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Introduction

Heavy metals are one of the primary contaminants in the 
environment [1]. Exposure to heavy metals, even at trace levels, 
is believed to be a high health risk for humans [2,3]. Heavy 
metals are naturally occurring throughout the earth’s crust [4]. 
But most of the environmental contamination results from the 
anthropogenic activities such as mining and smelting operations, 
industry, and domestic and agricultural use of metals and metal-
containing compounds. Migration of these contaminants into 
non-contaminated areas as dust or leachates through the soil and 
spreading of heavy metals containing sewage sludge are a few 
examples of events contributing towards contamination of the 
ecosystems [5]. Hence, water is the one of the major routes through 
which heavy metals and radionuclides may enter the human 
body [6,7]. The sources of water pollution are shown in Figure 1. 
The conventional wastewater purification techniques including 
chemical coagulation, photo degradation, precipitation, flocculation, 
activated sludge, membrane separation and ion exchange are  

 
limited to the removal of heavy metals at trace levels [7-9]. 
However, adsorption is one of the best methods for the purification 
of water, owing to its low cost and easy handling of materials 
[7,10-12]. Moreover, adsorption approaches using commercial 
activated carbon, micro-filtration and membrane techniques are 
effective, but their use is limited by the complicated installation 
process involved coupled with the high maintenance costs of the 
systems [7,13]. Hence, these drawbacks have necessitated the 
search for an alternative method which is inexpensive, renewable 
and cost-effective for the removal of heavy metals from aqueous 
solutions. Many scientific groups have prepared graphene or 
graphene oxide (GO) based hybrid nanocomposites for various 
potential applications [14-17]. The study of literature survey and 
stability of the GO-based nanocomposites prompted us to survey on 
graphene oxide and reduced graphene oxide-based inverse spinel 
nickel ferrite nanocomposites for the removal of heavy metals 
and radionuclides from water with the purpose of reducing their 
environmental impact.

Figure 1: Schematic depict for sources of water pollution.
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Graphene Oxide Based Nanocomposites for Radioactive 
and Toxic Metal Remediation

Recently, the field of nanoscience has blossomed, and the 
importance of nanotechnology will increase as miniaturization 
becomes more vital in the areas of computing, sensors, biomedical, 
water purification and other applications. Advancements in this 
discipline depend largely on the ability to synthesize nanoparticles 
of various materials, sizes, and shapes, as well as to assemble them 
efficiently into complex architectures. That means, nanomaterials 
applications are mainly depend on their physicochemical 
properties which leads to develop a special structural featured 
nanoparticles. However, the scientists are examining materials with 
improved physicochemical properties that are dimensionally more 
suitable in the field of nanoscience and technology. In this regard, 
the discovery of graphene or graphene-based nanocomposites is an 
important addition in the area of nanoscience, playing a vital role in 
modern science and technology.

Graphene, a two-dimensional sp2 carbon monolayer in a 
unique honeycomb-like network [18,19]. It has attracted dramatic 
attention due to its numerous merits such as enormous specific 
surface area (2630m2/g), high thermal and electrical conductivity 
(~5000 W/m.K and 6000S/cm), large Young’s modulus (~1.0TPa) 
and high optical transmittance (~97.7%) [14,15,18-21]. Moreover, 
graphene oxide (GO) or graphene-based material shares merit 
like those of the bare. However, due to the presence of decorated 
hydroxyl, carboxyl, and epoxy functional groups on the basal 
plane and plane edge, GO is more easily dispersed than graphene, 
making its synthesis, processing, and usage more convenient 
[22,23]. Also, the durable hydrophilicity of GO guarantees that it 
is a good candidate for many applications, including drug delivery, 
brutal cell treatment and water purification [23-25]. To enrich the 
functionalities, graphene and GO are always used to host various 
nanomaterials due to their large surface area [22,24,25]. 

The incorporation of inorganic NPs to GO excellently improved 
its performances in different applications [26-29]. Moreover, GO is 
a good candidate for constructing GO-based metal oxide composite 
materials. For example, Co3O4-anchored graphene nanocomposites 
that serve as potential electrode materials for super capacitors 
exhibit an excellent specific capacitance [25]. TiO2-graphene 
nanocomposites display a much higher photocatalytic activity and 
stability for the degradation of benzene in the air [30]. Graphene-
Fe3O4 nanocomposites exhibit improved reversible capacity and 
cyclic stability of the lithium ion battery [31,32]. Recently, many 
researchers prepared GO-based metal oxide nanocomposites, such 
as Fe3O4/GO [33,34], Magnetic reduced GO [35,36], Mn3O4/GO [37-
39] and other hybrid [40-42] nanocomposites are used for the 
adsorption of various organic and inorganic pollutants from water. 
Sreeprasad et al. [41] and Maaz et al. [42] have been reported nickel 
ferrite-GO composite is a promising reacting media because Ni2+ in 
the nickel ferrites shows unique property such as high catalytic 
efficiency with high charge (electron) transfer capacity than iron 
ferrites. Therefore, it has been used for adsorption of toxic heavy 

metals [32]. Besides, graphene-based materials possess the ability 
of adsorbing organic pollutants and heavy metal ions owing to their 
potential adsorbent materials [42,29]. However, the limitations in 
separation and the following recycling process have significantly 
restricted their applications [29,39-43]. Nevertheless, the 
introduction of magnetic NPs to the graphene/GO can improve the 
graphene’s dynamic adsorption behavior as well as overcoming the 
separation and recycling problem. Previous reports have proved 
the magnetic NPs/graphene or GO composites amazing removal 
response for pollutants, like chromium [44,45], copper [46,47], 
arsenic [33,48], cadmium [49], lead [50], cobalt and organic dye 
[51-53].

For the synthesis of GO-based magnetic nanocomposites, 
GO is the candidate used as a template to the in-situ production 
of magnetic NPs by interacting with the functionalized oxygen-
containing groups [51,52]. A further reduction process is 
performed to obtain few layered graphene or reduced GO (r-GO) 
nanocomposites of an enhanced magnetization [52]. Recently, we 
reported on the synthesis of graphene oxide based inverse spinel 
nickel ferrite nanocomposites for the removal of heavy metals, 
Co(II), Pb(II), Cr(III), As(III) and As(V) and radionuclides, U(VI) and 
Th(IV) from aqueous solutions, thereby reducing potential effects 
on human health and environmental risks [53-58]. The reported 
results demonstrated that the magnetic GO-based nanocomposites, 
are promising, economic and could be separated by external 
magnetic field, and were recycled and re-used for up to five cycles 
without any significant loss of adsorption capacity towards heavy 
metals and radionuclides from aqueous environment.
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