
Nanotechnology Based Drug Delivery Systems for 
Overcoming Blood Brain Barrier: A Mini Review

Anurag Yadav1* and Kusum Yadav2

1Department of Microbiology, College of Basic Science and Humanities, Sardarkrushinagar 
Dantiwada Agricultural University, Sardarkrushinagar, Gujarat, India.
2Department of Biochemistry, University of Lucknow, Lucknow, India

Introduction
The Blood Brain Barrier (BBB) serves as a natural defense mechanism that impedes the 

delivery of therapeutic agents to the Central Nervous System (CNS). Nanoparticles (NPs) have 
emerged as a promising tool for targeted drug delivery across the BBB [1-6]. The size of NPs 
is in the range of 10-200nm, which allows them to readily cross the tightly packed endothelial 
cells of BBB compared to conventional drugs [1,2]. Several nanotechnology-based drug 
delivery systems have been designed to enhance CNS delivery [2-5]. Furthermore, NPs have 
improved drug delivery across the BBB by partially overcoming this obstacle, thus facilitating 
drug delivery [3,4]. Thus, engineered NPs with unique physicochemical properties can cross 
the BBB, which may be a promising strategy to solve biomedical and pharmacological problems 
in treating brain diseases such as Alzheimer’s disease and Parkinson’s disease [2,4,5].

Efficient and convenient drug-loading strategies are crucial for optimizing drug and NP 
interactions. While covalent bonding is a traditional method for drug loading that suffers 
from versatility and time consumption limitations, noncovalent adsorption is a frequently 
employed strategy due to its simplicity and rapid binding capabilities. Ligand modification 
of nanovehicles offers substantial advantages, including improved receptor reactivity and 
increased BBB permeability compared to unmodified nanovehicles [7]. For instance, the 
attachment of transferrin peptide to NPs enables effective surface dispersion, even with 
smaller particle sizes [8]. 
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Abstract
Nanotechnology-enabled drug delivery systems have emerged as a promising tool for overcoming the 
Blood Brain Barrier (BBB) and delivering drugs to the Central Nervous System (CNS). This mini-review 
provides an overview of recent advancements in nanotechnology to improve blood-brain barrier 
penetration. It covers different approaches, such as using targeted ligands and receptors, engineered 
carriers and transporters, and surface modifications for targeting the blood-brain barrier. Polymeric 
nanoparticles, liposomes, and metallic nanoparticles, such as silver and zinc oxide, are discussed in the 
context of their unique properties and applications.

Preclinical and clinical advances in nanotechnology-based BBB delivery are discussed, including 
transcellular nanotechnology-based brain drug delivery and preclinical and clinical studies of nanocarriers 
for CNS disorders. Although nanotechnology has shown great potential for treating CNS diseases, several 
challenges remain. The major challenges and future perspectives for constructing brain-targeted delivery 
systems are also discussed, particularly limitations associated with the blood-brain barrier and clinical 
obstacles to CNS disease treatment. In conclusion, the development of nanotechnology-based drug 
delivery systems promises to revolutionize the treatment of CNS diseases.
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Moreover, amphipathic peptide modified NPs exhibit a 
high affinity for the BBB and remarkable stability [9]. NP-based 
formulations, such as polymeric NPs, lipid NPs, and dendrimers, 
have gained attention as potential carriers to enhance drug delivery 
across the BBB [10]. These formulations offer improved drug 
solubility, sustained release, and enhanced brain accumulation. 
Surface modification and functionalization techniques are 
employed to optimize the properties of NPs for crossing the BBB 
and improving drug delivery efficiency.

Nanotechnology Approaches to Enhance BBB 
Penetration

The BBB presents inherent challenges to traditional drug 
delivery systems that are thwarted in their attempts to deliver 
therapeutic agents to the brain. The BBB is a tightly packed 

endothelial cell layer surrounding the brain that restricts the entry 
of high-molecular-weight molecules into the brain [11]. Therefore, 
using nanocarriers or NPs to penetrate the BBB is immensely 
promising.

Carbohydrate-based NPs , nanogels, nanocerium, nanosilver, 
dendrimers, and gold NPs are unique platform options for molecular 
transport and targeted drug delivery, providing biocompatibility, 
biodegradability, and reduced toxic side effects [12,13] (Figure 
1). Nanocarriers can help protect against oxidative stress caused 
by free radicals and amyloid-beta peptide oligomers, providing 
neuroprotection against toxicity [13]. Moreover, nanocarriers have 
become valuable tools for bioimaging and controlled drug delivery 
systems, addressing the challenges of delivering substances across 
the BBB [14].

Figure 1: Strategies for brain delivery of NPs.

Multiple types of nanocarriers have been studied in treating 
CNS diseases, such as Alzheimer’s and Parkinson’s disease, 
and brain tumors [12,14]. Polymeric NPs, solid lipid NPs, 
nanostructured lipid carriers, microemulsions, nanoemulsions, 
and liquid crystals are promising for delivering nano formulations 
via various administration routes [15]. Lipid-based NPs qualify as 
the most established and effective drug delivery system regarding 
clinical translation [16]. Nanocarrier-based drug delivery systems 
seem to offer considerable promise for delivering drugs to the 
brain, particularly for neurodegenerative disorders [17]. Intranasal 
delivery of NPs also holds substantial promise as a viable approach 
for managing Alzheimer’s disease. This innovative strategy involves 
NPs systems that efficiently transport drugs to the brain, enabling 

targeted therapeutic interventions [17].

Targeted Ligands and Receptor-Mediated Transport 
across the BBB

The BBB can be targeted using three main categories of 
endogenous transportation: carrier-mediated transport, active 
efflux transport, and receptor-mediated transport [18] (Figure 2). 
The receptor-mediated transport across the BBB seems a practical 
approach for brain drug delivery [18,19]. Nevertheless, ligands 
play a significant role in facilitating receptor-mediated transport by 
binding with the proteins present in the cell [20]. The conjugation 
of ligands to the formulation enhances the targeting of the drug to 
the specific target location [18,19].
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Figure 2: Various nanovehicle transport pathways through the BBB.

Several approaches using nanocarriers, such as liposomes, 
niosomes, micelles, and NPs with manifested surface modifications 
using either covalent or noncovalent methods to append suitable 
ligands, are being explored to achieve drug delivery to the brain 
[18,20,21]. The ligand-based NP-mediated targeted delivery of 
drugs can potentially reduce the dosage and optimize their release 
properties, increase specificity and bioavailability, improve shelf 
life, and decrease toxicity [21]. Several NP-based delivery systems, 
including lipid-based nanocarriers and carbon dots, have been 
developed that enable higher penetration through the BBB and 
maintain drug plasma levels in the desired range, owing to the 
control release profile [21]. Moreover, nanodrug carriers are 
being explored for nerve agent detoxification [22]. For example, 
transferrin-modified mesoporous silica NPs effectively penetrate 
the BBB and restore cerebral AChE activity via the released HI-6, 
preventing brain damage caused by toxic nerve agent poisoning 
[22].

Engineered Carriers and Transporters
Nanovehicles, a promising and innovative area of research 

for delivering medicine to the brain, have exceptional mechanical 
properties and can be adapted and tuned to easily transport across 
the BBB [23]. By manipulating physical characteristics such as 
surface charge, coating ligands, size, and shape, nanovehicles 
can significantly enhance transport efficiency, medication 

controllability, prevention of RES uptake, and therapeutic 
agent stability [24]. The size of nanovehicles is crucial for their 
intracellular localization and passage through the BBB, while the 
shape of particles, particularly spherical NPs, can impact cellular 
absorption of medications [23]. Additionally, the surface charge 
of nanovehicles affects their distribution in the body and their 
residence time in the bloodstream, with a negative or neutral 
charge reducing protein sticking and cellular absorption compared 
to a positive charge [23].

Engineered carriers and transporters, such as cell-based 
carriers, Trojan horse strategies, and receptor-mediated transport, 
offer innovative approaches to bypass the BBB [25]. Among these 
approaches, utilizing endogenous cells like stem cells and immune 
cells as carriers show great potential in delivering therapeutics 
across the BBB [25]. Transporter proteins, including glucose 
transporters and efflux pumps, also enhance drug transport 
across the BBB [25]. Moreover, researchers have developed dual-
targeting liposomes decorated with APRPG and GRGDS peptides 
to simultaneously target VEGFR-1 and integrin αvβ3, resulting in 
enhanced binding to stimulated endothelial cells and increased 
tumor accumulation [26]. This dual-targeting approach improves 
the affinity of liposomes for target cells and holds promise for 
active-targeted drug delivery in cancer treatment. Transporter 
proteins, including glucose transporters and efflux pumps, enhance 
drug transport across the BBB. Nevertheless, nano vehicles have 
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arisen as an exceptionally compelling and groundbreaking field of 
study in the delivery of brain medicine [27].

Surface Modification Strategies for BBB Targeting
The limited effectiveness of treating CNS diseases stems from the 

presence of the BBB, which acts as a restrictive barrier, and impeds 
the delivery of therapeutics to the brain. Recent advancements in 
nanotechnology offer potential solutions to overcome this obstacle. 
Among the strategies explored, one approach involves the surface 
modification of synthetic AuNPs with brain-targeted exosomes. 
Researchers demonstrated that this modification facilitates 
effective brain targeting, as evidenced by the enhanced penetration 
of the BBB [28]. The strategy exhibits excellent promise and could 
find applications in therapeutics and imaging. Another strategy 
entails the conjugation of nanodrugs with mesoporous silica NPs 
(MSNs) [22]. This approach has proven effective in treating acute 
chemical brain poisoning [22]. Using transferrin-modified MSNs, 
drugs can be delivered quickly and effectively through the BBB, 
especially for treating brain damage caused by organophosphate 
exposure. Nanodrug carriers have been investigated as a potential 
solution for brain tumor treatment [29]. Furthermore, these 
carriers possess superior drug transport capacity and easily 
control drug release properties [29]. As a result, they hold promise 
in overcoming the BBB and facilitating enhanced drug delivery for 
treating brain tumors. Pseudoephedrine hydrochloride, a water-
soluble anticancer nanodrug compound, has shown potential 
for brain cancer treatment [30]. Researchers have suggested 
using synchrotron radiation to transport therapeutic anticancer 
nanodrugs across the BBB, thereby enabling effective treatment of 
brain diseases [31]. 

Nonetheless, nanotechnology offers promising solutions to 
overcome these challenges, allowing for targeted drug delivery 
to the brain. The NP-mediated targeted drug delivery presents 
a promising approach with numerous advantages. This method 
significantly reduces dosage requirements, optimizes drug release 
properties, enhances specificity and bioavailability, and reduces 
toxicity [21]. The development of multifunctional biomimetic 
nanodrugs exhibits considerable potential in overcoming 
limitations related to poor drug targeting, low BBB penetration, 
and short biological half-lives [32]. These nanodrugs offer a 
versatile platform for efficiently treating glioblastoma xenografts, 
capitalizing on their multifunctional properties [33]. Researchers 
have also focused on strategies targeting the transferrin receptor 
for treating glioblastoma [34]. In this regard, surface modification 
of NPs with transferrin, antibodies, and targeting peptides has 
shown promise [34]. In the context of depression treatment, 
researchers have synthesized CeO2@BSA nanoclusters as a novel 
nanodrug targeting Reactive Oxygen Species (ROS) [35]. This 
approach exhibits remarkable ROS scavenging, BBB penetration 
capacity, rapid metabolism, and negligible adverse effects in vitro 
and in vivo. It offers a promising therapeutic avenue for depression 
treatment. Lastly, a study investigated the therapeutic efficiency of 
a multifunctional hybrid nanostructure against glioblastoma [36]. 
The researchers found that dual-targeted NPs displayed enhanced 

uptake by glioblastoma cells, leading to an overall superior 
inhibitory effect compared 

to traditional drug delivery methods.

Preclinical and Clinical Advances in 
Nanotechnology-based BBB Delivery
Transcellular nanotechnology-based brain drug delivery

The transcellular route is a widely explored method for 
delivering therapeutics to the brain [37]. Incorporating anticancer 
agents in 100-300nm nanodevices allows their delivery in tissues 
with a fenestrated vasculature and reduced lymphatic drainage 
[38]. Moreover, developing highly-specific ligands and surface 
proteins has facilitated the engineering of nanocarriers for targeted 
drug delivery [39]. In CNS tumors, multifunctional NPs have 
brought revolutionary advances in targeted drug delivery [40]. 
Similarly, lipid-based nanocarriers have shown promising results 
in delivering drugs against major barriers, such as the skin and BBB 
[41].

Preclinical and clinical studies of Nanocarriers for CNS 
disorders

Recent preclinical and clinical studies have focused on 
using nanocarriers for CNS disorders. In Alzheimer’s disease, 
nanotechnology-based drug delivery approaches have been 
studied for their pathology, and various NPs are being developed 
for the same [42]. Nanotechnology-based approaches have 
been used in preclinical and clinical studies to address CNS drug 
delivery challenges in Parkinson’s disease [42]. Nanotechnology-
based strategies have also been employed in ischemic stroke for 
therapeutic delivery to the brain [42]. Using multifunctional NPs in 
CNS tumors has brought revolutionary advances in targeted drug 
delivery [39]. Developing nanocarriers with particular ligands 
and surface proteins has facilitated targeted drug delivery to CNS 
tumors [39].

Challenges and Future Perspectives
While nano formulations have demonstrated effectiveness in 

improving drug delivery to the brain, further exploration of novel 
formulations is necessary [43]. Achieving optimal drug loading 
and release profiles is a key challenge in utilizing engineered 
carriers and transporters in nanotechnology-based drug delivery 
systems. Designing carriers that can encapsulate and release 
drugs in a controlled manner is crucial for maximizing therapeutic 
outcomes. It involves finding a delicate balance between stability 
and controlled release, which requires careful consideration of 
the physicochemical properties of the carrier materials. Another 
significant challenge is ensuring the biocompatibility and safety 
of nanocarriers. As drug delivery systems become more complex 
and diverse, assessing their potential toxicity and immunogenicity 
is essential. Nanocarriers must be designed to minimize adverse 
effects on healthy tissues and cells while still effectively delivering 
the therapeutic cargo. Rigorous preclinical and clinical studies 
are necessary to evaluate the safety profiles of these engineered 
carriers and transporters. Scalability and manufacturing processes 
for nanocarriers present another major challenge [44]. 
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Transitioning promising nanotechnology-based drug delivery 
systems from the lab to large-scale production is complex. 
Developing cost-effective and scalable manufacturing methods 
while maintaining the integrity and quality of the carriers is crucial 
for the future commercialization and widespread use of these 
systems [44,45].

Despite these challenges, the future perspectives of 
nanotechnology-based drug delivery systems are highly promising. 
[46]. Engineered carriers can precisely target specific cells or 
tissues, opening up new possibilities for personalized medicine 
[44]. These systems can potentially enhance the therapeutic index 
of drugs, reduce side effects, and improve patient compliance. 
Furthermore, nanocarriers can be designed to overcome biological 
barriers, such as the BBB, enabling the delivery of therapeutics to 
previously inaccessible sites [44]. In addition to their therapeutic 
applications, nanotechnology-based drug delivery systems hold 
great potential for diagnostic purposes. Incorporating imaging 
agents or sensors into nanocarriers allows for real-time drug 
distribution, pharmacokinetics, and therapeutic response 
monitoring. This integration of diagnosis and treatment can 
revolutionize healthcare, enabling personalized and precise 
medicine [44].

Conclusion
Nanotechnology-based drug delivery systems are promising for 

treating and Managing Central Nervous System (CNS) disorders. 
These systems can overcome biological barriers such as the 
BBB, enabling the delivery of drugs to previously inaccessible 
regions of the body. Among the various nanotechnology-based 
drug delivery systems, NPs have emerged as a powerful tool for 
targeted drug delivery across the BBB. Polymeric NPs, lipid NPs, 
and dendrimers have been designed to enhance CNS delivery, and 
surface modification strategies have been investigated to increase 
BBB permeability. Targeted ligands, receptor-mediated transport 
across the BBB, and transporter proteins have been explored 
to improve drug transport. When developing nanocarriers, it is 
crucial to ensure optimal drug loading and release profiles and 
biocompatibility and safety. Clinical studies have shown that 
nanocarriers hold promise for treating CNS disorders such as 
Alzheimer’s disease, Parkinson’s disease, and CNS tumors. However, 
further exploration of novel formulations and rigorous preclinical 
and clinical studies are needed to evaluate the safety and efficacy 
of these engineered carriers and transporters. Overall, the future 
of nanotechnology-based drug delivery systems is promising, and 
they show remarkable potential for personalized medicine. With 
continued research and development, nanocarriers could provide 
effective and safe treatments for CNS disorders, allowing us to 
overcome the biological barriers of the brain and deliver targeted 
drugs to the affected areas.
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