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Introduction
Edible flowers possess a rich history of consumption and documentation worldwide, 

spanning ancient civilizations like Greece, Rome, medieval Europe and Asian countries such 
as China and Japan [1,2]. Over time, globalization and heightened consumer awareness have 
rekindled interest in edible flowers due to their potential to enhance human well-being and 
health. Research has spotlighted their bioactive compounds, including natural pigments, 
essential oils and antioxidants, elucidating their health-promoting effects and folk medicinal 
uses. The common phytochemicals in edible flowers are depicted in (Table 1). In response to 
consumer preferences for natural, functional and healthy food products, edible flowers have 
gained considerable attraction in the market which led to the evaluation of several species such 
as chrysanthemum, hibiscus, lavender, marigold and rose for their potential benefits [13,14]. 
Approximately 180 flower species have been identified as suitable for human consumption, 
edible flowers offer more than just aesthetic enhancement; they present a safe and nutritious 
option. These blossoms play a crucial role as functional ingredients in food along with their 
aroma and have potential health advantages when included in range of dishes and beverages 
like teas, wines, fruit juices etc. [15,2]. Beyond culinary appeal, their extensive historical use 
in traditional medicine underscores their medicinal properties.
Table 1: Common phytochemicals in edible flowers.

Edible Flowers Phytochemicals Reference

Marigold, Rose, Calendula, 
Chrysanthemum

Carotenoids (Lutein, β-carotene, 
Flavoxanthin, lycopene, zeaxanthin, etc)

Varzakas and Kiokias [3]; 
Wan et al. [4]; Pavelkova et 

al. [5]

Rose, Hibiscus, Calendula, 
Chrysanthemum

Anthocyanins (Cyanidin 3,5-diglucoside, 
pelargonidin 3,5-diglucoside, peonidin 

3-O-glucoside, etc)

Grajeda-Iglesias et al. [6]; 
Wan et al. [7]; Kumari et 

al. [8] 

Rose, Calendula, Marigold, 
Lavender, Hibiscus, Daylily, 

Chrysanthemum

Flavonoids   (Quercetin, myricetin 
3,5-di-O-glucoside, kaempferol 3,7-di-O-

rhamnoside, etc)

Cendrowski et al. [9]; Cao et 
al. [10]; Wan et al. [4]

Rose, Lavender, 
Chrysanthemum, Calendula, 

Daylily, Marigold

Phenolic acid (Gallic, Caffeic, Caftaric, 
Chlorogenic, Chicoric, Coumaric, Sinapic 

and Ferulic, etc)

Ryu et al. [11]; Krzymińska 
et al. [12]
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As a niche market, edible flowers cater to a diverse range of 
consumers seeking natural and bioactive components in their 
diet, further highlighting their significance in contemporary food 
culture. In the present scenario, there is a global demand for novel 
traits in ornamental plant products, including improved anatomical 
attributes, floral colors, pigments, stress tolerance, disease 

resistance and enhanced secondary metabolites with health 
benefits and medicinal values [16,17]. Research and advancements 
in biotechnology Figure 1 have paved the way to enhance edible 
flowers, ensuring their safety and augmenting their valuable traits 
for diverse purposes, including industrial applications, promising a 
future for these blossoms.

Figure 1: Biotechnological approaches for improvement of edible flowers.

Biotechnological Approaches Employed for 
Improving Specific Traits in Edible Flower Crops
Mutation breeding

Mutation breeding has been a fundamental approach in 
developing new plant varieties, especially in ornamental plants. 
Traditional breeding methods, although reliable, are laborious and 
time-consuming compared to mutation breeding. This technique 
involves the use of UV radiation, ionizing radiation and chemical 
mutagens like EMS and Sodium Azide to induce mutations. It has 
significantly enhanced breeding efficiency. Mutation breeding 
revolutionized ornamental plant breeding, accelerating the 
development of novel traits, particularly flower colors. This 
method is pivotal in satisfying the floriculture industry’s demands 
for unique attributes. Various techniques, including gamma 
radiation optimization and chemical mutagen selection, have 
yielded promising results in plants like carnations, dianthus, 
chrysanthemums, roses and more. These methods have shown 
potential in creating new cultivars and enhancing characteristics 
like flower color and plant architecture. Research institutions 
have actively registered number of new mutant lines of dianthus, 
chrysanthemums, roses, marigold, Jasmine, tuberose, aster, gladiolus 
and many more, ensuring the continuous innovation of ornamental 
plant varieties [18-29] DFR Annual Report, 2022-23). Mutation 
breeding methods are pivotal for the growth and innovation of the 

ornamental plant industry, enabling the creation of desirable traits 
to meet local and export market demands.

Molecular markers for genetic diversity and MAS 
breeding

Molecular markers have emerged as valuable tools for 
genetic improvement in ornamental plants, offering insights 
into genetic diversity and aiding in various applications such as 
Marker-Assisted Selection (MAS). Various molecular techniques 
like SSR, ISSR and SNP have been effectively utilized to assess 
genetic diversity, determine parentage and identify specific traits. 
These markers have been employed in genetic studies of different 
ornamental species, revealing unique alleles and providing essential 
information for plant breeding program [30]. For example, SSR 
markers have been used to distinguish different rose varieties and 
evaluate genetic diversity in chrysanthemums [31,32] Additionally, 
GWAS studies have linked specific genes to traits like flower type 
and shape in chrysanthemums [33]. Agarwal et al. [34] identified 
the polymorphic nature of SCoT markers and established genetic 
diversity among different Rosa germplasms. Rosa hybrida’s genetic 
fidelity was affirmed with RAPD and ISSR markers [35] and SSR 
markers differentiated between cultivated and wild rose species 
[36,37] constructed the first individual maps of rose populations, 
linking them with 824 SNPs and 13 SSR bridge markers. In 
carnations, molecular markers unveiled the genetic basis of 
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resistance to Fusarium oxysporum, with a sequence-specific PCR-
based SCAR marker developed [38]. SSR markers differentiated 
carnation varieties [39], while RAPD markers assessed genetic 
fidelity of in vitro regenerated plants [40]. Marigold research 
employed molecular markers for investigating male sterility [41] 
and assessing genetic diversity in genotypes. In Lilium species, ISSR 
and AFLP markers confirmed genetic stability and variations in 
regenerants and progeny [42,43]. ICAR-DFR is working on unique 
fingerprints for marigold, rose and chrysanthemum, employing 
SRAP, ISSR, and SCoT markers, with a specific focus on variety-
specific markers in chrysanthemums (Unpublished data).

Advanced techniques in plant tissue culture for 
propagation

The floriculture industry, driven by the demand for high-quality 
ornamental plants and flowers, consistently seeks new varieties 
with improved traits, including plant architecture, vase life, 
keeping quality, color, and disease resistance [16,17]. Ornamental 
horticulture encompasses a wide range of plants used in various 
applications, such as home gardening, landscaping and cut flower 
production, contributing significantly to the industry [44,45]. Tissue 
culture technology has brought about a revolution in the floriculture 
sector, particularly through large-scale propagation using in vitro 
cloning. Tissue culture has proven invaluable in generating genetic 

variability, enhancing plant health and expanding germplasms 
available to breeders. This technology has successfully incorporated 
specific traits through gene transfer, resulting in new genetic 
variations within breeding lines [36]. Various in vitro techniques, 
such as protoplast culture, organ culture and meristem culture, 
have been employed to produce haploid lines and somaclonal 
variants, offering advantages over traditional methods in terms of 
time and mass multiplication [17]. In addition to mass production, 
tissue culture has enabled pathogen elimination from planting 
materials and the production of uniform, disease-free plantlets for 
large-scale cultivation. These techniques have also facilitated the 
rapid multiplication of chimeric-mutant plants obtained through 
mutagenesis [16]. In vitro techniques have significantly reduced 
the time required for developing new varieties and have facilitated 
the rapid dissemination of planting materials over large areas [46]. 
(Table 2) has summarized the tissue culture techniques employed 
for edible flower species. ICAR-DFR has developed efficient 
regeneration protocols for indigenous chrysanthemum varieties, 
which are particularly valuable for multiplying chimeric flowers 
induced by physical mutagens. The institute has also established 
regeneration and direct organogenesis protocols for marigold 
varieties, allowing for the development of transgenic and genome-
edited plants (Unpublished data).

Table 2: Summary of tissue culture techniques employed for edible flower species.

Species/Cultivars Explant Response References

Organogenesis

Chrysanthemum spp. Shoot tips, Nodal explants and leaf Multiple shoot, root and plant 
formation Jahan et al. 2021

Gerbera jamesonii Shoot tips, floral buds, leaf, petioles 
and petals

Multiple shoot root and plant 
formation

Winarto B & Prama Yufdy M 2017; 
Akter et al. 2012

Hemerocallis fulva Stem tissue Callus and shoot formation Matand et al. 2020

Hibiscus rosa sinensis Nodal explants with axillary bud Multiple shoot root and plant 
formation Metwally et al. 2016

Jasminum sambac Young leaves, stems and petioles Callus and shoot formation Farzinebrahimi et al. 2014

Dianthus caryophyllus Axillary buds Multiple shoot root and plant 
formation Ahmadian et al. 2017

Nelumbo nucifera Immature cotyledon and embryo 
and meristem and embryos

Callus induction and Multiple shoo, 
root and plant formation Deng et al. 2020 and Yu et al. 2015

Rhododendron arboretum Nodal explants Multiple shoot root and plant 
formation Mao et al. 2018

Rosa spp. Axillary buds Multiple shoot root and plant 
formation Attia et al. 2012 and Baig et al. 2011

Tagetes erecta and Tagetes patula Nodal segments, shoot tip Multiple shoot root and plant 
formation

Kumar et al. 2018, Majumder et al. 
2014

Soma clonal variation

Chrysanthemum spp.
Adventitious shoots from 

two explant types, leaves and 
internodes

Eeckhau et al. 2020 and Zalewska et al. 2011

Gerbera Capitulum Bhatia et al. (2009)

Carnation Leaf base explants Esmaiel et al. (2012)

Somatic embryogenesis

Rosa spp. Nodal stem segment Li et al. 2002 and Kim et al. 2003

Haploid development

Chrysanthemum spp. Anther, Ovule Khandakar et al. 2014 and Wang et al. 2014 and Gao et al. 2010
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Carnation Anther Nontaswatsri et al. 2007

Lily Anther Arzate-Fernandez et al. 1997

Marigold Anther Kurimella et al. 2021

Gerbera Ovule Cappadocia et al. 1988

Genetic engineering and genome editing for edible 
flower crops

Genetic manipulation techniques have emerged as powerful 
tools to overcome limitations of traditional breeding methods in 
the ornamental plant industry. Genetic engineering allows the 
introduction of desired genes into ornamental plants, providing the 
ability to modify traits such as color, fragrance, disease resistance 
and flower architecture. Agrobacterium-mediated plant genetic 

transformation is a widely used method for gene transfer due to its 
simplicity and adaptability (Table 3). Through genetic engineering, 
it is possible to enhance the quality and traits of ornamental plants 
for both aesthetic and practical purposes. This approach offers a 
promising way to develop new cultivars with novel flower colors, 
improved post-harvest longevity and other desired characteristics, 
contributing to the advancement of the ornamental plant industry 
described below.

Table 3: Agrobacterium-mediated stable gene transformation in edible flower plants.

Species Exogenous Explant Methods
Gene A. 

tumefaciens 
strain

Transformation 
Efficiency

Phenotype of 
Transgenic 

Plant
Ref

Rosa hybrida GFP Leaf Somatic embryogenesis GV3101 5~6%
Green 

fluorescence 
observed

Liu et al. 
2021

Rosa chinensis GUS Somatic 
embryos

Somatic 
embryogenesis+Shoot 

regeneration
EHA105 ND GUS positive Vergne et al. 

2010

Tagetes erecta GFP Flower Floral dipping EHA105 ND
Green 

fluorescence 
observed

Cheng et al., 
2019

Tagetes erecta GUS Leaf Shoot regeneration LBA4404 ND

GUS positive 
in leaves of 
transgenic 

plants

Narushima et 
al., 2017

Chrysanthemum
Artemisinin 
biosynthesis 

genes
Leaf Shoot regeneration CBE21 0.17~0.33% Artemisinin 

production
Firsov et al., 

2020

Chrysanthemum RsMYB1 Leaf Shoot regeneration GV3101 1%
Improved 

resistance to 
herbicides

Naing et al., 
2016

Chrysanthemum cry1Ab Leaf Shoot regeneration LBA4404 ND Improved insect 
resistance

Shinoyama et 
al., 2002

Lilium 0- GUS Meristematic 
nodular calli Shoot regeneration EHA101 11.10%

Stable 
expression of 

GUS gene

Abbasi et al., 
2020

Lilium GUS Filament-
derived calli Shoot regeneration EHA101 ND GUS positive Hoshi et al., 

2004

Gerbera hybrida GMYB10 Leaf Shoot regeneration C58C1 ND
Activation of 
Anthocyanin 
Biosynthesis

Elomaa et al., 
2003

Flower colour: Plant flower colors depend on anthocyanins, 
water-soluble pigments that bring vibrant hues to fruits, flowers 
and leaves. These pigments, derived from six anthocyanidins, 
are pivotal in genetic and molecular research [47]. Anthocyanin 
creation involves a series of enzymatic reactions within the 
flavonoid biosynthetic pathway, encompassing phenylalanine, 
phenylpropanoid, flavonoid and anthocyanin metabolism. In the 
realm of genetic manipulation for flower color, Petunia hybrida 
with its well-studied genetics and transformability, stands out as a 
valuable model for engineering flower color [48]. Chrysanthemum, 

known for its diverse flower colors, has been genetically engineered 
to intensify cyanidin content for vibrant red petals. 

However, achieving blue flower color through the introduction 
of a pansy F3′5′H gene remains a persistent challenge [49]. Moon 
carnations and roses have been successfully engineered to display 
violet and blue flower colors, respectively. Introduction of petunia 
genes F3′5′H and DFR into white carnation mutants resulted in 
violet hues through co-pigmentation. Similarly, roses were modified 
to produce delphinidin-based anthocyanins, leading to blue and 
magenta flower colors via specific gene introduction [50]. Transient 
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transformation experiments in Lilium plants have demonstrated 
the alteration of flower color through the overexpression of key 
genes for instance, overexpressing the Phalaenopsis F3’5’H (Ph 
F3’5’H) gene shifted the color from pink to pale purple, with further 
deepening of the purple color achieved by co-expressing PhF3’5’H 
and Hyacinth DFR (HyDFR) genes [51]. Genome editing has 
emerged as a potent tool for modifying flower color across various 
plant species. Understanding anthocyanin biosynthesis and related 
genes offers exciting possibilities for creating unique flower colors, 
greatly impacting the ornamental plants industry with visually 
captivating varieties.

Floral scent: Floral scent plays a vital role in attracting 
pollinators, protecting plants from herbivores and pathogens 
and facilitating reproductive processes. The scent is a complex 
mixture of compounds, including fatty acid derivatives, benzenoids, 
phenylpropanoids and terpenoids. Understanding the intricate 
role of floral scent in plant biology offers opportunities to improve 
crop yields and enhance the visual and olfactory appeal of flowers 
[52,53]. Genetic engineering offers a solution to impart fragrance 
to modern cut-flowers, addressing the decline of natural scent 
due to selective breeding for other traits. A breakthrough involved 
isolating the S-Linalool Synthase (LIS) gene from Clarkia breweri, 
a sweet-scented California plant. By introducing the LIS gene 
into carnations, linalool production was successfully enhanced, 
showcasing the potential of genetic manipulation to enhance 
floral scents [54]. Transcription Factors (TFs) are key players in 
fragrance biosynthesis, regulating various pathways that lead to the 
production of volatile compounds. They control processes like the 
shikimate pathway, regulated by TF ODORNT1 (ODO1), specifically 
expressed in petunia petals. While some pathways are well 
understood, the regulation of terpenoid pathways remains unclear. 
The successful introduction of the PAP1 transcription factor from 
Arabidopsis into rose flowers resulted in heightened production 
of specific scent compounds, emphasizing the potential of genetic 
engineering to enhance floral fragrances and revolutionize the 
floral industry [55].

Biotic and abiotic stress resistance: Plants are susceptible to 
a wide range of environmental stresses viz., abiotic (e.g., radiation, 
salinity, drought) and biotic (e.g., pathogens, herbivores) that 
impair growth and productivity [17]. These stresses trigger diverse 
plant responses, altering gene expression, metabolic processes 
and physiological attributes. Research on stress tolerance in 
edible flower crops has made progress in understanding and 
improving their responses, exemplified by transgenic carnations 
with enhanced resistance to Fusarium wilt disease and caffeine-
producing chrysanthemum plants exhibiting resistance to fungal 
attacks [56,57]. The abundance, organization and expression 
patterns of LlWRKY genes were studied in Lilium, indicating their 
potential role in both abiotic and biotic stress tolerance [58]. Genetic 
transformation methods, like Agrobacterium-mediated transfer 
of specific genes, have been instrumental in conferring resistance 
against viruses and pests, enhancing crop resilience. Additionally, 
the role of critical transcription factors such as ZIP, WRKY and NAC 
in stress response pathways has been demonstrated, paving the way 

for targeted approaches to enhance stress tolerance in ornamental 
plants [59,60]. Overall, employing biotechnological strategies holds 
promise in mitigating environmental stress effects and improving 
the productivity and stress resilience of ornamental plants.

Keeping quality and post-harvest quality management: 
Ornamental plants are integral to the horticulture industry and 
preserving their quality and freshness is commercially important. 
Ethylene and bacterial infections accelerate flower wilting, 
necessitating resistance. Genetic engineering offers a cost-effective 
solution by reducing ethylene-induced senescence [61]. Targeting 
ethylene-related genes enhances vase life and quality in flowers. 
Successful genetic modifications, as seen in carnations, illuminate 
this potential [62]. Additionally, optimizing tissue-specific ethylene 
insensitivity, demonstrated in transgenic petunias, is crucial for 
commercial viability. In roses, various genes and transcription 
factors have been implicated in the ethylene response, providing 
opportunities to manipulate floral senescence and extend flower life. 
In conclusion, genetic engineering focused on ethylene pathways 
holds promise for enhancing the shelf life of ornamental plants, 
ensuring better quality and commercial value. Understanding 
regulatory mechanisms and gene expression patterns in ethylene 
response pathways is pivotal for developing enduring ornamental 
plants.

Enhancement of industrially important pigments, essential 
oils and secondary metabolites: Highlighting the nutraceutical 
potential of edible flowers, underscoring their richness in 
nutrients, phytochemicals and the subsequent health benefits, 
these flowers demonstrate a broad range of medicinal attributes, 
including anti-diabetic, anti-cancer, anti-anxiety, anti-inflammatory, 
antimicrobial, diuretic and immunomodulatory effects [63,64]. 
Also, flower essential oils are highly valued for their aromatic 
appeal and pharmacological properties enriched with active 
constituents. These oils possess antimicrobial, antioxidant and 
anti-pest properties, crucial for food preservation, cosmetics and 
medicine [65,66]. Biotechnological advancements show potential 
in optimizing essential oil yield and composition, exemplified by 
studies focusing on lavender as a key example [67-69].

Omics approaches: Crop improvement endeavors aim to 
develop climate-smart crops with heightened stress tolerance, 
improved nutritional value and superior agronomic traits. The 
integration of “omics” technologies-genomics, transcriptomics, 
proteomics and metabolomics-has been pivotal in identifying 
pivotal genes, proteins and metabolic pathways governing desired 
traits, facilitating marker-assisted breeding in major crops. 
Additionally, harnessing natural variation in crop wild relatives and 
underutilized species is crucial.

Conclusion
Edible flowers are highly valued for their functional properties, 

adding appeal and nutritional benefits to food products. With 
growing consumer demand for natural and healthy food options, 
there’s a significant opportunity to use biotechnological tools 
to enhance the quality and yield of edible flowers to meet global 
demands. Progress has been notable in enhancing key traits through 
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mutation breeding and tissue culture techniques. Despite genome 
sequencing progress, the application of genome editing in edible 
ornamentals is still evolving. There’s a need to extend transgenic, 
genome editing and omics technologies to enhance the nutritional 
and bioactive properties of valuable edible flowers.
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