
A Short Review on Software
Development Life Cycles

Samia Sharmin Diba and Hitesh Mohapatra*
School of Computer Engineering, KIIT University, India

Introduction to Software Development Life Cycle
The Software Development Life Cycle (SDLC) can be defined as a comprehensive and

visual representation of the entire journey of a software product, starting from its inception
and continuing until its retirement or end of usefulness. It encompasses all the necessary
activities that need to be undertaken throughout the software’s life cycle, depicting the order
in which these activities are performed. The SDLC provides a descriptive and diagrammatic
representation of the various stages involved in the development, deployment and
maintenance of a software product. It serves as a roadmap, outlining the sequential execution
of tasks, processes and methodologies employed to ensure the successful creation, evolution,
and eventual retirement of the software. Essentially, the SDLC captures the entire spectrum of
activities performed on a software product, guiding its development and management from
beginning to end.

The SDLC typically consists of the following stages:

Requirements gathering
In this phase, the project requirements are collected by communicating with stakeholders,

users, and domain experts. The goal is to understand the needs and expectations of the
software.

Design
The design phase involves creating a blueprint for the software solution. This includes

designing the architecture, database structure, user interface, and other system components.
The design should address the functional and non-functional requirements of the software.

Development
In this phase, the actual coding of the software takes place. Developers write code based

on the design specifications and programming languages. This stage may involve multiple
iterations and testing to ensure the software meets the desired functionality.

Testing
The developed software undergoes various testing processes to identify and fix bugs,

errors, and other issues. This includes unit testing, integration testing, system testing, and
user acceptance testing. The goal is to ensure that the software functions correctly and meets
the specified requirements.

Deployment/Implement
Once the software has been thoroughly tested and approved, it is deployed to the

production environment. This involves installing the software on the target systems and
making it available to end users. Configuration and data migration may also be performed
during this phase.

Crimson Publishers
Wings to the Research

Mini Review

*Corresponding author: Hitesh
Mohapatra, School of Computer
Engineering, KIIT (Deemed to be)
University, Bhubaneswar -751024, Odisha,
India

Submission: July 25, 2023

Published: October 02, 2023

Volume 4 - Issue 4

How to cite this article: Samia Sharmin
Diba and Hitesh Mohapatra. A Short
Review on Software Development Life
Cycles. COJ Tech Sci Res. 4(4). COJTS.
000594. 2023.
DOI: 10.31031/COJTS.2023.04.000594

Copyright@ Hitesh Mohapatra, This
article is distributed under the terms of
the Creative Commons Attribution 4.0
International License, which permits
unrestricted use and redistribution
provided that the original author and
source are credited.

1COJ Technical & Scientific Research

ISSN: 2643-7066

http://dx.doi.org/10.31031/COJTS.2023.04.000594
https://crimsonpublishers.com/cojts/

2

COJ Technical & Scientific Research Copyright © Hitesh Mohapatra

COJTS.MS.ID.000594. 4(4).2023

Maintenance
After deployment, the software requires ongoing maintenance

and support. This includes monitoring its performance, addressing
user feedback, fixing bugs, and releasing updates or patches as
needed. Maintenance may also involve enhancements or new
feature development based on evolving user needs (Figure 1).

Figure 1: SDLC Model.

Review on Existing on SDLC Models
Explaining 10 existing different SDLC models with their

strength and Weakness

Waterfall model
The Waterfall Model follows a sequential approach, with each

phase being completed before moving on to the next. It starts
with requirements gathering, followed by design, development,
testing, deployment, and maintenance. The waterfall model
provides a structured and systematic approach, making it easy to
understand and manage. It is suitable for projects with stable and
well-defined requirements. Its rigid sequential nature makes it
difficult to accommodate changes or incorporate feedback during
development. It may lead to a lengthy development cycle and delays
in addressing issues [1].

Agile model
Agile methodologies, such as Scrum and Kanban, prioritize

flexibility and adaptability. It involves iterative development,
with small increments called sprints, where requirements are
continuously refined, developed, and tested. Agile methodologies
prioritize flexibility, collaboration, and iterative development. They
enable quick adaptation to changing requirements and encourage
customer involvement throughout the process. Agile requires
active communication and coordination within the team and
with stakeholders [2]. It may be challenging to scale for large and
complex projects, and documentation can be less comprehensive.

Spiral model
The Spiral Model combines elements of both waterfall and

iterative development. It includes repeated cycles of prototyping,

evaluation, and refinement, with each cycle addressing identified
risks. The spiral model allows for early risk identification and
mitigation, making it suitable for projects with high uncertainties.
It incorporates prototyping and frequent evaluations. It can be
time-consuming and costly due to repeated cycles of prototyping
and evaluation. Its complexity requires experienced project
management, and it may not be ideal for small projects [3].

D.V model
The V-Model is an extension of the waterfall model that

emphasizes testing at each phase. It associates a testing phase with
each corresponding development phase, ensuring comprehensive
quality assurance. The V-model emphasizes testing at each phase,
ensuring comprehensive quality assurance. It promotes early
defect identification and reduces rework. It can be rigid and
inflexible, making it difficult to accommodate changes. It assumes
that all requirements are known upfront, which may not be realistic
in some projects [4].

Iterative model
The Iterative Model involves developing software in small

increments or iterations, each going through the entire SDLC. Each
iteration results in a working product increment, enabling faster
delivery of value to stakeholders. The iterative model supports
flexibility, adaptation, and feedback incorporation. It allows for the
delivery of incremental value, reduces project risks, and encourages
stakeholder involvement. Managing multiple iterations requires
careful planning and prioritization. It can be challenging to strike
a balance between delivering iterations and addressing changing
requirements [5].

Rapid Application Development (RAD)
RAD focuses on quickly delivering a working software

application. It involves prototyping, iterative development, and
active stakeholder involvement to accelerate development and
ensure customer satisfaction. RAD accelerates development
by emphasizing prototyping and iterative delivery. It fosters
stakeholder engagement, quick feedback, and faster time-to-
market. It may not be suitable for large-scale projects with complex
requirements. The focus on speed may compromise thorough
documentation and may lead to increased technical debt [6].

Incremental model
The Incremental Model divides the software into modules or

functional components. Each increment builds upon the previous
one, allowing for early delivery of usable features and frequent
feedback incorporation. The incremental model enables early and
frequent releases, providing value to users sooner. It supports
parallel development of different modules and allows for flexibility
in prioritization. It requires careful planning and coordination
between modules. It may result in a fragmented system if
dependencies between modules are not managed properly [7].

DevOps model
DevOps integrates development (Dev) and Operations

(Ops) teams to streamline the software development lifecycle. It

3

COJ Technical & Scientific Research Copyright © Hitesh Mohapatra

COJTS.MS.ID.000594. 4(4).2023

emphasizes continuous integration, delivery, and deployment, with
a strong focus on collaboration and automation. DevOps promotes
collaboration, automation, and continuous integration and delivery.
It streamlines the development and deployment process, allowing

for faster and more reliable releases (Table 1). It requires significant
cultural and organizational changes to implement successfully. The
focus on automation may overlook certain aspects, such as security
and regulatory compliance [8].

Table 1: Comparison among existing algorithms.

SDLC Model Flexiblit y Adaptablit y to Change Customer Involvem
Ent

Development

Speed

Risk

Management

Nt

Cost

WATERFALL low low low moderate moderate high

AGILE high high high high low moderate

SPIRAL moderat moderate moderate moderate high high

V low low low moderate moderate high

ITERATIVE moderat high moderate moderate moderate moderate

RAD moderate low moderate high low low

INCREMENTAL high moderate high moderate low moderate

DEVOPS high high high high moderate high

LEAN high high moderate moderate high moderate

PROTOTYPE low moderate high high low low

Lean development
Lean Development aims to eliminate waste and optimize

efficiency. It focuses on value delivery, customer satisfaction,
and continuous improvement by minimizing non-value-added
activities and maximizing productivity. Lean development focuses
on efficiency, waste reduction, and continuous improvement. It
emphasizes value delivery, customer satisfaction, and optimization
of processes. Lean development requires disciplined execution and
ongoing monitoring to identify and eliminate waste effectively. It
may face resistance in organizations that are not accustomed to
Lean principles [9].

Prototype model
The Prototype Model involves building a basic working version

of the software to gather feedback and refine requirements. It
helps validate concepts, demonstrate functionality, and improve
understanding between stakeholders and developers. The
prototype model allows for early validation of concepts and
requirements. It helps gather feedback, refine designs, and improve
user satisfaction. Managing expectations can be challenging, as
stakeholders may confuse the prototype with the final product.
There is a risk of the prototype not aligning with the technical
constraints of the final product [10].

Flexibility and adaptability to change
Agile, Incremental, DevOps, and Lean Development models

provide high flexibility and adaptability to changing requirements.
Customer Involvement: Agile, Incremental, and Prototype models
emphasize high customer involvement throughout the development
process. Development speed: Agile, Rapid Application Development,
DevOps, and prototype models focus on faster development speed.
Risk Management: Spiral and Lean Development models have
a strong focus on risk management and early identification and
mitigation of risks. Documentation: Waterfall and V-Model models
prioritize comprehensive documentation, while Rapid Application

Development and Lean Development models have a lower emphasis
on documentation. Cost: waterfall, Spiral, DevOP, V shape models
have high price cost than other models [11].

Suggested Models
Here’s a suggestion for an improved SDLC model that combines

the strengths of different existing models:

Requirements gathering
 Gather and document the software requirements from

stakeholders.

Agile development (Iterations)
Implement an Agile approach, using iterations (sprints) to

develop and deliver working software increments. Emphasize
collaboration, flexibility, and customer involvement [12].

Risk assessment and mitigation
Conduct continuous risk assessment throughout the

development process and implement appropriate mitigation
strategies to manage project risks effectively.

Incremental development
Build the software incrementally, focusing on developing and

delivering specific features or modules in each iteration.

Continuous testing and quality assurance
Implement a continuous testing approach, performing

comprehensive testing at each iteration. Ensure continuous quality
assurance to identify and address defects early [13].

Deployment and continuous integration
Deploy the software to the production environment or make it

available to end-users (Figure 2). Implement continuous integration
practices to streamline the integration of new features and updates
[14].

4

COJ Technical & Scientific Research Copyright © Hitesh Mohapatra

COJTS.MS.ID.000594. 4(4).2023

Figure 2: Modified SDLC Model: Hybrid Model

Maintenance and enhancement
Provide ongoing maintenance and support for the software.

Incorporate user feedback and make enhancements as needed.
The Hybrid Model combines the iterative and flexible nature of
Agile with risk management, incremental development, continuous
testing, and deployment practices. It aims to balance adaptability,
risk mitigation, and continuous delivery, allowing for a more
efficient and effective software development process. However,
it’s important to customize and adapt the model according to the
specific needs and constraints of each project [15]. The suggested
Hybrid Model, which combines the strengths of different SDLC
models, can be particularly helpful in the current era of software
development for several reasons:

Flexibility and adaptability
The Hybrid Model incorporates Agile development principles,

allowing for flexibility and adaptability to changing requirements.
In the current era where technology and business needs evolve
rapidly, having a flexible approach enables teams to respond quickly
to new market demands and stakeholder feedback.

Continuous customer involvement
The Hybrid Model emphasizes customer involvement

throughout the development process. In today’s customer-centric
market, engaging customers and stakeholders throughout the
software development lifecycle helps ensure that the final product
meets their needs and expectations.

Risk Management
The Hybrid Model incorporates risk assessment and mitigation

practices. In the current era, where projects often face complex
challenges and uncertainties, effective risk management is crucial
for minimizing potential disruptions and ensuring successful
project outcomes.

Continuous testing and quality assurance
The Hybrid Model promotes continuous testing and quality

assurance practices. With the increasing complexity of software
applications and the need for rapid releases, continuous testing
ensures that issues and defects are identified and addressed early in
the development cycle, leading to higher quality software products.

Incremental development and continuous deployment
The Hybrid Model integrates incremental development and

continuous deployment practices. This allows for faster time-
to-market, enabling organizations to release working software
increments to end-users more frequently. In the current era of agile
business environments, rapid delivery of value to customers is a
significant competitive advantage.

Collaboration and continuous improvement
The Hybrid Model encourages collaboration among team

members and stakeholders, fostering a culture of continuous
improvement. By actively seeking feedback, embracing cross-
functional collaboration, and promoting knowledge sharing, the
model facilitates ongoing learning and optimization of development
processes.

Customization and adaptation
The Hybrid Model recognizes the importance of tailoring the

development process to fit specific project needs and constraints.
This adaptability is essential in the current era, where diverse
projects, technologies, and teams require flexible approaches that
can be customized to address unique requirements effectively.
In summary, the suggested Hybrid Model aligns with the current
era of software development by embracing agility, customer-
centricity, risk management, continuous testing, and deployment.
It offers a versatile framework that can be customized to suit
different projects and helps organizations navigate the challenges
and opportunities of today’s dynamic and competitive software
development landscape. Here are the benefits and limitations of the
proposed Hybrid Model:

Benefits of the Hybrid Model
Flexibility and Adaptability

The Hybrid Model combines the flexibility of Agile development
with other SDLC practices, allowing teams to adapt to changing
requirements and business needs efficiently.

Customer Involvement
The model emphasizes continuous customer involvement,

ensuring that the software aligns with customer expectations and
delivers maximum value.

Risk mitigation
The Hybrid Model incorporates risk assessment and mitigation

practices, enabling early identification and mitigation of potential
risks and issues.

Incremental development and continuous deployment
The model supports incremental development and continuous

deployment, enabling faster time-to-market and regular delivery of
working software increments to end-users.

5

COJ Technical & Scientific Research Copyright © Hitesh Mohapatra

COJTS.MS.ID.000594. 4(4).2023

Continuous testing and quality assurance
The Hybrid Model promotes continuous testing and quality

assurance practices, leading to higher software quality and
reliability.

Collaboration and continuous improvement
The model encourages collaboration among team members

and stakeholders, fostering a culture of continuous improvement
and innovation.

Customization and Adaptation
The Hybrid Model can be customized and adapted to fit specific

project requirements, team dynamics, and organizational contexts.

Limitations of the Hybrid Model
Complexity

The Hybrid Model may introduce additional complexity
due to the integration of multiple practices and methodologies.
This complexity can require skilled project management and
coordination.

Resource allocation
Adopting a hybrid approach may require allocation of

appropriate resources, including skilled personnel and tools, to
effectively implement and manage different practices within the
model.

Learning curve
Transitioning to a hybrid model may require a learning curve for

teams, especially if they are not familiar with all the incorporated
practices. Adequate training and support are necessary for
successful implementation.

Balancing trade-offs
Balancing trade-offs between agility and risk management can

be challenging. It requires careful decision-making to optimize
development speed while mitigating risks effectively.

Organizational readiness
The success of the Hybrid Model depends on the readiness

and adaptability of the organization to embrace and support the
necessary changes in processes, culture, and collaboration.

Potential overhead
Implementing multiple practices within the Hybrid Model may

introduce additional overhead, such as increased documentation
and coordination efforts. Proper planning and streamlined
processes are necessary to minimize overhead.

Context dependency
The suitability of the Hybrid Model may vary depending on the

project size, complexity, team size, and other contextual factors. It
may require tailoring to fit specific project needs.

Conclusion
SDLC encompasses various models, each with unique

strengths and weaknesses. Waterfall Model provides structure but
lacks flexibility and adaptability. Agile Methodologies prioritize

flexibility, adaptability, and customer involvement. Spiral Model is
suitable for uncertain projects and focuses on risk management.
V-Model emphasizes comprehensive testing but can be inflexible.
Iterative Model offers flexibility, adaptability, and incremental value
delivery. Rapid Application Development accelerates development
but may not be ideal for large-scale projects. Incremental
Model enables early releases and flexible prioritization.
DevOps emphasizes collaboration, automation, and continuous
integration/deployment. Lean Development focuses on efficiency,
waste reduction, and continuous improvement. Prototype Model
allows for early validation of requirements through prototyping.
Hybrid Model combines strengths, providing flexibility, customer
involvement, risk management, incremental development,
continuous testing, and deployment. Benefits of Hybrid Model
include adaptability, customer-centricity, risk mitigation, faster
delivery, and continuous improvement. Limitations of Hybrid
Model include complexity, resource allocation, learning curve,
trade-off balancing, organizational readiness, potential overhead,
and context dependency. Customization is essential for successful
implementation of the Hybrid Model. Waterfall Model is suitable
for projects with stable requirements. Agile methodologies offer
flexibility and adaptability to changing requirements. Spiral Model
focuses on risk management and early issue identification. V-Model
emphasizes comprehensive testing and quality assurance. The
choice of SDLC model should be based on project requirements,
team dynamics, and organizational context.

References
1.	 Jovanovi M (2009) Software testing methods and techniques. IPSI BgD

Journals 5: 30-41.

2.	 Manjit K, Raj K (2011) Comparative study of automated testing tools:
Test complete and quicktest pro. International Journal of Computer
Application 24: 1-3.

3.	 Ian Sommerville (2004) Software Engineering.

4.	 Nabil MAM, Govardhan A (2010) A comparison between five models of
software engineering. IJCSI International Journal of Computer Science
7(5): 1694-0814.

5.	 Roger SP (2023) Software Engineering a Practitioner’s Approach.

6.	 Whitgift D (1991) Methods and tools for software configuration
management.

7.	 Petersen K, Wohlin C, Baca D (2009) The Waterfall Model in Large-Scale
Development. P. 32.

8.	 Shubhmeet Kaur (2015) A review of software development life cycle
models. In International Journal of Advanced Research in Computer
Science and Software Engineering 5(11).

9.	 Boehm B (1985) A spiral model of software development and
enhancement. In Proceedings of an International Workshop on the
Software Process and Software Environments.

10.	De Grace, Peter, S, Leslie H (1990) Wicked problems, righteous solutions:
A catalogue of modern software engineering. New Jersey.

11.	Coad P, Edward Y (1991) Object-Oriented Design.

12.	Software Technology Support Centre (1993) Software Management
Guide 1: 23.

13.	Dyer M (1993) The Cleanroom Approach to Quality Software
Development.

14.	Blum BI (1992) Software Engineering: A holistic View.

15.	Booch G (1994) Software Engineering with Ada. pp. 25

http://tir.ipsitransactions.org/2009/January/Paper%2006.pdf
http://tir.ipsitransactions.org/2009/January/Paper%2006.pdf
https://www.ijcaonline.org/volume24/number1/pxc3873844.pdf
https://www.ijcaonline.org/volume24/number1/pxc3873844.pdf
https://www.ijcaonline.org/volume24/number1/pxc3873844.pdf
https://www.ijcsi.org/papers/7-5-94-101.pdf
https://www.ijcsi.org/papers/7-5-94-101.pdf
https://www.ijcsi.org/papers/7-5-94-101.pdf
https://www.semanticscholar.org/paper/A-Review-of-Software-Development-Life-Cycle-Models-Kaur-Tech/3a1503d390131b9f51bb3cff4dd14cba480a36da
https://www.semanticscholar.org/paper/A-Review-of-Software-Development-Life-Cycle-Models-Kaur-Tech/3a1503d390131b9f51bb3cff4dd14cba480a36da
https://www.semanticscholar.org/paper/A-Review-of-Software-Development-Life-Cycle-Models-Kaur-Tech/3a1503d390131b9f51bb3cff4dd14cba480a36da
https://www.cse.msu.edu/~cse435/Homework/HW3/boehm.pdf
https://www.cse.msu.edu/~cse435/Homework/HW3/boehm.pdf
https://www.cse.msu.edu/~cse435/Homework/HW3/boehm.pdf

	A Short Review on Software Development Life Cycles
	Introduction to Software Development Life Cycle
	Review on Existing on SDLC Models
	Suggested Models
	Benefits of the Hybrid Model
	Limitations of the Hybrid Model
	Conclusion
	References

