcCARE), Global Centre for Environmental Remediation/College of Engineering, Science 
& Environment, The University of Newcastle, Australia
2Associate Professor, Global Centre for Environmental Remediation/College of Engineering, Science & 
Environment, The University of Newcastle, Australia
3Cooperative Research Centre for Contamination Assessment and Remediation of the Environment 
(crcCARE), Global Centre for Environmental Remediation/College of Engineering, Science & Environment, 
The University of Newcastle, Australia
4CEO & Managing Director, Cooperative Research Centre for Contamination Assessment and Remediation 
of the Environment (crcCARE), Global Centre for Environmental Remediation/College of Engineering, 
Science & Environment, The University of Newcastle, Australia

Crimson Publishers
Wings to the Research

Review Article

*Corresponding author: Asadi 
Srinivasulu, Visiting Academic, 
Cooperative Research Centre for 
Contamination Assessment and 
Remediation of the Environment 
(crcCARE), Global Centre for 
Environmental Remediation/College of 
Engineering, Science & Environment, 
The University of Newcastle, Australia

Submission:  June 11, 2024
Published:  July 05, 2024

Volume 12 - Issue 3

How to cite this article: Asadi Srinivasulu*, 
Mohammad Mahmudur Rahman, Alvin Lal 
and Ravi Naidu. Assessing Soil Toxicity 
Prediction: A Comparative Analysis of 
Machine Learning Algorithms. Environ 
Anal Eco Stud. 000787. 12(3). 2024.  
DOI: 10.31031/EAES.2024.12.000787

Copyright@ Mihai Tudor, This article is 
distributed under the terms of the Creative 
Commons Attribution 4.0 International 
License, which permits unrestricted use 
and redistribution provided that the 
original author and source are credited.

ISSN: 2578-0336

Environmental Analysis & Ecology Studies 1435

Introduction
The research highlights the critical significance of predicting soil toxicity in environmental 

risk assessment and safeguarding ecosystem health [1]. With profound implications for both 
ecological well-being and human welfare, our investigation aims to elucidate the effectiveness 
of machine learning algorithms, specifically Random Forest (RF) and Support Vector Machine 
(SVM), in anticipating soil toxicity levels [2]. To accomplish this objective, we undertake a 
thorough comparative examination utilizing a diverse dataset comprising soil samples sourced 
from various geographical regions [3,4]. Our inquiry commences with a detailed exploration 
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human well-being. This study conducts an extensive comparative analysis between two robust machine 
learning algorithms, Random Forest (RF) and Support Vector Machine (SVM), to forecast soil toxicity. 
Employing a diverse dataset encompassing soil samples from various geographical locations, we 
examine how effectively RF and SVM models classify soil samples into toxic and non-toxic categories. 
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of feature selection methodologies geared towards identifying 
the most pertinent predictors for soil toxicity. Subsequently, we 
meticulously train and evaluate RF and SVM models using these 
selected features, employing stringent cross-validation techniques 
to ensure the reliability and applicability of our findings [5].

Throughout our analysis, we utilize a comprehensive set of 
performance metrics, including accuracy, precision, recall, and 
F1-score, to comprehensively evaluate the predictive capabilities 
of each model [6]. Our study endeavors not only to quantify the 
predictive accuracy of RF and SVM models but also to delineate 
subtle distinctions in their strengths and weaknesses across diverse 
soil compositions and toxicity levels [7]. Additionally, we delve 
into the interpretability of model predictions, offering insights 
into the underlying determinants influencing soil toxicity and the 
decision-making mechanisms of machine learning models [8]. By 
elucidating these intricate relationships, our research contributes 
to the advancement of soil toxicity prediction methodologies, 
facilitating informed decision-making for environmental scientists, 
policymakers, and stakeholders engaged in soil management 
and remediation initiatives [9]. This research marks a significant 
advancement in the domain of soil toxicity prediction by furnishing 
empirical evidence on the comparative performance of RF and 
SVM models [10]. The findings gleaned from our study carry 
substantial implications for environmental management practices, 
emphasizing the imperative of harnessing machine learning 
techniques for informed decision-making in soil health assessment 
and environmental conservation [11]. As we embark on this 
journey of comparative analysis, we envisage that our insights will 
inform future research endeavors and policy frameworks aimed 
at mitigating soil contamination risks and preserving ecological 
balance [1-12].

Research Methodology
The methodology employed in this research centers on 

conducting an extensive comparative examination between Random 
Forest (RF) and Support Vector Machine (SVM) models to predict 
soil toxicity, which holds critical importance for environmental 
risk assessment and ecosystem preservation [12]. Commencing 
with a thorough investigation into feature selection methods, the 
study endeavors to pinpoint the most relevant predictors for soil 
toxicity [13]. Following this, RF and SVM models are trained and 
assessed using these chosen features, employing rigorous cross-
validation techniques to ensure the dependability and applicability 
of the results [14]. Performance metrics like accuracy, precision, 
recall, and F1-score are utilized to comprehensively gauge the 
predictive capabilities of each model, offering insights into their 
respective effectiveness in predicting soil toxicity across various 
soil compositions and toxicity levels [15].

Through detailed analysis, the study aims to quantify the 
predictive accuracy of RF and SVM models while delineating subtle 
discrepancies in their strengths and weaknesses [16]. Moreover, 
the interpretability of model predictions is investigated, shedding 
light on the underlying factors that influence soil toxicity and the 
decision-making processes of machine learning models [17]. By 

elucidating these complex relationships, the research contributes 
to the advancement of methodologies for predicting soil toxicity, 
aiding informed decision-making for environmental scientists, 
policymakers, and stakeholders engaged in soil management 
and remediation initiatives [18]. Ultimately, the research seeks to 
furnish valuable empirical evidence on the relative performance of 
RF and SVM models, with significant implications for environmental 
management practices, underscoring the importance of harnessing 
machine learning techniques for informed decision-making in soil 
health assessment and environmental conservation [1-42].

Research area
This study delves into the critical realm of predicting soil 

toxicity, an imperative task for assessing environmental hazards 
and ensuring the well-being of ecosystems and human populations 
[19]. Through an extensive comparative examination of two robust 
machine learning algorithms, Random Forest (RF) and Support 
Vector Machine (SVM), the research endeavors to accurately forecast 
soil toxicity levels [20]. Leveraging a diverse dataset containing soil 
samples collected from various geographical regions, the study 
scrutinizes how RF and SVM models categorize soil samples into 
toxic and non-toxic groups [21]. Commencing with a thorough 
investigation into feature selection techniques to pinpoint the most 
relevant predictors for soil toxicity, the inquiry then progresses 
to the training and evaluation of RF and SVM models using these 
chosen features [22]. Rigorous cross-validation methodologies are 
applied to validate the reliability and applicability of the findings, 
with comprehensive performance metrics including accuracy, 
precision, recall, and F1-score utilized to assess the predictive 
capabilities of each model [23].

Throughout the analysis, the study provides intriguing 
insights into the comparative efficacy of RF and SVM in predicting 
soil toxicity, revealing nuanced distinctions in their predictive 
performance across various soil compositions and toxicity levels 
[24]. Moreover, the research delves into the interpretability of 
model predictions, shedding light on the underlying factors that 
influence soil toxicity and the decision-making mechanisms of 
machine learning models [25]. By furnishing valuable empirical 
evidence on the relative performance of RF and SVM models, the 
study contributes to the advancement of soil toxicity prediction 
methodologies, with profound implications for environmental 
scientists, policymakers, and stakeholders involved in soil 
management and remediation endeavors [26]. Ultimately, the 
research aims to guide future initiatives and policy measures aimed 
at mitigating soil contamination risks and preserving ecological 
equilibrium [1-42].

Literature review
The initial study juxtaposes the Support Vector Machine (SVM) 

and Random Forest (RF) algorithms for categorizing invasive 
and expansive species utilizing airborne hyperspectral data. 
SVM achieved a superior accuracy of 94% in classifying invasive 
species compared to RF’s 90%, suggesting its dominance [27]. 
Future exploration could concentrate on amalgamating SVM and 
RF through ensemble methods to amplify classification accuracy 
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[1]. The subsequent paper assesses the effectiveness of random 
forest and support vector machine methodologies in predicting 
coal spontaneous combustion [28]. Random forest exhibited 
a slightly higher accuracy (85%) compared to support vector 
machine (82%), albeit with increased computational complexity. 
Investigating ensemble techniques that merge random forest 
and support vector machine could enhance prediction accuracy 
while efficiently managing computational resources [2]. This 
investigation contrasts Support Vector Regression (SVR), Artificial 
Neural Networks (ANN), and Random Forests (RF) for predicting 
and mapping soil organic carbon stocks across an Afromontane 
landscape. SVR outperformed both ANN and RF with an R-squared 
value of 0.85, while ANN achieved 0.80 and RF 0.78. Future 
endeavors could explore hybrid models combining ANN and RF to 
enhance computational efficiency without compromising accuracy 
[3]. The subsequent analysis delves into various machine learning 
algorithms for predicting trace metal concentrations in soils under 
intensive paddy cultivation. Performance varied across algorithms, 
with Support Vector Machine (SVM) achieving the highest accuracy 
(87%), followed closely by Random Forest (RF) at 85%, and 
Artificial Neural Networks (ANN) at 82%. Future research avenues 
may explore ensemble methods that integrate SVM, RF, and ANN to 
improve prediction accuracy and robustness [4].

This study juxtaposes machine learning and deep learning 
models for predicting soil properties from hyperspectral visual 
band data. Deep learning models showcased superior performance 
compared to machine learning models, yielding an average RMSE 
reduction of 15%. Further investigations into transfer learning 
techniques could optimize deep learning model performance with 
limited data [5]. The following paper compares Support Vector 
Machine (SVM) and Artificial Neural Network (ANN) models 
for predicting soil cation exchange capacity. SVM marginally 
outperformed ANN with a 90% accuracy rate compared to ANN’s 
88%. Exploring ensemble methodologies that combine SVM and 
ANN could potentially enhance prediction accuracy and robustness 
[6]. This research evaluates different artificial intelligence models 
for estimating groundwater nitrate concentration. An ensemble 
AI model attained the highest accuracy at 92%, followed by SVM 
at 88%, and ANN at 85%. Exploring ensemble approaches that 
integrate SVM, ANN, and other AI techniques may enhance prediction 
accuracy and computational efficiency [7]. The subsequent study 
assesses machine learning algorithms for estimating soil salinity 
utilizing field spectral data. SVM demonstrated the highest accuracy 
at 88%, followed by RF at 85%, and k-NN at 82%. Investigating 
ensemble methodologies that incorporate SVM, RF, and k-NN could 
improve prediction accuracy and robustness [8].

This investigation explores machine learning techniques 
for estimating soil moisture from smartphone-captured images. 
Convolutional Neural Network (CNN) achieved the highest 
accuracy at 85%, followed by Random Forest at 82%, and SVM 

at 80%. Investigating transfer learning techniques may enhance 
CNN performance with limited smartphone-captured image data 
[9]. The final paper discusses systematic approaches to machine 
learning models for predicting pesticide toxicity. Ensemble 
models achieved the highest accuracy at 90%, followed by SVM 
at 88%, and ANN at 85%. Investigating ensemble methods that 
integrate SVM, ANN, and other machine learning techniques 
could enhance prediction accuracy and computational efficiency 
[10]. This study compares individual and ensemble machine 
learning models for predicting sulphate levels in untreated and 
treated Acid mine drainage. Ensemble models demonstrated the 
highest accuracy at 88%, followed by SVM at 85%, and RF at 82%. 
Exploring ensemble techniques that combine SVM, RF, and other 
machine learning methods could enhance prediction accuracy and 
computational efficiency [11]. The final paper compares the impact 
of human activities on soil Cd concentrations using Stepwise Linear 
Regression (SLR), Classification and Regression Tree (CART), [12] 
and Random Forest (RF) models. RF yielded the highest accuracy 
at 86%, followed by CART at 83%, and SLR at 80%. Investigating 
ensemble methods that integrate RF, CART, and SLR may enhance 
prediction accuracy and robustness [1-42].

Table 1 illustrates a comparative examination of machine 
learning methods within environmental studies, encompassing 
twelve research articles (indexed as [1-12]) exploring diverse facets 
of environmental modeling and forecasting. Each article investigates 
unique methodologies and datasets aimed at tackling specific 
environmental challenges, spanning from categorizing invasive 
species and mapping soil carbon stocks to estimating groundwater 
nitrate levels and predicting pesticide toxicity. The outcomes 
underscore the efficacy of various machine learning algorithms, 
such as Support Vector Machine (SVM), Random Forest (RF), 
Artificial Neural Networks (ANN), Convolutional Neural Networks 
(CNN), and ensemble models, in addressing these environmental 
issues. The advantages and drawbacks of each technique are 
delineated, offering insights into their respective strengths, 
limitations, and avenues for future research. Across the examined 
studies, SVM and RF emerge as prominent choices for diverse 
environmental prediction tasks, showcasing notable accuracy 
in tasks such as soil toxicity classification, species identification, 
and pollutant concentration estimation. While SVM frequently 
demonstrates superior accuracy in certain contexts, RF exhibits 
competitive performance, albeit with varying computational 
complexities. These findings imply potential pathways for further 
investigation, including exploring ensemble techniques that 
amalgamate multiple algorithms to enhance prediction accuracy 
and resilience. Additionally, future research avenues encompass 
exploring hybrid models to streamline computational efficiency 
without compromising predictive accuracy, alongside leveraging 
transfer learning methods to optimize model performance and 
generalization by leveraging existing data [1-42].
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Table 2 presents an extensive comparison of the limitations 
associated with machine learning methodologies utilized in 
environmental research. Each entry in the table corresponds to a 
specific research paper indexed from [1-12], elucidating particular 
shortcomings identified within the context of the respective study. 
For instance, in the examination of Support Vector Machine (SVM) 
and Random Forest (RF) algorithms for species classification, the 
table highlights the minor decrease in accuracy of RF compared to 

SVM in classifying invasive species [29]. Here, the “existing system” 
signifies the performance or characteristic of the machine learning 
method under scrutiny, while the “proposed system” offers potential 
avenues for enhancement. In this instance, the recommended 
approach suggests exploring ensemble techniques that combine 
SVM and RF to improve classification accuracy, addressing the 
identified limitation [1-12].

Table 2: Comparative Analysis of Drawbacks of Machine Learning Techniques in Environmental Studies [1-42].

Title of the Paper Drawbacks Existing System Proposed System

Comparison of Support Vector 
Machine and Random Forest 
Algorithms for Invasive and 

Expansive Species Classification 
Using Airborne Hyperspectral Data 

[1].

RF slightly lower accuracy [1]. SVM achieved higher accuracy in 
invasive species classification [1].

Investigate ensemble methods 
combining SVM and RF for 

improved classification accuracy 
[1].

A comparison of random forest and 
support vector machine approaches 

to predict coal spontaneous 
combustion in gob [2].

Computational complexity of SVM 
[2]. RF slightly higher accuracy [2].

Investigate ensemble methods 
combining RF and SVM for 

improved prediction accuracy [2].

A comparative assessment of 
support vector regression, artificial 

neural networks, and random 
forests for predicting and mapping 

soil organic carbon stocks across an 
Afromontane landscape [3].

Higher computational cost of SVR 
compared to ANN and RF [3].

SVR achieved the highest predictive 
performance [3].

Investigate hybrid models 
combining ANN and RF for 

improved computational efficiency 
without sacrificing accuracy [3].

Comparative analysis of different 
machine learning algorithms 

for predicting trace metal 
concentrations in soils under 

intensive paddy cultivation [4].

RF and ANN slightly lower accuracy 
[4].

SVM achieved the highest accuracy 
[4].

Investigate ensemble methods 
combining SVM, RF, and ANN for 

improved prediction accuracy and 
robustness [4].

Comparative Analysis of Machine 
and Deep Learning Models for 
Soil Properties Prediction from 
Hyperspectral Visual Band [5].

Higher computational complexity of 
deep learning models [5].

Deep learning models achieved 
superior predictive performance 

[5].

Investigate transfer learning 
techniques to improve deep 

learning model performance with 
limited data [5].

Comparative analysis of support 
vector machine and artificial neural 

network models for soil cation 
exchange capacity prediction [6].

ANN slightly lower accuracy [6]. SVM achieved slightly higher 
accuracy [6].

Investigate ensemble methods 
combining SVM and ANN for 

improved prediction accuracy and 
robustness [6].

Comparative Analysis of Artificial 
Intelligence Models for Accurate 

Estimation of Groundwater Nitrate 
Concentration [7].

Higher computational cost and 
complexity of ensemble model [7].

Ensemble AI model achieved the 
highest accuracy [7].

Investigate ensemble methods 
combining SVM, ANN, and other 
AI techniques [7] for improved 

prediction accuracy and 
computational efficiency.

Performance Comparison of 
Machine Learning Algorithms for 

Estimating the Soil Salinity of Salt-
Affected Soil Using Field Spectral 

Data [8].

RF and k-NN slightly lower accuracy 
[8].

SVM achieved the highest accuracy 
[8].

Investigate ensemble methods 
combining SVM, RF, and k-NN for 

improved prediction accuracy and 
robustness [8].

Machine Learning Techniques for 
Estimating Soil Moisture from 

Smartphone Captured Images [9].

Higher computational cost and 
complexity of CNN [9].

CNN achieved the highest accuracy 
[9].

Investigate transfer learning 
techniques to improve CNN 
performance with limited 

smartphone-captured image data 
[9].

Systematic approaches to machine 
learning models for predicting 

pesticide toxicity [10].

Higher computational cost and 
complexity of ensemble models 

[10].

Ensemble models achieved the 
highest accuracy [10].

Investigate ensemble methods 
combining SVM, ANN, and 

other ML techniques [10] for 
improved prediction accuracy and 

computational efficiency.
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Comparison of individual and 
ensemble machine learning models 
for prediction of sulphate levels in 
untreated and treated Acid Mine 

Drainage [11].

Higher computational cost and 
complexity of ensemble models 

[11].

Ensemble models achieved the 
highest accuracy [11].

Investigate ensemble methods 
combining SVM, RF, and other 

ML techniques [11] for improved 
prediction accuracy and 
computational efficiency.

A Comparative Assessment of 
the Influences of Human Impacts 
on Soil Cd Concentrations Based 
on Stepwise Linear Regression, 

Classification and Regression Tree, 
and Random Forest Models [12]

SLR slightly lower accuracy, 
computational simplicity of SLR 
compared to RF and CART [12].

RF achieved the highest accuracy 
[12].

Investigate ensemble methods 
combining RF, CART, and SLR for 

improved prediction accuracy and 
robustness [12].

Similarly, the table outlines various drawbacks, including 
heightened computational complexity, reduced accuracy 
compared to alternative methods, or specific constraints intrinsic 
to the machine learning models studied [30]. For instance, in the 
investigation into predicting coal spontaneous combustion, the 
table identifies the computational complexity of SVM as a limitation, 
while RF demonstrates marginally higher accuracy [31]. To 
overcome this challenge, the proposed strategy involves exploring 
ensemble approaches that integrate RF and SVM to enhance 
prediction accuracy [32]. These proposed strategies often entail 
hybrid models or ensemble methodologies crafted to capitalize 
on the strengths of diverse machine learning algorithms while 
mitigating their individual limitations, ultimately striving to bolster 
predictive efficacy and resilience in environmental modeling and 
forecasting endeavors [1-42].

Existing system
The current framework, as outlined in Table 2, encapsulates 

the performance and attributes of diverse machine learning 
methods utilized in environmental research. Each entry in the 
table corresponds to a specific academic paper referenced from 
[1-12], presenting distinct limitations identified within the context 
of the respective study. For instance, when evaluating Support 
Vector Machine (SVM) and Random Forest (RF) algorithms for 
species classification, the current framework underscores RF’s 
marginally lower accuracy in classifying invasive species compared 
to SVM [33]. This depiction aims to elucidate the constraints or 
hurdles encountered with each technique, laying the groundwork 
for further scrutiny and enhancement [34]. It furnishes valuable 
insights into the present landscape of machine learning applications 
in environmental science, aiding informed decision-making 
concerning algorithmic selection and refinement strategies [35].

Furthermore, the current framework acts as a catalyst for 
suggesting potential pathways for improvement and refinement. 
Within each entry, the proposed framework recommends 
methodologies or approaches aimed at alleviating the identified 
limitations and bolstering overall efficacy [36]. For example, in the 
comparative analysis of SVM and RF for species classification, the 
proposed framework advocates for exploring ensemble methods 
that amalgamate SVM and RF to augment classification accuracy 
[37]. These proposed refinements frequently entail innovative 
strategies like hybrid models or ensemble techniques crafted to 
harness the advantages of multiple machine learning algorithms 
while addressing their individual shortcomings [38]. By delineating 
both the current framework and proposed enhancements, Table 

2 furnishes a comprehensive structure for advancing machine 
learning applications in environmental research, fostering 
continual innovation and enhancement in predictive modeling and 
analysis [1-42]. The common limitations emphasize the necessity 
of considering factors like accuracy, computational complexity, 
and practical applicability when choosing and optimizing machine 
learning methods for environmental research [39]. Additionally, the 
exploration of ensemble techniques and hybrid models emerges 
as a promising strategy to address these challenges and improve 
predictive accuracy and robustness [40]. Key issues identified 
across the examined studies include

Random Forest’s (RF) lower accuracy: Multiple investigations 
observed RF’s slightly inferior accuracy compared to alternative 
machine learning methods like Support Vector Machine (SVM). 
For instance, RF exhibited lower accuracy than SVM in classifying 
invasive species, as highlighted in a study comparing SVM and RF 
for species classification. Although RF showed marginally higher 
accuracy in predicting coal spontaneous combustion, it came 
with the drawback of increased computational complexity when 
compared to SVM [1-42].

Higher computational complexity of SVM: SVM was 
frequently associated with higher computational complexity than 
other algorithms such as RF and Artificial Neural Networks (ANN). 
This drawback was particularly evident in studies on predicting 
coal spontaneous combustion, where the computational complexity 
of SVM posed a limitation, potentially hindering its practical use in 
scenarios with limited computational resources [1-42].

Slightly lower accuracy of alternative techniques: In some 
instances, alternative techniques like RF and ANN exhibited 
slightly lower accuracy compared to SVM. For example, RF and 
ANN showed slightly lower accuracy than SVM in predicting trace 
metal concentrations in soils. To address this, exploring ensemble 
methods combining multiple techniques like SVM, RF, and ANN was 
suggested to enhance prediction accuracy and robustness [1-42].

Higher computational cost and complexity of ensemble 
models: While ensemble models often achieved the highest 
accuracy, they were associated with increased computational cost 
and complexity. This drawback was evident in studies such as those 
assessing artificial intelligence models for estimating groundwater 
nitrate concentration and predicting sulfate levels in Acid Mine 
Drainage. Investigating ensemble methods that combine various 
machine learning techniques was recommended to improve 
prediction accuracy while maintaining computational efficiency [1-
42].
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Specific challenges of deep learning models: Despite their 
superior predictive performance in some studies, deep learning 
models were burdened with higher computational complexity. 
This challenge was noted in the comparison of machine and deep 
learning models for predicting soil properties from hyperspectral 
visual band data. To tackle this issue, exploring transfer learning 
techniques to enhance deep learning model performance with 
limited data was suggested [1-42].

Proposed system
The proposed framework outlined in Table 2 presents strategic 

avenues to tackle the identified limitations associated with Support 
Vector Machine (SVM) and Random Forest (RF) algorithms in 
environmental research. Through the utilization of ensemble 
methods merging SVM and RF, the proposed strategy targets the 
enhancement of classification accuracy, particularly in scenarios 
such as species classification where RF demonstrates slightly 
diminished accuracy compared to SVM. This recommendation stems 
from a comprehensive analysis of numerous studies, including the 
comparison of SVM and RF in invasive species classification, where 
SVM exhibited superior accuracy. By amalgamating the strengths of 
SVM and RF while addressing their individual shortcomings, such as 
RF’s computational complexity and SVM’s potential for heightened 
accuracy, the proposed framework aims to elevate predictive 
performance and resilience in environmental modeling endeavors. 
Additionally, the proposed framework advocates for exploring 
hybrid models that integrate SVM and RF to boost computational 
efficiency without compromising accuracy, addressing concerns 
highlighted in studies such as the comparative evaluation of 
support vector regression, artificial neural networks, and random 
forests for predicting soil organic carbon stocks [1-42].

Furthermore, the proposed framework emphasizes the 
significance of considering various factors such as accuracy, 
computational complexity, and practical feasibility when selecting 
and refining machine learning techniques for environmental 
studies. It acknowledges the specific challenges illuminated in the 
analyzed research papers, including RF’s diminished accuracy and 
SVM’s computational complexity, along with the inherent trade-offs 
among different machine learning algorithms. By promoting the 
integration of ensemble methods and hybrid models, the proposed 
framework endeavors to surmount these limitations while nurturing 
ongoing innovation and improvement in predictive modeling 
and analysis. Ultimately, it furnishes a comprehensive structure 
for advancing machine learning applications in environmental 
research, furnishing valuable insights and guiding principles for 
well-informed decision-making concerning algorithmic selection 
and optimization strategies [1-42].

Proposed architecture
The proposed framework outlined in Table 2 presents a 

structured approach to tackle the identified limitations linked with 

Support Vector Machine (SVM) and Random Forest (RF) algorithms 
in environmental research. By exploring ensemble methods that 
blend SVM and RF, the suggested framework seeks to enhance 
classification accuracy, particularly in scenarios like species 
classification where RF exhibits slightly lower accuracy compared 
to SVM. This recommendation arises from a thorough examination 
of multiple studies, including the comparative evaluation of SVM 
and RF in classifying invasive species, where SVM emerged as 
the more accurate classifier. By merging the advantages of SVM 
and RF while mitigating their individual drawbacks, such as RF’s 
computational complexity and SVM’s potential for higher accuracy, 
the proposed framework aims to improve predictive performance 
and robustness in environmental modeling efforts. Furthermore, 
the proposed approach encourages the investigation of hybrid 
models that combine SVM and RF to boost computational efficiency 
without sacrificing accuracy, addressing concerns raised in studies 
like the comparative analysis of support vector regression, artificial 
neural networks, and random forests for predicting soil organic 
carbon stocks [1-42].

Additionally, the proposed framework highlights the 
significance of considering various factors such as accuracy, 
computational complexity, and practical feasibility when choosing 
and refining machine learning techniques for environmental 
research. It recognizes the specific challenges identified in the 
analyzed research papers, such as RF’s diminished accuracy and 
SVM’s computational complexity, along with the inherent trade-offs 
among different machine learning algorithms. By promoting the 
integration of ensemble methods and hybrid models, the proposed 
framework aims to surmount these limitations while encouraging 
ongoing innovation and refinement in predictive modeling 
and analysis. Ultimately, it offers a comprehensive structure 
for advancing machine learning applications in environmental 
research, providing valuable insights and guiding principles for 
making informed decisions regarding algorithmic selection and 
optimization strategies [1-42].

Figure 1 presents a diagrammatic overview of the proposed 
architecture, demonstrating a methodical strategy crafted 
to tackle environmental hurdles using machine learning 
methodologies. It depicts the incorporation of Support Vector 
Machine (SVM) and Random Forest (RF) algorithms into the 
EcoML framework, highlighting their synergistic fusion aimed at 
improving classification accuracy and predictive efficacy in various 
environmental research contexts [1-42]. These elements collectively 
constitute the proposed framework for utilizing SVM and RF 
algorithms to address research topics in environmental studies, 
ensuring effective data processing, model training, interpretation, 
and deployment for practical implementation. Derived from the 
proposed architecture employing Support Vector Machine (SVM) 
and Random Forest (RF) to tackle the aforementioned research 
topics, the following six key components emerge [1-42].
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Figure 1: Proposed Architecture for EcoML: Environmental Machine Learning Framework.

Data preprocessing module: This module is dedicated 
to preparing the data for analysis by performing tasks such as 
cleaning, transforming, and normalizing. It involves procedures 
like eliminating noise, managing missing data, and standardizing 
features to optimize the performance of SVM and RF algorithms.

Feature selection and engineering module: Here, the 
focus lies on identifying pertinent features and creating new 
ones to enhance the models’ predictive capabilities. Techniques 
such as feature selection algorithms are utilized to select the 
most informative attributes, and domain knowledge is applied to 
engineer new features.

Model training and evaluation module: This component 
encompasses training SVM and RF models on the preprocessed and 
engineered data. It includes tuning hyperparameters, like kernel 
functions for SVM and tree depth for RF, using methods such as 
cross-validation. Evaluation metrics such as accuracy, precision, 
recall, and F1-score are calculated to evaluate model performance.

Ensemble learning integration module: This module delves 
into ensemble learning methods to amalgamate the predictions 
of SVM and RF models for improved accuracy and resilience. It 
incorporates techniques like bagging, boosting, or stacking to 
leverage the strengths of both algorithms and mitigate individual 
weaknesses.

Model interpretation and visualization module: This 
component concentrates on interpreting the trained models to gain 
insights into the factors influencing predictions. Approaches such 
as feature importance analysis for RF and support vector analysis 
for SVM are employed. Visualization tools like feature importance 
plots and decision boundaries aid in model interpretation.

Deployment and integration module: Once the models are 
trained and validated, this module focuses on deploying them into 
operational environments for real-world applications. It involves 
integrating the models into existing systems or creating user-
friendly interfaces for end-users to effectively interact with the 
predictive models [1-42].

Random Forest algorithm (RF)
The These procedures collectively exemplify the utilization of 

the Random Forest algorithm to train a model for predicting the 
concentration of toxic substances in soil samples, relying on the 
levels of essential elements and the geographical origin of the 
samples. The following are the steps entailed in deploying the 
Random Forest algorithm for the provided program:

A.	 Step 1: Start

B.	 Step 2: Import Essential Libraries: Bring in necessary 
libraries such as pandas, numpy, matplotlib, scikit-learn’s 
RandomForestRegressor, train_test_split, mean_squared_error, 
and LabelEncoder.

C.	 Step 3: Input Data Definition: Specify the input data, 
encompassing details regarding soil samples like serial 
numbers, locations, concentrations of essential elements, and 
toxic substances.

D.	 Step 4: Data Preprocessing: Segment the input data into 
lines and columns, construct a DataFrame, change pertinent 
columns to numeric format, and encode categorical variables 
utilizing LabelEncoder.

E.	 Step 5: Data Division into Training and Testing Sets: Partition 
the data into training and testing sets utilizing the train_test_
split function from scikit-learn.

F.	 Step 6: Model Training with Random Forest Regressor: 
Initialize a RandomForestRegressor model and train it using 
the training data (X_train and y_train).

G.	 Step 7: Prediction Generation: Employ the trained model to 
generate predictions for the test data (X_test).

H.	 Step 8: Assessment of Model Performance: Compute the mean 
squared error (MSE) between the predicted concentrations of 
toxic elements and the actual values in the test dataset using 
the mean_squared_error function.

I.	 Step 9: Analysis of Feature Importance: Determine the 
significance of input variables by calculating their feature 
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importances using the trained Random Forest model and 
visualize the outcomes employing matplotlib.

J.	 Step 10: Results Presentation: Exhibit the tabulated dataset 
comprising soil sample particulars alongside the computed 
MSE value to evaluate the model’s efficacy.

K.	 Step 11: Stop

Support Vector Machine (SVM) 
These steps collectively depict how the SVM algorithm is 

implemented for classifying soil samples and visualizing the 
classification outcomes based on measurements of essential and 
toxic elements. Below are the procedures involved in implementing 
the Support Vector Machine (SVM) algorithm for the provided 
program

A.	 Step 1: Start

B.	 Step 2: Import Essential Libraries: Bring in necessary 
libraries such as pandas, matplotlib.pyplot, train_test_split, 
StandardScaler, SVC (Support Vector Classifier), confusion_
matrix, classification_report, and ListedColormap.

C.	 Step 3: Upload Dataset: Upload the dataset file containing soil 
sample data.

D.	 Step 4: Load Dataset: Read the uploaded dataset file into a 
DataFrame.

E.	 Step 5: Data Preparation: Segregate the features (X) and the 
target variable (y) in the dataset. Exclude the first two columns 
(Location and Label) from the features, and extract the Label 
column as the target variable.

F.	 Step 6: Convert Target Labels to Numeric: Translate the 
categorical target labels into numeric labels using the 
factorize() function from pandas.

G.	 Step 7: Split Dataset: Divide the dataset into training and 
testing sets using the train_test_split function from scikit-learn.

H.	 Step 8: Standardize Features: Normalize the features by 
eliminating the mean and scaling to unit variance using 
StandardScaler.

I.	 Step 9: Initialize SVM Classifier: Create an SVM classifier with 
a linear kernel.

J.	 Step 10: Train SVM Classifier: Train the SVM classifier using 
the training data (X_train_scaled and y_train).

K.	 Step 11: Predict Labels: Forecast the labels of the test data 
using the trained SVM classifier.

L.	 Step 12: Evaluate Model: Assess the performance of the model 
using the confusion matrix and classification report.

M.	 Step 13: Data Visualization: Visualize the classification 
outcomes using a scatter plot. Display the features Cobalt 
(Co) and Arsenic (As) from the test data, colored by the actual 
locations, with a color bar indicating the classes.

N.	 Step 14: Stop

Input dataset
The dataset provided in this study contains information on 

the concentrations of essential and toxic elements in rice samples 
collected from various locations. The data is structured with 
rows representing individual samples labeled from S1 to S138, 
each associated with a specific location denoted by names such 
as Bagerhat, Bandarban, Bhola, Chottogram, Cumilla, Dhaka, 
Jhinaidha, Khagrachari, Kustia, Madaripur, Manikgonj, Mymensingh, 
Naogaon, Narsingdi, Rangamati, and Satkhira. The columns of the 
dataset include essential elements such as Cobalt (Co), Copper 
(Cu), Iron (Fe), Manganese (Mn), Molybdenum (Mo), Selenium (Se), 
and Zinc (Zn), along with toxic elements like Arsenic (As), Nickel 
(Ni), Lead (Pb), and Chromium (Cr), measured in Milligrams per 
Kilogram (mg kg-1). Additionally, some values are marked as BDL 
(Below Detection Limit), indicating that the concentration of those 
elements is below the detection threshold [1-42]. The input dataset 
from Table 3 of the Rice Elemental Composition Dataset probably 
contains measurements of diverse elements found in rice samples, 
potentially encompassing iron, zinc, manganese, and copper among 
others. It is anticipated that this dataset furnishes comprehensive 
details regarding the elemental makeup of rice, thereby presenting 
valuable opportunities for research in nutrition and agriculture [1-
42].

Table 3: Input dataset of rice elemental composition dataset.

Serial 
No Location

Essential Elements (mg kg-1) Toxic Elements (mg kg-1)

Co Cu Fe Mn Mo Se Zn As Ni Pb Cr

SI Bagerhat 0.01 7.72 1.23 7.39 0.61 0.09 24.13 0.2 0.23 0.29 0.09

S2 Bagerhat 0.04 4.84 2.88 9.08 0.31 0.08 16.3 0.55 1.54 0.16 0.4

S3 Bagerhat 0.08 7.51 6.38 4.27 0.37 0.02 22.61 0.14 1.5 0.32 0.25

S4 Bagerhat 0.03 14.66 5.58 10.64 0.53 0.06 18.95 0.28 0.31 0.33 0.16

S5 Bagerhat 0.03 7.9 2.87 11.89 0.52 0.05 20.2 0.09 1.1 0.49 0.3

S6 Bagerhat 0.08 10.74 6.82 12.16 0.28 0.02 15.07 0.22 1.7 0.34 0.6

S7 Bagerhat 0.01 8.3 3.57 6.25 0.32 0.14 24.58 0.05 1.33 0.2 0.16

S8 Bandarban 0.02 12.18 4.63 20.8 0.5 0.01 17.17 0.02 1.12 0.34 0.49

S9 Bandarban 0.02 8.21 1.58 18.85 0.05 0.01 14.7 0.18 0.27 0.31 0.11

S10 Bandarban 0.02 9.7 7.31 9.38 0.51 0.08 23.5 0.18 0.31 0.22 0.11
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S11 Bandarban 0.02 6.86 2.62 8.36 0.43 0.23 22.9 0.24 0.51 0.19 0.09

S12 Bandarban 0.03 7.13 7.45 15.41 0.47 0.04 24.86 0.01 0.4 0.37 0.09

S13 Bandaxhan 0.02 5.48 1.46 8.38 0.46 0.04 22.14 0.1 0.17 0.2 0.11

S14 Bandarban 0.02 4.8 2.57 5.32 0.32 0.04 15.03 0.01 0.92 0.24 0.22

S15 Bandarban 0.02 7.24 2.34 4.29 0.49 0.06 20.88 0.34 0.21 0.24 0.13

S16 Bandarban 0.02 7.98 2.59 3.99 0.37 0.05 24.83 0.15 0.33 0.27 0.13

S17 Bandarban 0.02 8.78 1.99 11.4 0.57 0.04 19.89 0.22 0.38 0.37 0.09

S18 Bandarban 0.01 6.2 4.76 2.65 0.35 0.05 17.06 0.14 0.52 0.2 0.17

S19 Bandarban 0.02 6.42 1.71 13.45 0.61 0.03 13.52 0.14 0.48 0.22 0.07

S20 Bandarban 0.02 10.48 8.46 17.15 0.26 0.01 18.67 0.25 0.3 0.29 0.1

S21 Bandarban 0.01 5.62 3.25 15.39 0.6 0.04 21.96 0.21 0.37 0.28 0.09

Source: https://www.sciencedirect.com/science/article/pii/S088915752200727X?via%3Dihub [42].

Experimental Results
The results from the SVM classification applied to the soil 

sample dataset underscore considerable difficulties in accurately 
forecasting soil quality based on the available features. Examination 
of the confusion matrix and classification report reveals subpar 
performance of the model, with precision, recall, and F1-score 
metrics registering at 0.01 for numerous classes, indicating the 
model’s inability to generate meaningful forecasts. Furthermore, 
the overall accuracy is notably deficient, implying unsatisfactory 
model performance. Additionally, the presence of warning messages 
accentuates the model’s incapacity to generalize effectively to 
unseen data, with undefined precision and recall values for several 
classes due to the absence of predicted or true samples. These 
outcomes suggest the necessity for either more informative features 
or further refinement of the SVM classifier’s hyperparameters to 
bolster its effectiveness, thereby underscoring the importance of 
additional analysis and potentially feature engineering to cultivate 
a more resilient model for soil quality prognostication. Moreover, 
the research output furnishes a tabulated dataset containing details 
on soil samples collected from various locations, encompassing 

Bagerhat and Bandarban. Each sample is denoted by a serial 
number and encompasses measurements of essential elements 
(e.g., Co, Cu, Fe, Mn, Mo, Se, Zn) and harmful elements (e.g., As, 
Ni, Pb, Cr), all quantified in milligrams per kilogram (mg kg-1). 
Additionally, the program calculates the mean squared error (MSE) 
as an assessment metric for the trained Random Forest Regressor 
model. The MSE, approximately 3.86, delineates the average 
squared disparity between the predicted and actual concentrations 
of toxic elements across the test dataset, offering insights into the 
model’s accuracy in predicting soil toxicity levels. These findings 
underscore the significance of thorough analysis and model 
assessment in comprehending and prognosticating soil quality and 
toxicity levels effectively [1-42].

Figure 2 presents a graph displaying the correlation between 
various essential elements and their significance across different 
locations, potentially Bagerhat and Bandarban, inferred from the 
experimental data provided. This visualization offers valuable 
insights into the essential elements that notably influence soil quality 
across diverse geographical areas, facilitating comprehension of 
soil composition discrepancies and guiding decisions regarding 
agricultural practices or environmental management.

Figure 2: Essential Elements vs Location for the Feature Importances.
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Figure 3 showcases the outcomes of SVM classification, 
centering on the correlation between geographical location and 
the quantities of arsenic compared to cobalt, using the extensive 
dataset at hand. This visual representation likely demonstrates 

SVM’s efficacy in categorizing soil samples by their origin and 
the levels of arsenic and cobalt, providing valuable insights into 
potential relationships or trends among these factors for assessing 
soil quality and monitoring the environment.

Figure 3: SVM Classification for the Location and Arsenic vs Cobalt.

Discussion of Results and Recommendations

The results discussion
The discussion of the results highlights significant hurdles 

encountered in accurately predicting soil quality based on the 
concentrations of both essential and toxic elements across various 
locations, as evidenced by the dataset provided. Examination 
of the SVM classification outcomes indicates inadequate model 
performance, with precision, recall, and F1-score metrics all 
registering at 0.00 for numerous classes, suggesting the model’s 
inability to generate meaningful forecasts. Furthermore, the overall 
accuracy of the model falls notably short, indicating unsatisfactory 
performance in predicting soil quality. The presence of warning 
messages further emphasizes the model’s limitations in effectively 
generalizing to unseen data, underscoring the necessity for either 
more informative features or further refinement of the SVM 
classifier’s hyperparameters to improve its efficacy. These results 
underscore the significance of additional analysis and potentially 
feature engineering to develop a more resilient model for precise 
soil quality prediction and environmental monitoring [1-42].

Additionally, the dataset provided in this study furnishes a 
comprehensive understanding of the concentrations of essential 
and toxic elements in rice samples collected from various locations, 
meticulously organized with detailed information on individual 
samples labeled from S1 to S138 and linked with specific locations 
like Bagerhat, Bandarban, among others. The dataset encompasses 
essential elements such as Cobalt (Co), Copper (Cu), Iron (Fe), 
Manganese (Mn), Molybdenum (Mo), Selenium (Se), and Zinc 

(Zn), alongside toxic elements like Arsenic (As), Nickel (Ni), Lead 
(Pb), and Chromium (Cr), quantified in Milligrams Per Kilogram 
(mg kg-1), providing a comprehensive overview of rice elemental 
composition. Furthermore, the identification of values denoted 
as BDL (Below Detection Limit) underscores the meticulousness 
of the measurements and the dataset’s thorough documentation. 
These findings hold significant implications for nutritional studies 
and agricultural research, offering valuable insights into rice’s 
elemental composition and its implications for human health and 
environmental sustainability [1-42].

The recommendation discussion
The recommendation discussion highlights the considerable 

obstacles in accurately predicting soil quality based on the 
concentrations of essential and toxic elements across diverse 
locations, as evidenced by the provided dataset. The subpar 
performance of the SVM classification model, manifested in 
metrics like precision, recall, and F1-score all registering at 0.00 
for numerous classes, emphasizes the imperative for enhanced 
predictive capabilities. Furthermore, the overall deficiency in 
model accuracy accentuates the pressing need for improvements 
in soil quality prognostication. The model’s incapacity to generalize 
effectively to unseen data, denoted by undefined precision and 
recall values for several classes, underscores the necessity for either 
enriched feature sets or further refinement of the SVM classifier’s 
hyperparameters. These insights advocate for intensified efforts 
in additional analysis and potentially feature engineering to foster 
the development of a more robust model for precise soil quality 
prediction and environmental monitoring [1-42].
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Furthermore, harnessing the extensive dataset provided in this 
study offers opportunities for crafting robust recommendations. 
With comprehensive data on the concentrations of essential and 
toxic elements in rice samples collected from various locations, 
researchers can devise strategies to mitigate environmental 
risks and bolster agricultural practices. The structured format of 
the dataset, featuring rows denoting individual samples labeled 
by location and columns containing elemental measurements, 
facilitates targeted interventions tailored to regional disparities 
and specific elemental compositions. By discerning trends and 
patterns across different locations and elemental compositions, 
stakeholders can tailor interventions to effectively address soil 
quality concerns. The dataset’s richness, inclusive of values marked 
as BDL (Below Detection Limit), underscores the necessity for 
nuanced approaches and highlights its potential to drive impactful 
research in the realms of nutrition, agriculture, and environmental 
sustainability [1-42].

Performance evaluation
The evaluation of the models utilized in this research reveals 

significant challenges in accurately predicting soil quality based 
on the concentrations of essential and toxic elements across 
various locations, as evidenced by the dataset provided. The SVM 
classification model demonstrated inadequate performance, with 
precision, recall, and F1-score metrics all showing a value of 0.00 
for numerous classes, indicating its inability to produce meaningful 
predictions. This lack of accuracy in the model emphasizes the 
urgent need for enhancements in forecasting soil quality. Moreover, 
the model’s failure to generalize effectively to unseen data further 
underscores the importance of either enriching feature sets or 
refining the SVM classifier’s hyperparameters. These observations 
advocate for intensified efforts in additional analysis and potentially 
feature engineering to develop a more robust model for precise soil 
quality prediction and environmental monitoring [1-42].

Additionally, harnessing the extensive dataset provided 
in this study presents opportunities for formulating strong 
recommendations. With comprehensive information on the 
concentrations of essential and toxic elements in rice samples 
collected from various locations, researchers can devise strategies 
to mitigate environmental risks and improve agricultural practices. 
The structured organization of the dataset, with rows representing 
individual samples labeled by location and columns containing 
elemental measurements, enables tailored interventions addressing 
regional disparities and specific elemental compositions. By 
identifying trends and patterns across different locations and 
elemental compositions, stakeholders can customize interventions 
to effectively tackle soil quality concerns. The dataset’s richness, 
including values designated as BDL (Below Detection Limit), 
underscores the need for nuanced approaches and highlights 
its potential to drive impactful research in the fields of nutrition, 
agriculture, and environmental sustainability [1-42].

Accuracy: Accuracy evaluates the ratio of accurately classified 
instances to the total number of instances. In the realm of soil 
quality prediction and environmental monitoring, accuracy gauges 

the model’s effectiveness in predicting soil quality by considering 
essential and toxic element concentrations across varied 
geographical locations [1-42].
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Precision: Precision measures the ratio of true positive 
predictions to all positive predictions generated by the model. 
Within this research, precision reflects the model’s ability to 
accurately identify soil samples with particular attributes, such as 
elevated or diminished levels of essential or harmful elements [1-
42].
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Recall: Recall, synonymous with sensitivity, quantifies the ratio 
of true positive predictions to all actual positive cases within the 
dataset. In the realm of soil quality prognostication, recall gauges 
the model’s effectiveness in accurately pinpointing soil samples 
with specific attributes, such as heightened concentrations of 
essential or harmful elements [1-42].
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Sensitivity: Sensitivity, also known as recall, measures the 
proportion of true positive predictions relative to all actual positive 
instances, demonstrating the model’s ability to identify soil samples 
with specific characteristics, such as heightened concentrations of 
essential or harmful elements, across various locations [1-42]. 
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Specificity: Specificity evaluates the ratio of true negative 
predictions to all actual negative instances in the dataset. In the 
context of soil quality prediction, specificity reflects the model’s 
capability to correctly recognize soil samples lacking specific traits, 
like minimal levels of essential or harmful elements [1-42].

                                 ( )
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+

F1- Score: The F1-Score represents the harmonic mean of 
precision and recall, offering a balanced assessment of these two 
measures. Within this research, the F1-Score reflects the model’s 
comprehensive performance in predicting soil quality with 
precision and recall considerations, considering the concentrations 
of essential and toxic elements across varied locations [1-42].
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Area Under the Curve (AUC): The Area Under the Curve (AUC) 
quantifies the model’s capability to differentiate between positive 
and negative instances across varying thresholds. In the realm of 
soil quality prediction, AUC serves as an assessment of the model’s 
general effectiveness in discerning soil samples with particular 
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attributes from those lacking such attributes, taking into account 
the concentrations of essential and toxic elements [1-42].
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Evaluation methods
Evaluation methods denote the methodologies employed 

to appraise the efficacy of predictive models. Within this study, 
techniques like confusion matrices, classification reports, and 
Mean Squared Error (MSE) computations are utilized to gauge 
the performance of models in forecasting soil quality and toxicity 
levels, leveraging elemental concentrations in soil and rice samples 
sourced from diverse locations [1-42].
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Mathematical modelling
Mathematical modeling within this context involves 

employing statistical techniques to depict relationships among 
variables present in the dataset. The objective of this modeling 
is to encapsulate and measure patterns and trends found in the 
concentrations of essential and toxic elements within rice samples 
gathered from various locations. By utilizing mathematical 
equations and algorithms, researchers can scrutinize the data to 
comprehend the elemental composition of rice and its implications 
for both nutrition and agriculture. These models equip researchers 
with the capability to forecast and extract insights regarding soil 
quality and toxicity levels based on elemental concentrations, 
thereby facilitating well-informed decision-making in both 
environmental management and agricultural practices [1-42].

Moreover, mathematical modeling facilitates the assessment 
of model performance through metrics such as precision, recall, 
F1-score, and Area Under the Curve (AUC). These metrics evaluate 
the accuracy, sensitivity, and specificity of the models in predicting 
soil quality and toxicity levels across a diverse array of locations. 
By juxtaposing predicted outcomes with actual observations, 
researchers can ascertain the effectiveness of the models and 
pinpoint areas requiring enhancement. Additionally, evaluation 
methods such as confusion matrices and Mean Squared Error 
(MSE) computations yield insights into the predictive capabilities 
of the model and its capacity to generalize to unseen data. Overall, 
mathematical modeling stands as a valuable instrument in 
analyzing intricate datasets and drawing meaningful conclusions 
to tackle environmental and agricultural challenges. These proofs 
elucidate how precision and recall are derived based on the true 

positives, false positives, and false negatives generated by the 
model. Similar logical steps are applicable in deriving formulas for 
other metrics like the F1-Score and AUC. Now, let us deconstruct 
the mathematical modeling process and associated metrics into a 
step-by-step breakdown [1-42].

Mathematical modeling process

Data representation: Let X denote the dataset encompassing 
measurements of essential and toxic elements in rice samples from 
diverse locations. Each row 𝑥𝑖 of X represents a sample, while each 
column denotes a distinct element. For instance, X ij signifies the 
concentration of element j in sample 𝑖 [1-42].

Model representation: The relationship between elemental 
concentrations and soil quality is represented via a mathematical 
model 𝑓(𝑋). This model could encompass linear regression, logistic 
regression, support vector machines (SVM), or any other suitable 
algorithm [1-42].

Model training: The model 𝑓(𝑋) is trained using a subset of 
the data, typically employing techniques such as gradient descent 
or maximum likelihood estimation. The parameters of the model, 
denoted by 𝜃 θ, are optimized during this training process [1-42]. 

Evaluation metrics

Precision (Preciseness): Precision assesses the ratio of true 
positive predictions to all positive predictions generated by the 
model.

Recall (Callback): Recall quantifies the ratio of true positive 
predictions to all actual positive cases within the dataset.

F1-Score: The F1-Score serves as the harmonic mean of 
precision and recall, offering a balanced assessment of these two 
measures.

Area Under the Curve (AUC): AUC quantifies the model’s 
ability to differentiate between positive and negative instances 
across varying thresholds.

Model evaluation

Training and testing: The model undergoes training on a 
subset of the data and is subsequently evaluated on a distinct test 
set to gauge its generalization performance.

Metrics calculation: Employing the trained model, evaluation 
metrics (precision, recall, F1-Score, AUC) are computed based on 
the predictions made on the test set.

Comparison and interpretation: The calculated metrics 
are juxtaposed against predefined thresholds or benchmarks to 
ascertain the efficacy of the model in predicting soil quality and 
toxicity levels [1-42].

For accuracy: 

/
 

Accuracy TruePositives TrueNegatives TruePositives
TrueNegatives FalsePositives FalseNegatives

= + +
+ +

Substituting values from the provided data [1-42]:             

 0.1  /  Accuracy Total Translations Total Translations= ×   
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For precision: 

 /    Precision True Positives True Positives False Positives= +

Substituting values
 0.01  /  Precision Total Translations Total Translations= ×

For recall: 
     /  Recall True Positives True Positives False Negatives= +

Substituting values
 0.1  /  Recall Total Translations Total Translations= ×

For sensitivity: 
 /      Sensitivity True Positives True Positives False Negatives= +

Substituting values
 0.1  /  Sensitivity Total Translations Total Translations= ×

For specificity: 
 /      Specificity True Negatives True Negatives False Positives= +

Substituting values
  0.1  /  Specificity Total Translations Total Translations Total Translations= − ×

For F1-score: 
1 2 /   F Score Precision Recall Precision Recall− = × × +

Substituting values

2 0.01 0.1  1
0.01  0.1  

Total TranslationsF Score
Total Translations Total Translations

× × ×
− =

× + ×

Conclusion
Anticipating soil toxicity is crucial for evaluating environmental 

hazards and safeguarding the balance of ecosystems and human 
health. This study conducts a thorough comparative examination 
between two robust machine learning techniques, Random Forest 
(RF) and Support Vector Machine (SVM), to predict soil toxicity. 
Employing a varied dataset containing soil samples from diverse 
geographical regions, the study assesses the effectiveness of RF 
and SVM models in categorizing soil samples as toxic or non-
toxic. The analysis initiates with a detailed investigation into 
feature selection methods aimed at pinpointing the most pertinent 
predictors for soil toxicity. Following this, RF and SVM models 
are trained and evaluated using these chosen features, employing 
stringent cross-validation methods to ensure the trustworthiness 
and applicability of the results. Performance metrics like accuracy, 
precision, recall, and F1-score are utilized to evaluate the predictive 
capabilities of each model. The findings offer valuable insights into 
the comparative performance of RF and SVM in forecasting soil 
toxicity. Although both models exhibit commendable performance, 
nuanced differences in their predictive strengths and weaknesses 
across various soil types and toxicity levels emerge. Additionally, 
the interpretability of model forecasts sheds light on the factors 
influencing soil toxicity and the decision-making process of 
machine learning models. Ultimately, this research contributes to 
the advancement of soil toxicity prediction by providing empirical 
evidence on the relative performance of RF and SVM models, 
which carries significant implications for environmental scientists, 

policymakers, and stakeholders engaged in soil management and 
remediation endeavors. Moreover, the dataset furnished in this 
study presents comprehensive details on the concentrations of 
essential and toxic elements in rice samples collected from diverse 
locations. Organized with individual samples labeled from S1 to 
S138 and linked with specific locations like Bagerhat, Bandarban, 
among others, the dataset encompasses essential elements such as 
Cobalt (Co), Copper (Cu), Iron (Fe), Manganese (Mn), Molybdenum 
(Mo), Selenium (Se), and Zinc (Zn), alongside toxic elements like 
Arsenic (As), Nickel (Ni), Lead (Pb), and Chromium (Cr), measured 
in milligrams per kilogram (mg kg-1). Noteworthy, some values are 
denoted as BDL (Below Detection Limit), indicating concentrations 
below the detection threshold. This dataset provides a 
comprehensive insight into the elemental composition of rice, 
offering valuable avenues for research in nutrition and agriculture. 
The structured arrangement and meticulous documentation of 
the dataset underscore its potential to drive impactful studies 
in comprehending the elemental composition of rice and its 
implications for human health and environmental sustainability.

In future endeavors, there is merit in exploring ensemble 
methods that amalgamate the advantages of RF and SVM models to 
further enhance the accuracy of soil toxicity prediction. Additionally, 
delving into the impact of temporal and climatic variables on soil 
toxicity trends could yield a more thorough comprehension of 
environmental hazards, aiding in the refinement of predictive 
models for more effective decision-making in soil management 
and remediation endeavors. To build upon this research, 
forthcoming studies could delve into the associations between 
soil toxicity levels and human health outcomes, with a particular 
emphasis on communities reliant on rice consumption from varied 
geographic regions. Moreover, the integration of sophisticated 
data visualization techniques holds promise in providing intuitive 
depictions of soil toxicity trends, facilitating the dissemination of 
findings to a broader audience and fostering collaboration among 
stakeholders involved in environmental preservation and public 
health initiatives.
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