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			Abstract

			In this note, a periodic system of diﬀerence equations is considered. It is supposed that this system has a periodic solution. The purpose of this note is to clarify the possible relationship between periods of the system and its periodic solution.
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			Introduction

			Diﬀerence equations are commonly used in mathematics, because they may be natural mathematical model to describe the discrete processes (eg., in combinatorics). In papers [1-5] diﬀerence equations are used as models of population dynamics, and in [6] diﬀerence equations are used for modeling in genetics. In [7] the dynamics of the ecological system is also described by the system of diﬀerence equations. Another area where diﬀerence equations have played a prominent role is numerical analysis. Here one would approximate a given diﬀerential equation, through a discretization method, by a diﬀerence equation. In [8], the authors adjust the diﬀerence schemes corresponding to the equations under study in order to guarantee agreement between diﬀerential and diﬀerence systems in the sense of stability of the zero solution. They obtain conditions under which perturbations do not violate the asymptotic stability of solutions to diﬀerence systems.

			Many evolutionary processes are characterized by the fact that at certain moments of their development they undergo rapid changes. In the mathematical simulation of such processes, it is convenient to neglect the duration of this rapid change and to assume that the process changes its state by jumps. For instance, such changes by jumps are observed in mechanics (the action of clockwork and the change in the velocity of a rocket by the separation of a stage), in radio engineering (generation of impulses of various forms), in biology (the work of the heart and the growth of the cells), in control theory (impulse control and the work of an industrial robot), etc. Adequate mathematical models of such processes are the so-called systems with impulse eﬀect. These systems are governed by both diﬀerential and diﬀerence equations. This also conﬁrms the importance of studying qualitative properties of diﬀerence equations.

			Main Results

			 Consider the following system of diﬀerence equations

			[image: ]	(1)

			where n=0, 1, 2, . . . is the discrete time, x(n)=(x1(n), . . . , xk(n))∊T Rk, (.)T is the sign of conjugation, X: Z+*Rk R is continuous in x. Denote by x(n) = x(n, n0, x0) the solution of system (1) coinciding with x0 = (X0, , X0, . . . , X0)T under n=n0. We also denote Z+ the set of non-negative integers, N the set of positive integers, and Nn0 the set of nonnegative integers satisfying inequality n>n0.

			Deﬁnition 1

			System (1) is called periodic with period q∊N if [image: ]; moreover for r=1, 2, . . ., q 1 we have [image: ]. Invariant sets of system (1) are very important in the study of diﬀerence equations. The simplest invariant sets of equations (1) are equilibrium positions and periodic solutions of systems of diﬀerence equations.

			Deﬁnition 2

			The point [image: ] is called an equilibrium position of system (1) if X (n, x*) = x∗ for all n∈Nn0.

			Deﬁnition 3

			The solution x(n) of system (1) is called periodic with period p∈N if 

			[image: ] (2)

			holds for all integers n Nn0. Geometrically property (2) means that the graph x(n) is repeated at all successive intervals of length p. Throughout this paper we assume that the period of solution x(n) is the smallest value p, satisfying (2). In this note we suppose that system of diﬀerence equations (1) is periodic with period q and this system has a periodic solution x(n) with period p. The purpose of this note is to clarify the possible relationship between p and q Elaydi & Sacker [9] proved the following theorem.

			Theorem 1

			Consider the periodic system of diﬀerence equations (1) with period q. If periodic solution M = x(n0), x(n1), . . ., x(np-1) of this system is globally asymptotically stable, then p is a divisor of q. In this theorem the authors showed the connection between the numbers p, q and the property of the periodic solution to be globally asymptotically stable. So, throughout this paper we shall consider the periodic system (1) with period q which has a periodic solution x(n) with period p without assumption of global asymptotic stability of this solution. Without loss of generality, we assume n0=0. We shall show that X(n, x) x∊M is also periodic in n with period p. The following theorem is valid.

			Theorem 2

			If system of diﬀerence equations (1) has a periodic solution x(n) with period p, then function X(n, x) is also periodic with period p for x∊M. 

			Proof: Let n0 0, 1, 2, . . ., p-1. Consider X(n0+p, x(n0)). The solution x(n) with initial point x(n0) is periodic with period p, hence,

			[image: ](3)

			According to (1) we ﬁnd

			[image: ] (4)

			On the other hand, from the periodicity of x(n) and (1) we have

			[image: ]	(5)

			From (3-5) it follows that X(n0, x(n0)) = X(n0+p, x(n0)), i.e. at all points of periodic trajectory M the relation X(n, x) = X(n+p, x) holds. This completes the proof. 

			Remark: Condition x ∊M is essential in Theorem 2 since without this condition this theorem is not true. As an example, consider the following system

			[image: ] (6)

			[image: ]

			System (6) has the solution x(n) = cos πn/3, y(n) = sin πn/3 which is periodic with period p = 6, but right-hand sides of system (6) are periodic functions of n with period 2π. The chosen system has the property that the points of the plane x, y, through which solution x(n), y(n) passes (i.e. points of the unit circle x2+ y2=1) do not depend explicitly on the discrete time n. It turns out this is true not only for system (6), but also for any other system of diﬀerence equations (1) having a periodic solution whose period is incommensurable with the period of the system.

			Theorem 3

			Let system of diﬀerence equations (1) be such that X(n, x) is continuous function in n ∊ R, X∊ Rk and periodic in n with irrational period q. If system (1) has the periodic solution M={x(0), x(1), . . . , x(p-1)	with period p∊N, then for any n0∊{0, 1, . . . , p-1} vector-function X(n, x(n0)) is constant. To prove this theorem, we need the following lemma which has been proven by Chebyshev [10] and its corollary. 

			Lemma: If b is arbitrary real number, a is an irrational number, then there exist sequences of integer numbers [image: ]and [image: ]such that [image: ]and

			[image: ](7)

			Corollary: Let p be an integer number, q-an irrational number. Then for any c∈R there exist sequences of integer numbers [image: ]and [image: ]such that [image: ]and

			[image: ] (8)

			Proof of the corollary: It is clear that (8) is equivalent to the next limit relation

			[image: ] (9)

			Since p is integer and q is irrational, q/p is also irrational. Letting q=a, yi=ki, xi=mi , c=bpp, from inequality (7) we obtain

			[image: ]

			Bearing in mind that [image: ]we get (9). The proof of the corollary is complete. Now let us prove. Theorem 3; Let m and k be arbitrary integer numbers. From periodicity of X and x we obtain

			a	(10)

			 But according to (1) we have

			[image: ]	(11)

			On the other hand

			[image: ]	(12)

			From (10-12) it follows that for any integers m and k.

			[image: ]

			Let us show that 

			[image: ]

			for any c ∈ R. Vector-function X is continuous, so all that we need is to show that there exist sequences of integer numbers [image: ]and [image: ]such that [image: ]

			[image: ]

			However, the existence of such sequences of integers [image: ]and	[image: ]follows from the above corollary. This completes the proof of Theorem 3.
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