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Abstract


As stated originally the four-color problem asked whether it is always possible to color the regions of a plane map with four colors such that regions
which share a common boundary (and not just a point) receive different colors. In the long and arduous history of attacks to prove the four colortheorem
many attempts came close, but what finally succeeded in the Apple-Haken proof of 1976 and also in the recent proof of Robertson, Sanders, Seymour
and Thomas 1997 was a combination of some old ideas and the calculating powers of modern-day computers. Thirty years after the original proof, the
situation is still basically the same,no pure mathematical proof is in sight.Now I give in my paper such a pure mathematical proof. 









Introduction



The four color problem asks whether it is always possible to
color the regions of a plane map with four colors such that regions
which share a common boundary (and not just a point) receive
different colors. Coloring the regions of a plane map is really the
same task as coloring the vertices of a plane graph. We place a
vertex in the interior of each region (including the outer region)
and connect two such vertices belonging to neighbouring regions
by an edge through the common boundary. The resulting graph G,
the dual graph of the map M, is then a plane graph, and coloring the
vertices of G in the usual sense is the same as coloring the regions
of M. Because of this construction we may as well concentrate on
vertex-coloring graphs drawn on the 2-sphere S2
 and will do so from
now on. Note that we may assume that G has no loops or multiple
edges, since these are irrelevant for coloring [1].


 First note that adding edges can only increase the chromatic
number. In other words, when H is a subgroup of G, then [image: ]  certainly holds. X1 is the list chromatic number,
hence we may assume that G is connected.

Since ordinary coloring is just the special case of list coloring,
we obtain for any graph G

 [image: ]   



where X1(G) is the ordinary chromatic number. 



Now we consider the given map M (including the outer region)
and it`s dual graph G (including the vertex in the interior of the outer
region) the regions of M exhaust all of S2
.Thus S2
 is SO3
-paradoxical
using the regions of the map M some of the employed elements
of SO3
 may coincide with the identity of  SO3
). Now we color the
vertices of the dual graph G in such a way that the two vertices at
the two ends of any edge of the graph G receive different colors,
and such that the number of colors used is a minimum. Let n be the
minimum number of different colors used. For each color i (i=1,2,......,n ) we collect all the regions of the map M with the property that
the vertices of G in the interiors of all of these regions have the same
color i. Let Ai
 be the union of the collection of all such regions.

[image: ]


Where Rk
 (K=1,2,....,mi
) are the regions of the map M with the
property that the vertices of G in the interiors of all these regions
have the same color i [2]. mi
 the number of these regions Rk
(K=1,2,....,mi
). For any f∈SO3
 acting on S2
, and for any function f in
general, we have 


 [image: ] 

This means that S2
 is SO3
-paradoxical using the new subsets
Ai
(i=1,2,....,n). We call these subsets Ai
 (i=1,2,....,n ). The derived
subsets based on minimum coloring of a given map M. 


We can then obtain immediately the following easy theorem:
 

D. Theorem: S2
 is SO3
-paradoxical using the derived subsets
Ai
(i=1,2,....,n). The number of these subsets n equals the minimum
number of colors used. 


We mention now the following known theorem:

E. Theorem: S2
 is SO3
-paradoxical using four regions, and
the four cannot be improved. 


What about the greatest lower bound of all the possible
minimum numbers of colors used in all possible cases?

According to this last theorem (E) and in reference to
theorem (D) above ,we assert that whenever an SO3
-paradoxical
decomposition of S2
 is given using derived subsets in the sense of
theorem (D) above [3], the greatest lower bound of all possible
numbers of these subsets is four, and the four cannot be improved.
Therefore, according to theorem (D) above, the greatest lower
bound of all minimum numbers of colors used to color any graph
(or map) is four, and the four cannot be improved. This concludes
the proof of the four color conjecture
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