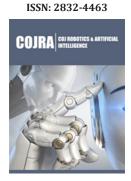



# **Intelligent Robots for Games and Interactive Entertainment Systems**


# Nandhini Giri\*

School of Applied and Creative Computing, Purdue University, USA

### **Abstract**



**Keywords:** Intelligent robots; Games; Interactive entertainment systems **Abbreviations:** AI: Artificial Intelligence; HRI: Human Robot Interaction



\*Corresponding author: Nandhini Giri, School of Applied and Creative Computing, Purdue University, USA

Submission: 
☐ October 30, 2025

Published: 
☐ November 25, 2025

Volume 5- Issue 2

**How to cite this article:** Nandhini Giri\*. Intelligent Robots for Games and Interactive Entertainment Systems. COJ Rob Artificial Intel. 5(2). COJRA. 000606. 2025

DOI: 10.31031/COJRA.2025.05.000606

Copyright@ Nandhini Giri, This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use and redistribution provided that the original author and source are credited.

### Introduction

Advances in physical Artificial Intelligence (AI) has enabled autonomous systems like robots to interface with the physical world by perceiving and adapting to real-world data from the environment [1]. Intelligent robots understand real-world spatial relationships, perform complex motion and cognitive functions and can build insights using multimodal inputs from the 3D environment to execute actions in the physical world. Further, digital twins and real-world sensor data enable the training of these robots in interactive simulations, that mimic real-world scenarios. The primary industries that utilize these technologies are in manufacturing, transportation, agriculture and smart environments. However, the rapid adoption of generative AI and recent developments in social robots see an increasing adoption of intelligent robots in games and interactive entertainment systems.

This article explores the emerging trends of using robots in the field of gaming and interactive entertainment systems design. The article reviews current academic research articles focusing on the use of robots in games. The purpose of conducting this review is to [1] Highlight the current practices and research directions [2]. Discuss the unique characteristics of intelligent robots and the challenges of integrating robots into game play experience design [3] Present future directions. The insights presented in this article provide guidelines for both researchers and practitioners to study and further develop intelligent robots that can seamlessly integrate game worlds with the 3D physical world.

# Discussion

# Intelligent robots in games and interactive entertainment

There is an emerging intersection between intelligent robotics and interactive entertainment technologies that encompasses several applications in education, healthcare,

recreation, therapy and human-robot communication. Robots in games serve multifaceted roles, both as educational tools and as interactive research participants to study and foster Human-Robot Interactions (HRI). A review of academic research articles highlight current practices and research themes as follows:

Robots in educational simulation games: Several studies show positive learning experiences when robots are incorporated in game simulations. Students can better engage with science and technology topics by incorporating robots into games [2]. Mixed reality games incorporating robots have shown to effectively promote physical and cognitive engagement among players [3]. Robots play a dual role either as a social actor or a didactic tool, from a teacher's perspective, in promoting teaching and learning among children [4]. Gamified robotic platforms specifically designed for sign language facilitate learning in socialized settings for children with educational needs [5].

Fostering HRI through social robots in serious games: Robots are increasingly used in serious games to improve social presence and emotional connection [6]. Studies show that older adult population engage deeply with complex games when played with anthropomorphic robots, having human characteristics, as it facilitates social interaction and connection [7]. Findings show that social presence can be improved through the design of robotic interfaces and interaction styles [8]; and that cognitive engagement and emotional well-being improves when users engage with robots in serious games. The 'Robo Ludens' project shows how multiplayer scenarios involving humans and robots lead to richer natural interactions building trust and cooperation [9].

Robots for creative expression and artistic creation: An emerging use of robots in interactive entertainment technology is in cinematic work (e.g. camera control for film production) and the use of humanoid robots in dance, music and opera performances [10]. Game design principles are used in designing these interactive expressive robots [11]. HRP-2m figure skating robot is an example of robots demonstrating complex motor skills in the sports arena [12]. Swarm intelligence in collaborative humanoid soccer robots exhibit effective teamwork, sound decision making and real-time collaboration in competitive performance scenarios [13]. Pet robots that care for animals [14], robotic competitions that promote learning technical skills in fun environments [15], use of robotic technology in cinematic storytelling and magic shows [16], are all examples of the versatile use of intelligent robots in entertainment technologies.

# Characteristics of intelligent robots in games and interactive entertainment

Intelligent robots in gaming exhibit several characteristics that improve game play experiences. Robots have the ability to solve cognitive functions in the game world, while performing physical tasks and complex movements in the physical environment. The integration of physical intelligence further enhances this seamless integration between the physical 3D world and the virtual gaming environment.

- **A. Embodied Interactions:** The element of embodiment allows opportunities for intelligent learning in a game or gamified environment, while offering tangible physical interactions with the natural environment.
- **B.** Affective Response: Studies in HRI, especially findings on emotional impact and social assistance provided by affective robots, is another key characteristic that makes robotics technology a significant component for enhancing gaming experiences for players with diverse needs.
- C. Adaptive Intelligence: Unlike traditional scripted behavior systems, AI-based control enables intelligent robots to adapt, learn and make decisions in real-time. Automated scripts work for simple repetitive tasks, however, complex dynamic environments like gaming systems with emergent gameplay need robots with adaptive intelligence that can handle a wide range of user data, unstructured gameplay scenarios and multimodal input/output channels.

Real-time interactions, adaptability, perception of natural environment, complex motor skills are some of the other characteristics that allow virtual gaming to extend into physical space. For example, rules in physical games like chess and checkers [17] are understood by robots and can execute complex game strategies in physical games.

### **Future directions**

The unique characteristics of intelligent robots provide an excellent toolbox for game designers to incorporate these robots in gameplay settings. However, there are also several open challenges that exist in present state-of-the-art technology. There is a need for developing more human-centered interaction frameworks that leverage the key characteristics of intelligent robots for effective adoption in game-play scenarios. The real-time dynamic decision-making capabilities of intelligent robots provide opportunities to investigate optimized collaborative game play scenarios with humans. Tangible playful interactions extend digital gaming into physical game arenas for competitive human-robot performances.

Affective robots can integrate well with their digital counterparts like animated agents or non-player game characters aiding video game players for better experiences. The game world interactions can extend further into the real-world for prolonged effects. HRI factors that include trust building, social connection, cooperative gameplay and several game design principles need to be evaluated and tested for better player experiences [18]. This requires further research studies and evaluation techniques to understand effective approaches of integration and the ethical design of intelligent robots. Nevertheless, there is plenty of potential for both research and development of intelligent robots in gaming and interactive entertainment technologies.

# Conclusion

This article introduced emerging trends of integrating intelligent robots into games and interactive entertainment technology design. The review of academic articles highlights several research themes

and applications of integrating intelligent robots into games that include roles in education, gamified social interactions, cinematic storytelling and artistic performances. Intelligent robots provide unique characteristics that can foster human-robot interactions in social settings, while improving learning and research study development in games and gamified platforms. Future directions need well-researched evaluation techniques and human-centered interaction frameworks for seamless integration of intelligent robots in interactive entertainment systems that foster rich game play experiences.

## References

- 1. (2025) What is physical AI? NVIDIA, USA.
- Bikar SS, Sharif S, Talin R, Rathakrishnan B (2020) Students' perceptions about the use of minimalist robotic games in geography education. Review of International Geographical Education Online 10(4): 584-595.
- 3. Prattico FG, Lamberti F (2020) Mixed-reality robotic games: Design guidelines for effective entertainment with consumer robots. IEEE Consumer Electronics Magazine 10(1): 6-16.
- Ekström S, Pareto L (2022) The dual role of humanoid robots in education: As didactic tools and social actors. Education and Information Technologies 27(9): 12609-12644.
- Kose H, Akalin N, Uluer P (2014) Socially interactive robotic platforms as sign language tutors. International Journal of Humanoid Robotics 11(01): 1450003.
- Rato D, Correia F, Pereira A, Prada R (2023) Robots in games. International Journal of Social Robotics 15(1): 37-57.
- Gasteiger N, Ahn HS, Gasteiger C, Lee C, Lim J, et al. (2021) Robotdelivered cognitive stimulation games for older adults: Usability and acceptability evaluation. ACM Transactions on Human-Robot Interaction (THRI) 10(4): 1-18.
- 8. Cesário P, Santos S, Lourenço B, Martins I, Gonçalves PJ (2019) Towards older adults cognitive and emotional stimulation via robotic cognitive games. Social Sciences 8(11): 298.

- Muñoz JE, Dautenhahn K (2021) Robo ludens: A game design taxonomy for multiplayer games using socially interactive robots. ACM Transactions on Human-Robot Interaction (THRI) 10(4): 1-28.
- 10. Bogue R (2022) The role of robots in entertainment. Industrial Robot: The International Journal of Robotics Research and Application 49(4): 667-671.
- 11. Tan N, Brahmananthan N, Mohan RE, Prabakaran V (2019) Inspiration from games and entertainment artifacts: A rising paradigm for designing mechanisms and algorithms in robotics. Frontiers in Robotics and AI 6: 3
- Takasugi N, Kojima K, Nozawa S, Kakiuchi Y, Okada K, et al. (2016) Real-time skating motion control of humanoid robots for acceleration and balancing. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, Korea, pp. 1356-1363.
- Nadiri F, Rad AB (2025) Swarm intelligence for collaborative play in humanoid soccer teams. Sensors 25(11): 3496.
- Liu Y, Zhao J, Dimitrov V, Irish A, Jones C, et al. (2010) An entertaining robot prototype for pets. Journal of Engineering, Design and Technology 8(2): 189-205.
- 15. Daichi A, Tomomi M, Yasunori T (2013) Development of autonomous omnidirectional mobile soccer robot platform: Second report, Development of image processing system (RoboCup Robot Contest). Robotics and Mechatronics Lecture Abstracts, pp. 1P1-A09\_1.
- 16. Yang J, Jeong J, Baltes J (2023) An analysis and review of robot magic shows. The Knowledge Engineering Review 38: e6.
- 17. Fabris G, Scalera L, Gasparetto A (2023) Playing checkers with an intelligent and collaborative robotic system. Robotics 13(1): 4.
- 18. Correia F, Alves-Oliveira P, Maia N, Ribeiro T, Petisca S, et al. (2016) Just follow the suit! Trust in human-robot interactions during card game playing. 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), IEEE, USA, pp. 507-512.