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Introduction
Carbon nanotubes [1] are well-known nanomaterials with 

exceptional mechanical, electrical and thermal properties. These 
nanoparticles may be incorporated with polymer composites as a 
primary and/or secondary reinforcement [2-4]. This reinforcement 
overcomes several limitations related to conventional polymer 
composites and enhances material performance under loading [4]. 
Impact damage tolerance of fiber reinforced polymer composites is 
a serious concern and a real life problem in several sectors such as, 
aerospace, automobile and marine industries [5]. The low-velocity 
impact causes matrix cracking, delamination and fiber fracture. 
When carbon nanotubes are used as reinforcement, they provide 
strong interfacial adhesion between matrix and nanoparticle. 
Therefore, enhancement in overall mechanical properties is 
achieved [6]. 

On the basis of coaxial tubes carbon nanotubes can be dived 
into two categories 

A. Single-wall carbon nanotubes (SWCNTs) 

B. Multiwall carbon nanotubes (MWCNTs). 

SWCNTs doping is ‘the pull-out effect’ from the bundles (ropes) 
whereas MWCNTs offers advantages over this limitation as well  

 
as provide better load transfer in polymer composites [6]. Rawat 
et al. [7] worked on analysis of impact damage tolerance of FRPs 
using MWCNTs as reinforcement at various doping percentages. 
Commonly the synthesis process of multiwall carbon nanotubes 
adopted is chemical vapor deposition (CVD). The limitation of 
the method is limited quantity production of multiwall carbon 
nanotubes. Moreover, MWCNTs produced with the arc discharge 
process does not require any expensive machinery and/or special 
arrangements. Furthermore, the arc discharge process is a mass 
production and cost effective technique for MWCNTs synthesis [8].

To investigate the mechanical properties of two and/or 
three phase polymer composites mixed with multiwall carbon 
nanotubes several types of research have been conducted [9-11]. 
Various methods have been developed and proposed to improve 
the damage tolerance of FRPs such as hybrid layup [12,13], 
sandwich composites [14], nano to microparticles/fiber reinforced 
composites [15] and designed laminates [16,17].

During LVI in fiber/epoxy composites, the dominant damage 
mechanisms are: matrix cracking (crack generation), delaminating 
(interface failure) and fiber fracture [18]. Matrix modification 
using MWCNTs provides better load transfer [19] and improved 
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interfacial characteristics [20] therefore improved damage 
tolerance is attained. Kostopoulos et al. [4] studied the impact and 
after impact properties by adding multiwall carbon nanotubes 
in CFRP laminates. The results of this experimental investigation 
justified the improvement in energy absorption and the cause of 
improvement in energy absorption was larger surface area due to 
MWCNTs. Additionally, matrix toughing effect in modified matrix 
stops crack propagation resulting less delaminating for multiwall 
nanotubes mixed CFRPs. Soliman et al. [21] performed drop weight 
impact testing of COOH-MWCNT/CFRP woven fabric laminates 
at three doping percentage i.e. 0.5, 1 and 1.5% of resins. A 50% 
improvement in penetration energy was analyzed at 1 and 1.5% 
reinforcement of COOH-MWCNTs. It is also reported that rate of 
energy absorption increases with the increase in energy applied 
over laminates. The reduction in visible damage area i.e. 75% 
reduction in pyramid height and 20% reduction in damage width 
was reported at 1.5 wt.% of COOH-MWCNT reinforcement. Tehrani 
et al. [10] analyzed the impact damage assessment of MWCNT doped 
woven carbon fiber composites at 2 wt% of the total matrix system. 
Mixing of MWCNTs above 2 wt% in matrix causes improper wetting 
of fibers and thus the performance of the composite laminate 
reduced above this doping value. Results of this study reported for 
higher energy absorption capacity of MWCNTs modified laminates 
under high strain or punch tests, reduction in damage area was 
analyzed as multiwall carbon nanotubes provide a stiff barrier for 

damage propagation. Siegfried et al. [22] analyzed the mechanical 
performance of carbon fiber/epoxy composites doped with several 
types of CNTs (CNTs, aged-CNTs and functionalized-CNTs). As a 
result, aged carbon nanotubes performed better as compared to 
other kinds of CNTs. This investigation justified the importance of 
mixing carbon nanotubes with functionalized ones to attain better 
impact properties due to the formation of the web structure of 
aged-MWCNTs.

Carbon nanotubes (CNTs) have exceptionally low density, high 
strength and high hardness which makes them potential structural 
element for reinforcement [1,2]. Many researchers have shown that 
addition of MWCNTs to laminates improves its impact resistance 
[2,7]. Impact response of a carbon nanotube mixed samples varies 
with the variation of carbon nanotube doping percentage [21]. 
Therefore, as per the requirements modifications can be made 
to improve the impact resistance up to a maximum limit. In this 
research, the maximum improvement in damage tolerance is 
studied by using pristine multiwall carbon nanotubes fabricated 
by arc-discharge method. The symmetric laminate of plain woven 
carbon fabric is fabricated by epoxy doped with 0wt%, 2wt% and 
5wt% of MWCNTs. The three phase CFRP laminates were impacted 
at 94.14J of energy. Experimental investigation reported that 
addition of the MWCNTs in epoxy maximizes the impact resistance 
if weight percentage of mixed MWCNTs is optimum.

Specimen Preparation
MWCNT synthesis

Figure 1: (a) Arc-discharge welding set-up, (b) Plate and rod electrodes, (c) Prepared soot.

Figure 2: Properties of the MWCNTs (a) X-Ray diffraction pattern, (b) Raman spectrum pattern, (c) FESEM image of surface 
modified MWCNTs.

The multi-wall carbon nanotubes were produced by using arc-
discharge technique [23] which is a large scale synthesis method 

[24]. The MWCNTs were produced using Indarc-300ST (manual arc 
welding AC arc-discharge set-up) in-house facility with 25-300 Amp 
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current and 80-100 Volts capacity. For MWCNT synthesis arc was 
generated at 300 Amp and 80V. All experiments were carried out 
in the open-air atmosphere with 99.0% pure graphite electrodes 
(rods and rectangular plate). The rod was 300mm in length with 
10mm diameter while rectangular electrode plate (Figure 1) was 
15mmX10mmX2mm. The gap between rod and plate was 1-2mm 
manually and the arc was made by moving graphite rod over the 
plate. Using the same process soot was deposited on a rectangular 
electrode plate and collected after arcing process. This soot was 
powdered by using a ball mill. This fine powder carries impurities 
like fullerenes, amorphous carbon and other nano carbon particles. 
Therefore purification of synthesized MWCNTs was done in 
steps. Figure 2 represents the properties of the multiwall carbon 
nanotubes prepared using the arc-discharge method. 

Purification of MWCNT powder
A. Washing of MWCNT powder by distilled water at an 
elevated temperature of 40 0C for removing dust particles.

B. Heating of fine powder at 600±20 °C inside a closed muffle 
furnace for removing amorphous carbon particles. 

C. Treatment (for 4-5hrs.) with toluene for removing 
fullerenes present in the MWCNT power. 

D. Liquid phase oxidation of MWCNT powder using 20% 
H2O2 (hydrogen peroxide) for 2hrs. This process removed 
maximum amorphous carbon impurities and also modified 
MWCNTs surface properties [25].

Stacking Sequence of Laminates:
Plain woven carbon fabric having weft and wrap in 0° and 

90° direction (0,90) and plain bi-directional woven carbon fabric 
having weft and wrap in +45° and -45° direction- (+45,-45) were 
used for fabrication of quasi-isotropic symmetric carbon-woven/
epoxy laminates. Stacking sequence used for symmetric CFRP 
laminates was [(0,90)/ (+45,-45)/ (+45,-45)/ (0,90)].

Stiffness matrixes of laminates are [16]:

1. Bending-extension coupling matrix, 

[ ] 0B = ………...(i)

2. Extension stiffness matrix [A]

( ) ( )
(0,90) ( 45, 45)

4 ij ijij
A t Q Q

+ −

 
= + 

 
3. Bending stiffness matrix [D]

( ) ( ){ }3

(0,90) ( 45, 45)

64
3 ij ijij

D t Q Q
+ −

= +

Here, 

Aij and Dij represent components of extension stiffness matrix 
and bending stiffness matrix respectively,

t is the thickness of each layer, ijQ  is transferred reduced 
stiffness matrix of the layer. 

Using above mentioned stacking sequence, four types of CFRP 
laminates doped at 1,2,3, and 5 were fabricated. However, the 
objective of the study focuses on

A. The symmetric laminate of plain woven carbon fabric/
epoxy without MWCNTs as a reference.

B. The symmetric laminate of plain woven carbon fabric/
epoxy doped at 2wt% of MWCNTs (energy absorption is 
optimum).

C. The symmetric laminate of plain woven carbon fabric/
epoxy with 5wt% MWCNTs (energy absorption is lowest).

Fabrication of laminates (doped with MWCNTs) having 
stacking mentioned above sequence

The multiwall carbon nanotubes were dried in a closed air oven 
for 5hrs for removing any moisture content. Initially, to remove 
agglomerations, MWCNTs (as per calculated wt%) were mixed in 
ethanol and sonicated for 30 minutes using probe ultrasonicator 
(OSCAR ULTRASONICS). Now, Bisphenol-A based epoxy (purchased 
from Atul ltd., Gujarat, India) was added to ethanol/MWCNTs 
solution. Additionally, the solution was sonicated for 1hrs at 60 °C. 
To prevent MWCNTs from surface damage continuous sonication 
was avoided [26]. The prepared solution was kept in a vacuum oven 
for 4 days to remove ethanol and air bubbles formed in the solution. 
After removing the MWCNT/epoxy solution the K-6 hardener (Atul 
ltd., Gujarat, India) was mixed in 10:1 (epoxy: hardener) ratio and 
again sonicated for 10 minutes.

Figure 3: Vacuum bagging set-up.

http://dx.doi.org/10.31031/RDMS.2018.06.000650


649How to cite this article:  Nand K S, KK Singh, Prashant R, Atul S. Drop Weight Impact Behaviour of Quasi-Isotropic CFRP Composite Embedded with 
Mwcnts Synthesized by Arc Discharge Method. Res Dev Material Sci . 6(5). RDMS.000650.2018.  DOI: 10.31031/RDMS.2018.06.000650

Res Dev Material Sci
                   

  Copyright © Nand Kishore Singh

Volume - 6  Issue - 5

Three phase CFRP laminate was prepared by hand lay-up 
technique assisted by vacuum bagging method. The first woven 
layer (0,90) was placed on a flat glass surface and prepared resin 
solution was applied using a soft brush followed by a second layer 
(+45,-45). An iron roller was rolled to expel extra resins form the 
eight-layered symmetrical design wet laminate [(90,0)/(-45,+45)/

(-45,+45)/(90,0)]. This wet laminate was placed inside vacuum bag 
(Figure 3) and using vacuum pump pressure of 700mm of Hg was 
attained. This vacuum pressure was applied for 30 minutes and 
then released. Load of 30Kg. was applied over wet laminate and it 
was cured for next 24hrs in room atmospheric conditions.

Experimental Setups and Testing

Figure 4: (a) Drop weight impact tower, (b) CFRP specimen, (c) Impact boundary conditions.

ASTM D7136 was followed in conducting drop weight test 
of specimens on Instron-CEAST 9350 machine. Six samples of 
symmetric CFRP laminates having 0 wt%, 2 wt% and 5 wt% 
MWCNTs are impacted by hemispherical headed cylindrical 
impactor having an impact energy of 94.14J corresponding to 6m/
sec. A square specimen having a dimension of 100mm and depth 
of 3.9±0.1mm was clamped rigidly in frame leaving the central 
circular unsupported area of 314mm2 for impact as shown in 
Figure 4. In all fabricated laminates, fiber failure occurred at impact 
energy of 94.14J. Hence, impact analysis of plain woven carbon 
fabric/epoxy laminates with and without MWCNTs was conducted 
at impact energy of 94.14J.

Result and Discussion
Characterization of synthesized MWCNTs

The synthesized multiwall carbon nanotubes were 
characterized by using X-ray diffraction, Raman spectroscopy and 
FESEM scanning (Figure 2 & 3). 

A. From XRD, the peak observed for synthesized MWCNTs 
was between 20 to 30 degrees. 

B. Raman spectroscopy shows presence of MWCNTs in D 
and G-band.

C. In FESEM images, small needle like structure can be 
observed.

Figure 5: Energy-Time plots for symmetric CFRP laminate at 94.14J.
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From the above characterizations, it can be concluded that the 
synthesized nano-powder contained multiwall carbon nanotubes 
having diameter of 15-50nm, and length of 200-500nm. On 
impacting at an energy of 94.14J fiber fails in all three types of 
laminates showing similar nature of energy-time graph. Energy 
absorbed by a symmetric laminate of a plain woven carbon fiber/
epoxy without MWCNTs is 65.16J, which increased to 80.76J on the 
addition of 2 wt% MWCNTs as shown in Figure 5. On contrary to 
this addition of 5 wt% MWCNTs reduces the energy absorption 
to 55.80J which is a reduction of 14.36%. As shown in Figure 6, 
the increased viscocity of the epoxy resins is responsible for the 

inappropriate impregnation of the carbon fibers. Inappropriate 
wetting leads to weak interfacial bond between fiber and matrix. 
This improper wetting leads to poor interface bonding, and cracks 
initiation and propagation in laminates. Absorbed energy of the 
laminate shows an increase of 23.94% on mixing 2wt% of MWCNTs 
over neat CFRP. This increase is observed because the mixture of 
epoxy and 2wt% MWCNTs wets/impregnates fibers as good as 
in case of laminate without MWCNTs (Figure 6), and MWCNTs in 
matrix acts as a crack arrester by bridging between crack surfaces 
in the impacted area.

Figure 6: FESEM image of interface of fiber and epoxy mixed with (a) 0wt%; (b) 2wt%; (c) 5wt% MWCNTs; (d) Agglomeration of 
MWCNTs at 5wt% MWCNTs reinforcement

Force-time relation

Figure 7: Force-Time plots for symmetric CFRP laminate at 94.14J.

Figure 7 shows similar nature of force-time graph for all three 
(epoxy with 0wt%, 2wt% and 5wt% MWCNTs) types of laminates. 
In the beginning, force increases slowly which is the result of 
oscillation of the laminate after the first contact of the impactor. 
When, the laminate returns back upword, the force increases steeply 
to its maximum value. After reaching the maximum value, there is 

a sudden drop in force signifying initiation of fiber breakage. Then 
several small peaks and valleys signify redistribution (reloading 
and unloading) of loads after breakage of each fiber. Maximum load 
carrying capacity of laminate with neat epoxy (0wt% MWCNTs) 
is 16.15KN. On mixing 2wt% MWCNTs and 5wt% MWCNTs 
laminate show a slight increase of 2.29KN and 3.18KN respectively. 
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Upgradation of epoxy by MWCNTs does not bring significant 
improvement in load carrying capacity, which is accredited to the 
fact that fibers govern the load carrying capability of the composites. 
Even the increasing weight percentage of MWCNTs in epoxy leads to 
a viscous solution which does not impregnate fabric and also leads 
to the formation of MWCNTs agglomerates. Improper wetting of 
fabric and MWCNTs agglomerates leads to weak interface between 
matrix and fiber, and matrix and MWCNTs respectively. These 
week interfacial bonds fail in effective transfer of load from fiber to 
matrix and matrix to MWCNTs. Hence, load carrying capacity shows 
a slight improvement on MWCNTs addition.

The typical failure pattern of all composite plates can be 
divided in two categories visible damage and internal layer failure 
or delaminating. The pyramidal fracture is attributed to the 
plain woven carbon fabric used in the composite. The laminate 
fracture involves fiber and matrix fracture, which is quantified by 

height and width of pyramid formed by damage. The height (h) of 
damage is 8mm, 4.8mm and 11mm due to the addition of 0wt%, 
2wt% and 5wt% MWCNTs respectively. Similarly, the width (w) of 
damage due to the addition of 0wt%, 2wt% and 5wt% MWCNTs is 
23.6mm, 18mm and 27.54mm respectively. As shown in Figure 8 
& 9, the size of the damage on addition of 2wt% multiwall carbon 
nanotube is small in comparison with undoped CFRP composite. 
This is attributed to interaction between MWCNTs and matrix that 
arrests the development of damage by bridging around the crack in 
impacted area. On an antagonistic laminate damage increases on 
embedding 5wt% MWCNTs which is even larger than the damage 
of laminate with pure epoxy. Doping of 5wt% MWCNTs forms 
viscous solution of epoxy and leads to formation of agglomeration 
(Figure 6). This viscous solution and MWCNTs agglomerates leads 
to weak fiber-matrix and MWCNTs-matrix boundary respectively, 
which reduces connecting action leading to larger damage region in 
comparison to laminate with neat (0wt% MWCNTs) epoxy. 

Figure 8: Calculation of visible/pyramidal damage.

Figure 9: Pyramidal damage for (a) Neat CFRP; (b) 2.0 wt.% MWCNT doping; (c) 5.0 wt.% MWCNT doping.

Internal damage inside laminate (Figure 10) is calculated using 
KSI scanning acoustic v-400 series microscope. Scanning of damage 
CFRP laminate was done over 45mmX45mm rectangular area. The 
overall internal damage was calculated and shown in Figure 10 

where the maximum damage area of 1326.29mm2 was observed in 
laminate doped with 5wt% of MWCNTs which is attributed to the 
improper wetting and agglomeration of nanoparticles in resins as 
discussed by FESEM analysis. The damage area in 5wt% reinforced 
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sample was 32.20% more than the unmodified CFRP composites. 
Furthermore, the minimum damage area was observed for 2wt% 
shows better interfacial characteristics of MWCNT reinforced 

resins. At 2wt% mixing of nanotubes reduced 30.17% as compare 
to CFRP laminate with neat epoxy. 

Figure 10: SAM scanning for overall internal damage (a) Neat CFRP, (b) 2.0 wt.% MWCNT doping (c) 5.0 wt.% MWCNT doping.

Conclusion 
This experimental study analyzed the low-velocity impact 

response of symmetric CFRP laminate at different weight 
percentage of MWCNTs. Experiments were conducted at impact 
energy of 94.14J, which is sufficient for fiber breakage in all type 
of laminates. The significant outcomes of the present investigation 
are as follow:

A. Impact energy absorbed by laminate with neat (0 wt% 
MWCNTs) epoxy was 65.16J, which increases by 23.94% on 
addition of 2wt% MWCNTs in epoxy. On the contrary, absorbed 
energy decreases by 14.36% on addition of 5wt% MWCNTs 
in epoxy. Hence, it can be concluded that to maximize impact 
energy absorption optimization of weight percentage of 
MWCNTs is required.

B. The Load carrying capacity of the laminate with epoxy 
having 0wt%, 2wt% and 5wt% MWCNTs was 16.15KN, 
18.44KN and 19.33KN respectively. Effect of epoxy up gradation 
(reinforcement of MWCNTs) on the load carrying capacity was 
insignificant, which is accredited to the fact that fibers govern 
the load carrying capacity of composites. 

The size of pyramidal damage for a laminate having epoxies 
doped with 2wt% MWCNTs is small in comparison with pyramidal 
damage of laminate having epoxy mixed with 0wt% and 5wt% of 
MWCNTs. This is accredited to the bridging action of multiwalled 
carbon nanotubes around the cracks in laminates having epoxy 
mixed with 2wt% MWCNTs, where as an agglomeration of 
MWCNTs in a CFRP composite having epoxy mixed with 5wt% of 
the MWCNTs which prevents the bridging action and accelerated 
the crack propagation by providing voids.
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