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Abstract

The increasing global demand for sustainable livestock production necessitates alternatives to 
antibiotic growth promoters, with postbiotics emerging as a viable solution due to their stability, 
safety and bioactive properties. This review synthesizes research on postbiotics-non-viable microbial 
components or metabolites, such as those derived from Saccharomyces Cerevisiae Fermentation Products 
(SCFP), Aspergillus oryzae and Lactobacillus spp. and their effects on ruminant health and productivity. 
Findings indicate that postbiotics enhance rumen fermentation by stabilizing pH, increasing volatile 
fatty acid production and modulating microbial populations, particularly fibrolytic bacteria such as 
Ruminococcaceae and Lachnospiraceae. Immunomodulatory benefits include reduced inflammatory 
markers (e.g., IL-6, TNF-α) and improved gut barrier function, achieved through the upregulation of 
tight junction proteins. Species- and dose-dependent responses are evident, with dairy cows showing 
improved nutrient digestibility and immunity, while beef cattle exhibit variable outcomes in rumen 
fermentation. Postbiotics also demonstrate antimicrobial effects, reducing pathogens like Salmonella and 
Staphylococcus aureus. Despite promising results, efficacy depends on the formulation, dosage and the 
animal’s physiological stage. This review highlights postbiotics as a strategic tool to enhance ruminant 
performance while aligning with One Health principles, though further research is needed to optimize 
their application across production systems.
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Introduction
The global livestock sector is under increasing pressure to meet the rising demand 

for animal-derived protein while addressing critical challenges related to Antimicrobial 
Resistance (AMR), feed efficiency and environmental sustainability [1-3]. Historically, 
antibiotics have been widely used in animal production not only for disease control but also 
as growth promoters [4-6]. However, the emergence of antimicrobial-resistant pathogens 
has led to stringent regulatory restrictions, including the European Union’s ban on antibiotic 
growth promoters in 2006 [7,8] and the U.S. FDA’s Veterinary Feed Directive in 2017 [9]. 
These measures highlight the urgent need for sustainable alternatives that enhance animal 
health and productivity without contributing to AMR.

One of the major challenges in modern ruminant production is the disruption of gut 
microbiota due to high-concentrate diets, which can lead to Subacute Ruminal Acidosis 
(SARA), liver abscesses and systemic inflammation [10]. Such conditions not only impair 
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animal performance but also increase susceptibility to pathogens 
such as Salmonella and Fusobacterium [1,9,11,12]. In this context, 
postbiotics are gaining significant attention as a novel category of 
“biotics,” offering a promising alternative to traditional antibiotics in 
livestock production, particularly for ruminants. The International 
Scientific Association of Probiotics and Prebiotics (ISAPP) defines 
postbiotics as “a preparation of inanimate microorganisms and/
or their components that confers a health benefit on the host” 
[13]. Postbiotics are generated through the fermentation of 
probiotics, where these probiotics produce bioactive compounds 
during anaerobic fermentation [14]. Extraction methods include 
centrifugation, ultrafiltration, chromatography and mass 
spectrometry [15]. This means they are non-living products, 
often derived from microbial fermentations, comprising cellular 
components, metabolites and fermentation end products [13,16]. 
Unlike live probiotics, postbiotics are more stable and safer, as they 
do not contain live microorganisms, thereby reducing the risk of 
gut-to-blood bacterial translocation or the acquisition of antibiotic-
resistant genes [17,18]. They also have a longer shelf life and are 
not inactivated by chemicals or drugs [6], making them particularly 
suitable for inclusion in animal feed [1,19].

The multifaceted chemical composition of postbiotics highlights 
their profound biological relevance in ruminant nutrition and 

gut health [20]. Postbiotics encompass a wide range of bioactive 
compounds and metabolites, each contributing distinct functional 
attributes that influence host physiology, microbial ecology 
and immune modulation [21,22]. The strategic application of 
postbiotics in ruminant diets hinges on a nuanced understanding of 
their chemical constituents and mechanistic pathways. Short-Chain 
Fatty Acids (SCFAs), particularly acetate, propionate and butyrate 
(Figure 1), serve as essential energy substrates for enterocytes 
and exhibit systemic anti-inflammatory effects, thereby enhancing 
intestinal barrier integrity-a critical factor in mitigating metabolic 
stress in high-producing ruminants [21,23-25]. Organic acids, 
including lactic and phenylacetic acids, exert a bacteriostatic 
effect by modulating luminal pH, thus selectively inhibiting 
pathogenic colonization while fostering commensal microbiota 
proliferation [26,27]. Exopolysaccharides (EPS) and bacteriocins 
further exemplify the dual role of postbiotics in pathogen exclusion 
and immune priming. EPS such as β-glucans enhance mucosal 
immunity through receptor-mediated signalling [28,29], while 
bacteriocins, such as nisin, provide targeted antimicrobial activity 
without disrupting symbiotic microbial consortia [2,30,31]. The 
presence of B vitamins and antioxidant enzymes within postbiotic 
matrices (Figure 1) also suggests a synergistic role in ameliorating 
oxidative stress, a common constraint in intensive production 
systems [28,32,33].

Figure 1: The diverse and complex chemical composition of postbiotics underpins their wide range of biological 
activities.
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The efficacy of postbiotics depends on their source and 
compositional profile [11]. For instance, Saccharomyces Cerevisiae 
Fermentation Products (SCFP) have been extensively validated in 
dairy cattle, where their metabolite-rich composition improves 
fibre digestibility, enhances feed efficiency, reduces lactic acid 
accumulation, and promotes beneficial microbial populations in 
the rumen [34,35] and lactation performance [36-39]. Similarly, 
Lactobacillus plantarum RG14 metabolites demonstrate significant 
benefits in young ruminants by improving nutrient digestibility 
and inhibiting pathogenic bacteria through lowered intestinal 
pH and the formation of protective biofilms [22], highlighting the 
strain-specific nature of postbiotic effects [22]. Recent research 
has expanded our understanding of postbiotic applications across 
different ruminant species and production stages [1,5,17,40]. In 
dairy cows, SCFP supplementation has been shown to mitigate 
SARA by stabilizing ruminal pH and enhancing Volatile Fatty 
Acid (VFA) production [41,42]. In calves, postbiotics improve 
immune function and reduce diarrhea incidence [5,43-45], while 
in beef cattle, they enhance feed efficiency and liver health [46]. 
Additionally, postbiotics exhibit immunomodulatory properties, 
reducing systemic inflammation and oxidative stress markers such 
as Serum Amyloid A (SAA) and Lipopolysaccharide-Binding Protein 
(LBP) [17,32,39,47-52]. Although significant progress has been 
made, there are still gaps in optimizing postbiotic formulations 
for various production systems and in understanding their 
long-term effects on rumen microbiome dynamics. The primary 
objective of this review is to synthesize existing knowledge on 

postbiotic applications in ruminant nutrition, focusing on their 
impact on rumen fermentation and animal health. This work aims 
to contribute to the development of sustainable strategies that 
enhance animal health, productivity, and food safety while aligning 
with the “One Health” paradigm.

Effects of postbiotics on rumen fermentation and animal 
health

The efficacy of Saccharomyces cerevisiae fermentation products 
in stabilizing ruminal pH during dietary stress is well-documented 
(Table 1). In lactating Holstein cows subjected to SARA challenges, 
SCFP supplementation (14-38g/d) consistently mitigated pH 
fluctuations and lactate accumulation, while enriching fibrolytic 
taxa (Ruminococcaceae, Lachnospiraceae) essential for fibre 
degradation [34,42,53,54]. This microbial shift correlated with 
increased acetate production and reduced proteolytic activity, 
enhancing nitrogen utilization efficiency. SCFP’s benefits were 
dose-dependent; for example, higher doses (38g/d of SCFPb-
2X) amplified rumen resilience during high-starch feeding by 
attenuating propionate metabolism and stabilizing the Firmicutes: 
Bacteroidetes ratio [34,42]. On the other hand, steers receiving a 
combination of liquid (11mL/100kg BW) and dry SCFP (12g/d) 
showed a 28.8% decrease in ruminal NH₃-N, accompanied by an 
increase in valerate, indicating enhanced peptide metabolism 
[41,52]. Such findings accentuate SCFP’s role in optimizing 
fermentation stoichiometry, though responses vary with delivery 
method and basal diet composition [55-59].

Table 1: Effects of postbiotics on rumen fermentation parameters.

Category Summary of Results References

pH Stabilization

SCFP stabilized ruminal pH and attenuated SARA-induced pH drops in lactating dairy cows.

 Saccharomyces cerevisiae increased rumen pH (6.12 vs. 5.72) and reduced lactate (1.33 vs. 7.72mM). 

Buffalo calves showed ↑ pH (6.58 vs. 6.47) with yeast supplementation.

[23,34,44,55]

Volatile Fatty Acid 
Production

↑ Propionate (6.08 vs. 5.01mM/L) and ↓ Acetate: Propionate ratio (3.41 vs. 4.79). 

SCFP increased total VFA (151.2 vs. 133.3mM) and reduced lactate in steers. 

Yeast cultures reduced lactate accumulation and acetate-to-propionate ratio. 

Postbiotics enhanced SCFA production (acetate, propionate, butyrate).

[21,35,37,41]

Nutrient Digestibility

↑ Digestibility of DM (73.44% vs. 64.00%), OM (74.68% vs. 65.90%) and NDF (71.65% vs. 57.67%) with 
PR. 

Inactive yeast ↑ DM and NDF digestibility in Jersey cows. 

Saccharomyces cerevisiae improved DM (4.6%) and NDF (10.3%) degradability.

[56-58]

Microbial Population 
Modulation

SCFP promoted microbial diversity and beneficial bacteria (Ruminococcaceae, Lachnospiraceae, 
Prevotellaceae). 

MOS+beta-glucans ↑ beneficial bacteria, ↓ pathogens. 

Yeast culture enhanced fibrolytic bacteria growth. 

SCFP increased Lactobacillales and altered microbial enzymes (↑ gluconokinase, xylanase).

[23,34,42,51,53]

Ammonia & Lactic 
Acid Reduction

Buffalo calves ↓ lactic acid (150.0 vs. 168.7mg/L) and NH₃-N (142.7 vs. 167.7mg/L) with yeast. 

Brewers’ spent yeast ↓ ammonia-N levels in dairy sheep. 

SCFP reduced NH3-N (4.86 vs. 6.83mg/dL) in steers.

[41,44,59]

SARA=Subacute Ruminal Acidosis, SCFP=Saccharomyces Cerevisiae Fermentation Product, MOS=Mannan Oligosaccharides, DM=Dry Matter, 
OM=Organic Matter, NDF=Neutral Detergent Fiber, PR=Probiotic, VFA=Volatile Fatty Acids, SCFA=Short-Chain Fatty Acids and NH₃-N=Ammonia 

Nitrogen. ↑ Indicates an increase, ↓ Represents a decrease, % Denotes percentage, mM=millimolar, mM/L=millimolar per litre, mg/L=milligrams per 
litre, mg/dL=milligrams per decilitre.
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Immunomodulatory and anti-inflammatory mechanisms

Beyond rumen modulation, SCFP exerts systemic 
immunoregulatory effects (Table 2). Transition cows supplemented 
pre-and postpartum (19g/d) exhibited reduced Serum Amyloid A 
(SAA) and LPS-binding protein, suggesting mitigation of endotoxin 
translocation [60]. This aligns with Guo et al. [34], who found that 
SCFPb-2X (38g/d) downregulated pro-inflammatory cytokines 
(IL-6, TNF-α) by 25-30% during SARA, while elevating the anti-
inflammatory cytokine IL-10. The mechanistic link involves 

enhanced gut barrier integrity, as evidenced by the upregulation of 
tight junction proteins (occludin, claudin-1) in mid-lactation cows 
[51]. Similarly, Aspergillus oryzae fermentation extract (3-6g/d) 
reduced plasma LBP and IL-6 in lactating Holsteins, corroborating 
the anti-inflammatory potential of fungal metabolites [32]. 
Intriguingly, Ferguson et al. [61] reported a reduced incidence 
of mastitis with SCFP, while Thomas et al. [62] observed no such 
effect-A discrepancy potentially attributable to herd health status 
or basal diet differences (Table 2).

Table 2: Effects of postbiotics on animal health and immune function.

Category Postbiotic Source Summary of Results Reference

Antimicrobial & Anti-
Virulence Effects Lactobacillus sakei postbiotics Antibacterial and antibiofilm activity against Staphylococcus 

aureus (mastitis pathogen) [63]

Lactobacillus-derived postbiotics 
(e.g., 2-undecanone)

Suppressed virulence of pathogens by inhibiting biofilm 
formation and yeast-to-hyphal transitions [64]

Enterococcus durans ED 26E/7 
postbiotics

Broad-spectrum antimicrobial effects (inhibited Enterococcus 
hirae, Staphylococci and some E. coli strains) [65]

Bacteriocins from Lactococcus lactis Suppressed growth of enterococci/staphylococci by disrupting 
cytoplasmic membranes [31]

Saccharomyces cerevisiae-based 
(XPC™/NutriTek™)

Reduced Salmonella enterica prevalence in lymph nodes of cull 
dairy cattle [1]

Reduced Inflammation & 
Oxidative Stress

Lactobacillus plantarum 
metabolites Improved antioxidant capacity (↑ catalase activity) [66]

SCFP Reduced IL-1β, NEFA, ceruloplasmin and haptoglobin [17]

SCFP Reduced inflammatory markers (SAA, LPS-binding protein) [60]

Cell-free supernatant of 
Lactobacillus plantarum RG14

Increased serum/ruminal GPX activity; decreased oxidative 
stress marker TBARS (MDA). [67]

SCFP (e.g., NutriTek)

Reduced somatic cell counts, maintained milk quality below 
subclinical mastitis threshold.

Reduced LPS/inflammatory markers, improved gut barrier 
function in mid-lactation cows.

Improved metabolic health.

[34,39,51]

Intravaginal LAB Modulated local/systemic immune responses; lowered uterine 
infections [68]

LAB mixture Reduced purulent vaginal discharge [68]

Saccharomyces cerevisiae culture
Reduced plasma haptoglobin (28%).

Increased glucose (63.8 vs. 62.1mg/dL).
[23]

Lactobacillus plantarum KLDS 
1.0344 Protective effects against LPS-induced mastitis [61,69]

Enhanced Immune 
Responses

Saccharomyces cerevisiae-based 
postbiotics

Stimulated immune cell function and reduced pathogen 
survival [70]

SCFP Enhanced immune preparedness; rapid IL-1β/IL-6 response 
during digital dermatitis (suggests “trained immunity”) [71]

Udder Health Bacteriocin from L. lactis CJNU 3001 Inhibited Staphylococcus aureus, improving udder health and 
milk quality [72]

LAB=Lactic Acid Bacteria, SCFP=Saccharomyces Cerevisiae Fermentation Products, CFS=Cell-Free Supernatant, GPX=Glutathione Peroxidase, 
TBARS=Thio barbituric Acid Reactive Substances, MDA=Malondialdehyde, NEFA=Non-Esterified Fatty Acids, SAA=Serum Amyloid A, *IL-

1β*=Interleukin-1 Beta, *IL-6*=Interleukin-6, LPS=Lipopolysaccharide. ↑=increased, mg/dL=Milligrams per decilitre

Interaction between postbiotics and the rumen 
microbiome

Postbiotics are gaining significant attention as a novel category 
of “biotics,” offering a promising alternative to traditional antibiotics 

in livestock production, particularly for ruminants [63-66]. The 
interaction between postbiotics and the rumen microbiome has 
been the topic of several studies due to their potential to enhance 
ruminant productivity while mitigating environmental impacts 
[67]. Recent studies demonstrate that postbiotics exert species-
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and stage-specific effects on rumen fermentation and microbial 
ecology. In goats, yeast-derived postbiotics (Probisan Ruminants) 
administered at 3.75g/d during late lactation increased propionate 
production by 21% and improved the acetate-to-propionate ratio, 
suggesting enhanced energy utilization [37,68,69]. Similarly, lambs 
supplemented with Lactobacillus plantarum RG14 postbiotics 
exhibited a selective reduction in Enterobacteriaceae without 
disrupting total bacterial populations, indicating targeted 
antimicrobial activity against potential pathogens [22,70-72]. These 
findings highlight the capacity of postbiotics to modulate microbial 
communities in a manner that supports host health and metabolic 
efficiency. In young ruminants, postbiotic supplementation has 
shown promise in boosting immune defences. Calves receiving 
Saccharomyces Cerevisiae Fermentation Products (SCFP) at 1-2g/
d demonstrated improved resistance to respiratory and enteric 
pathogens, with notable reductions in Salmonella-induced diarrhea 
and lung pathology [73,74]. However, responses vary with the 
dietary context, as evidenced by beef heifers on high-grain diets 
showing improved fermentation profiles with SCFP, whereas mid-
fattening Angus steers exhibited no significant changes in rumen 
parameters [75,76].

This highlights the importance of dosage, dietary composition 
and physiological stage in determining the efficacy of postbiotics. 
Beyond immediate performance benefits, postbiotics influence 
rumen microbial ecology in ways that enhance long-term feed 
efficiency [20,23,77]. Studies in newly weaned lambs have revealed 
that postbiotics increase weight gain, nutrient digestibility, and 
populations of fibrolytic bacteria, while reducing protozoa and 
methanogens [22]. In vitro work further supports these observations, 
demonstrating that postbiotics from L. plantarum RG14 enhance 
organic matter digestibility and volatile fatty acid production 
without compromising rumen pH [78]. Such improvements in 
fermentation efficiency are critical for optimizing feed conversion in 
production systems. A particularly compelling aspect of postbiotic 
supplementation is its potential to reduce methane emissions. By 
suppressing methanogen populations, postbiotics directly lower 
methane output [22]. Additionally, Saccharomyces cerevisiae 
postbiotics promote microbial stability, fostering lactate-utilizing 
and fibrolytic bacteria while mitigating subacute ruminal acidosis 
[42]. This stabilization of rumen microbiota not only improves 
animal health but also redirects metabolic hydrogen toward 
propionate synthesis rather than methanogenesis [77,79]. The 
resulting shift in fermentation pathways aligns with broader goals 
of sustainable livestock production. The mechanisms underlying 
these effects involve intricate microbial interactions. Postbiotics 
modulate the rumen microbiome’s composition and functional 
dynamics, enhancing fermentation efficiency while reducing 
environmental pollutants [80]. As research progresses, a deeper 
understanding of these interactions will enable more targeted 
applications, ensuring that postbiotics are utilized optimally 
across different production systems. For farmers and nutritionists, 
these findings offer practical strategies to improve both animal 
performance and environmental sustainability.

Conclusion
The growing body of research stresses the potential of 

postbiotics as a viable alternative to antibiotics in ruminant 
nutrition, offering benefits in rumen fermentation, immune 
modulation and overall animal health. Postbiotics, particularly 
those derived from Saccharomyces cerevisiae and Lactobacillus 
spp., demonstrate consistent improvements in rumen pH stability, 
volatile fatty acid production, and nutrient digestibility, while 
mitigating subacute ruminal acidosis and reducing pathogenic 
bacterial loads. Their immunomodulatory effects, including 
reduced inflammatory markers and enhanced gut barrier function, 
further support their role in promoting animal health without the 
risks associated with live probiotics or antimicrobial resistance. 
However, the efficacy of postbiotics varies depending on factors 
such as dosage, animal species and physiological stage, highlighting 
the need for standardized protocols. While current findings are 
promising, further large-scale, long-term studies are necessary 
to validate these effects across diverse production systems. 
The integration of postbiotics into ruminant diets aligns with 
sustainable livestock production goals, offering a science-backed 
strategy to enhance productivity while addressing global concerns 
over antimicrobial resistance.

Future directions and research gaps

Despite the demonstrated benefits, critical gaps remain in 
postbiotic research, particularly regarding optimal dosing, species-
specific responses and long-term metabolic impacts. Future studies 
should prioritize in vivo trials evaluating postbiotic efficacy in 
methane mitigation, feed efficiency and immune function under 
varying dietary conditions. Additionally, the economic feasibility 
of large-scale postbiotic production must be assessed to facilitate 
industry adoption. Mechanistic insights into rumen-microbe-
postbiotic interactions, particularly in relation to methanogen 
suppression and volatile fatty acid dynamics, warrant deeper 
investigation. Standardized methodologies for postbiotic 
characterization and application will be essential to maximize their 
potential in sustainable ruminant production systems.
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