
Designing the Software Layer of an
IoT-Based Integrated Greenhouse

Control System
Mona Kouhi*
Department of Computer Engineering, Science and Research Branch, Islamic Azad University,
Iran

Introduction
Today, in the agricultural industry, to produce better products, the process of planting

and growing plants needs to be done with more care. For this purpose, instead of using large
agricultural lands, smaller greenhouses can be used, which can lead to better control of the
process and production of higher-quality agricultural products [1]. Also, to control these
distributed greenhouses from one point, using Internet of Things technology is the best way.
The concept of the Internet of Things uses network technology for controlling greenhouses
remotely. The hardware part of this agricultural IoT includes temperature, humidity, and light
sensors, as well as processors with big data processing capabilities; these hardware devices
connect to short wireless communication technologies such as Bluetooth and Wi-Fi. The
sensor network is created with web technology and combined in the form of the wireless
sensor network to remotely control and monitor the data generated by the sensors [2].

In [3], an ON-OFF mechanism for controlling plant growth parameters was presented.
In [4], various application areas and smartphone applications are briefly discussed. In [5],
Arduino and Raspberry Pi were presented to develop monitoring and control systems with
different parameter aspects. In [6] they have focused on monitoring three parameters namely
soil moisture, temperature, and humidity using IoT technology.

In the proposed architecture, there are 5 components: Arduino board (including sensors,
relays, relay board, and Arduino board), Raspberry Pi board, gateway, web server, and
device browser. The collected data is sent from the sensors to the Arduino board, then to

Crimson Publishers
Wings to the Research

Review Article

*Corresponding author: Mona Kouhi,
Department of Computer Engineering,
Science and Research Branch, Islamic Azad
University, Iran

Submission: June 07, 2025
Published: October 10, 2025

Volume 5- Issue 1

How to cite this article: Mona Kouhi*.
Designing the Software Layer of an IoT-
Based Integrated Greenhouse Control
System. COJ Rob Artificial Intel. 5(1).
COJRA. 000601. 2025.
DOI: 10.31031/COJRA.2025.05.000601

Copyright@ Mona Kouhi, This article is
distributed under the terms of the Creative
Commons Attribution 4.0 International
License, which permits unrestricted use
and redistribution provided that the
original author and source are credited.

1COJ Robotics & Artificial Intelligence

Abstract
In the agricultural industry, the process of planting and growing plants requires a lot of constant care
and maintenance. The use of small greenhouses instead of large agricultural land leads to better control
of the process and the production of high-quality agricultural products. Also, to control these distributed
greenhouses from one point, it is necessary to use IoT technology. In this work, a software layer is
developed, which includes a set of hardware devices (including a network of sensors, relays, an Arduino
board, and a Raspberry Pi board) and a software control system to control the distributed greenhouses
from one point remotely. The mentioned software layer (including a web application, middleware, and
database) communicates with the hardware control center to remotely monitor and control greenhouse
conditions such as temperature, humidity, light, etc. In addition, a scheduler programmed with Python
multithreading is provided for the parallel execution of system commands. The SCADA (Supervisory
Control and Data Acquisition) system is used to upgrade this system to a SCADA system or to integrate it
into a SCADA system in the future. The proposed software architecture is presented with 4 + 1 views. The
Architecture Tradeoff Analysis Method (ATAM) is applied to evaluate different scenarios. The trade-off
analysis has proven the suitability and competence of the proposed architecture.

Keywords: Internet of things; Greenhouse control system; Middleware; SCADA; Software layer

ISSN: 2832-4463

http://dx.doi.org/10.31031/COJRA.2025.05.000601
https://crimsonpublishers.com/cojra/

2

COJ Robotics & Artificial Intelligence Copyright © Mona Kouhi

COJRA.000601. 5(1).2025

the Raspberry Pi board, and from there to the database. The web
server reads new data from the database and displays it in the
device browser. Administrators or farmers can check the received
data and the state of the greenhouse and make the desired changes
or execute a command. When the user executes a command, the
command is stored in the database. The Raspberry Pi board reads
the data from the database and sends it to the Arduino board. Then
according to the data sent, commands are applied to the desired
relay and turn it on or off. In this system, we have used Python’s
multithreaded programming to execute multiple parts of our
code simultaneously [7]. For example, in the proposed system,
the commands come from 3 sources: 1. User Manual Command, 2.
SchOnTime (commands that need to be executed at a specific time),
3. SchPeriodic (commands that need to be executed periodically).
When these commands are executed, the program queues them
and according to their arrival time they are executed in order and
the commands apply to the requested relay. This feature speeds up
the execution of the greenhouse commands, improves the system
performance, and reduces costs.

Regarding these issues, we present an integrated control system
for greenhouses that includes both modeling and architecture of
a smart greenhouse. In the proposed system, we have used IoT
technology in the development of greenhouse integrated control
system to fulfill the following purposes:

A.	 Provide an open platform for connecting IoT nodes in the
greenhouse environment.

B.	 Intelligently control greenhouses and IoT nodes.

C.	 Enable access to multiple geographically distributed
greenhouses from one point.

D.	 Reduce the production cost of agricultural products and
improve crop quality.

To achieve these goals, we developed an IoT-based system that
can connect all IoT nodes and access the greenhouse environment to
control it from one point remotely. This system can not only reduce
the cost but also increase the quality of agricultural products.

The developed system is superior to existing IoT-based
greenhouse management systems for the following points:

a.	 Queuing of commands that are entered into the system
simultaneously (commands such as User Manual Commands,
SchOnTime Commands, and SchPeriodic Commands)

b.	 Mapping the proposed system to the SCADA system for
future expansion of this system to SCADA

c.	 Using ATAM to demonstrate the suitability and suitability
of the proposed architecture

This paper is organized as follows: Section 2 presents previous
related work. Section 3 deals with the modeling and architecture of
the greenhouse integrated control system. Section 4 deals with the
architecture evaluation methods to study the quality characteristics
of the system. Finally, Section 5 concludes the paper. A list of
Acronyms used in the manuscript is mentioned in Table 1.

Table 1: Acronyms & glossary.

Acronym Description

HMI Human-Machine Interface

RTU Remote Terminal Unit

PLC Programmable Logic Controller

SCADA Supervisory Control and Data
Acquisition

API Application Programming
Interface

REST API RESTful web API

CRUD Create, Read, Update, Delete

UML Unified Modeling Language

FIFO First-In, First-Out

I/O Input/Output

TLS Transport Layer Security

mTLS Mutual TLS

PIN Personal Identification Number

AC Air Conditioner

TDS Total Dissolved Solids

ATAM Architectural Tradeoff Analysis
Method

Related Works
In [8], agricultural IoT system solutions are proposed for

monitoring the growth of tomato fruit by extending the connection
with Slack Bot API to notify farmers about the status of tomatoes.
They also performed image analysis by combining Deep Learning
for tomato fruit detection, image processing for colour feature
extraction, and machine learning for 6 growth stage classifications.
In their tomato recognition system, they were able to recognize
both green and red fruits from background images. In their system,
they did not develop a user interface for the administrator and
the farmer to control the greenhouse conditions. However, in our
proposed system, we developed a web application for the system to
manage greenhouse conditions remotely.

In [9], a mobile greenhouse environment monitoring system
based on IoT architecture is proposed. For the first time, a
Raspberry Pi and an Arduino chip are combined for environmental
monitoring in agricultural greenhouses, with the former serving as
a data server and the latter as a master chip for the mobile system.
A four-layer system architecture is built, which provides a motion
control function. And all four layers of the architecture are used on
the mobile system. The system can be operated in three modes to
realize automatic multi-point environment information acquisition
for greenhouses and crop image acquisition at a low cost. In their
system, they haven’t developed middleware for their devices to
connect and receive and send data simultaneously.

In [10], high-tech monitoring systems are used in Mediterranean
greenhouse structures with little technical effort. Their project
included 1) a network of sensors for climate, root zone, and
plant monitoring, 2) mathematical models for plant management
and preliminary simulations, 3) closed cultivation systems, and

3

COJ Robotics & Artificial Intelligence Copyright © Mona Kouhi

COJRA.000601. 5(1).2025

4) innovative devices for plant defense and nutrition based on
NTP. Integration of the above technologies and their control as a
whole into the same intelligent control system will enable precise
management of the growing environment with reduced chemical
use and high quality and yield of the final product. In this project,
the necessary changes are made manually in the greenhouse after
sending the data from the sensors through the web server. However,
in our proposed system, these commands are executed completely
automatically using our components.

In [11], IoT applications in smart greenhouses and their
benefits are mentioned. In this paper, it is shown that IoT enables
control of environmental parameters, humidity, water and energy
consumption, temperature data, CO2 levels, etc. It also minimizes
pesticide treatments to prevent important diseases that plants are
infected with and the ability to monitor and control favourable crop
conditions in a protected environment from damage caused by
climate change or other weather conditions.

In [12], the different operating strategies to optimize and
improve the energy balance were investigated. They integrated a
new system with the SCADA software and advanced algorithms such
as Model Predictive Control using the WEST computing platform.

In [13], a system for improving the quality and upgrading of
products is proposed that uses temperature sensors to monitor air
and soil moisture, which are integrated into the microcontroller
of the rubber foot and provide the results through the application
installed on the smartphone. The results of the sensors are entered
into the database installed on the Piebars, which can be used to
analyze the agricultural data.

In [14], a system for controlling and monitoring greenhouse
temperature using IoT technologies is proposed. In this system,
a Petri net model was used to both monitor the greenhouse
environment and generate a suitable reference temperature that is
later sent to a temperature control block. They also developed an
energy-efficient system design that processes large amounts of IoT
Big Data collected by sensors using a dynamic graph data model
that can be used for future analysis and prediction of production,
crop growth rate, energy consumption, and other related issues.
In their system, they have not provided a user interface for remote
control of the greenhouse.

In [15], the integration of a third-generation smart embedded
system based on the Raspberry Pi, climate sensors, and IoT
analytics is proposed. Their proposed work can be physically
installed in a greenhouse environment to record climate parameter
data. The gateway nodes have control over forwarding this data to
agricultural experts via a web browser on the Internet. Based on
the received information, ES activates intelligent decision-making
by implementing an appropriate arrangement to control climate
parameter values. In their study, they didn’t consider the error
detection capability, as this could compromise the safety of the
system and the greenhouse.

In [16], an IoT-based smart solar agricultural robot was
proposed. Their system operated entirely on solar energy. The
Raspberry Pi was the heart of the Agrobot and monitored the
humidity and temperature of the farm, while the Arduino controlled

the six DC motors. A solar panel in the battery also provided the
power needed to run the Agrobot. Your system is not safe and can
cause problems.

In [17], a system is proposed that receives three parameters
from the sensors and activates the relays when the actual values
are above the thresholds. Moreover, these values are stored in
the cloud database so that they can be retrieved at any time and
from anywhere. The automatic control of climatic conditions in
the greenhouse is also illuminated. For example, various seasonal
crops can only be grown under certain conditions, according to
their research. Onions, garlic, shallots, etc. are the winter crops
that need cold conditions to grow, and cucumbers, melons, etc. are
the summer crops that need temperate or hot climatic conditions.
Their prototype consisted of humidity sensors, temperature, and
humidity sensors, a Raspberry Pi, and water pipes to supply water
from tanks controlled by DC motors.

In [18], an integrated farm monitoring system using a
smartphone application and the Internet of Things is presented.
With this system, farmers can remotely monitor soil moisture, leaf
wetness duration, soil pH, temperature, and ambient humidity,
and manage the data received from the sensors using a mobile
app and a web app. In addition, their proposed system can analyze
the weather and soil conditions in a specific area where the plant
is located and provide new insights for decision-making. In their
proposed system, they haven’t developed a web app for remote
control.

In [19], an automated intelligent greenhouse based on an
Adaptive Neuro-Fuzzy Inference System (ANFIS) and the Internet
of Things (IoT) is proposed. Their work combines IoT technology
with a fuzzy set to identify data threats in network transmission.
The result of this work is an efficient, cost-effective, secure, and
easy-to-use greenhouse maintenance system that ensures data
traceability and durability for tailored quality indoor agriculture.

In [20], a literature-centered study on localization
methodologies is presented for humanoid and autonomous robots,
emphasizing sensor fusion, perspective transformation, and
SLAM-based approaches to achieve robust real-time localization
in dynamic and GNSS-denied environments. It has surveyed a
broad range of works-from probabilistic localization and graph
optimization to multi-sensor fusion, visual-inertial SLAM, and 3D
reconstruction-to highlight how integrated sensing and perspective
transformations contribute to accurate pose estimation and robust
perception for humanoid robots and related platforms.

In [21], the integration of IoT, Digital Twin (DT), and Augmented
Reality (AR) technologies to improve the management, monitoring,
and control of agricultural greenhouses is investigated. In this
research, a prototype IoT system is developed that provides real-
time visualization and monitoring of sensor data collected from
microcontroller-based sensor nodes installed in the greenhouse.
The data is transmitted using the MQTT protocol, and AR is also
used to visualize and control the greenhouse environment.

In [22], the use of the Architectural Trade-Off Analysis Method
(ATAM) in the evaluation and integration of complex Systems of
Systems (SoS) is investigated, with a specific telecommunications

4

COJ Robotics & Artificial Intelligence Copyright © Mona Kouhi

COJRA.000601. 5(1).2025

SoS as a case study. It also uses ATAM qualitatively to identify
and analyze architectural trade-offs that affect qualities such as
performance, reliability, and maintainability in the context of
SoS. This research is relevant to Cyber-Physical Systems (CPS)
because many CPS are essentially systems that consist of multiple
interconnected components. The use of ATAM in this context
has contributed to informed architectural decisions to manage
complexity, resolve conflicts, and improve the effectiveness of
system integration.

In [23], a soft motion control platform based on a real-time
Linux system is proposed. The platform aims to provide strong
openness, easy operability, and compatibility with various sensors.
In this research, real-time Linux is integrated with Ethernet fieldbus
technologies to build a versatile motion control system.

Proposed System
The IoT-based greenhouse integrated control system consists

of a hardware section that includes sensors, relays, a Raspberry Pi
board, an Arduino board, and a software section that controls the
hardware devices. In the following, these sections will be explained.

Proposed architecture
In this proposed system, we have tried to use the structure of

the Supervisory Control and Data Acquisition (SDACA) system to

design our system [24,25]. Therefore, we mapped our components
to SCADA components. SCADA has 5 components: Supervisory
Computers, Remote Terminal Units (RTU), Programmable Logic
Controllers (PLC), Communication Infrastructure, Human Machine
Interface (HMI) [24,26].

According to the SCADA components, we have considered the
following components in the proposed system:

a)	 Web server: The core of our system that receives
information from hardware devices and sends them the correct
commands.

b)	 Arduino board: Receives the data from sensors and
relays and sends it to the Raspberry Pi board.

c)	 Raspberry Pi board: The Raspberry Pi board receives
the data from the Arduino board and sends it to the web server.

d)	 Gateway: Connects the web server to the Raspberry Pi
board and the Arduino board to transfer data between them.

e)	 Device browser: A device browser is a software
application that presents information to the user in a
graphical format. In this system, it is developed using Python
programming language (Flask framework). Figure 1 shows the
components of the proposed system.

Figure 1: The components of the proposed system.

The following are some useful features required to build a
SCADA system:

1.	 The ability to communicate with devices and PLCs. This is
required for real-time monitoring and control of devices.

2.	 A sub-framework for developers to implement
communication protocols not provided by the framework.

3.	 A user framework for control and monitoring.

5

COJ Robotics & Artificial Intelligence Copyright © Mona Kouhi

COJRA.000601. 5(1).2025

4.	 Built-in support for connecting to and using common
SQL databases, such as MySQL, SQL Server, Oracle, SQLite, and
PostgreSQL.

5.	 Ability to access and use HTTP-based REST
(Representational State Transfer) APIs (Application
Programming Interfaces) provided by external applications.
This enables SCADA applications to send requests to external
applications and receive responses.

6.	 Ability to create HTTP-based REST (Representational
State Transfer) APIs (Application Programming Interfaces) that
external applications can access and use. This allows SCADA
applications to receive information requests from external
applications and send responses.

7.	 Full support for sending and receiving emails, including
attachments.

According to the above points, we have performed the following
functionalities in the proposed system to adapt our system to the
SCADA system:

a.	 Connecting between devices such as sensors, relays,
Arduino boards, and Raspberry Pi boards through USB, cable,
power, and wireless internet and transferring data between
them.

b.	 Developing a web server using Python programming
language (Flask framework) as the core of this system.

c.	 Developing a web application that allows users to control
and monitor the state of the greenhouse and issue commands.

d.	 Using SQLite database to store data is very easy and fast.

e.	 Implementing Restful APIs to send requests to external
applications and receive responses.

f.	 Implementing Restful APIs to receive requests to external
applications and send responses.

g.	 Creating a log file to store data at specific times on the
local PC and creating a notification service to inform the system
administrator about greenhouse conditions as well.

The following table (Table 2) shows the REST APIs of the system
components and their message formats.

Table 2: Message format of the system components.

Communication Flow Endpoint / Message Format (JSON Snippet)

Sensor → RPi POST /sensor/datajson {“sensor id”: “S1”, “value”: 23.5, “timestamp”: “2025-08-17T12:00:00Z”}

RPi → DB POST /db/storejson {“sensor_id”: “S1”, “value”: 23.5, “timestamp”: “2025-08-17T12:00:00Z”}

DB → Server GET /data?sensor_id=S1&from=2025-08-17T00:00:00Z&to=2025-08-17T12:00:00ZResponse: json
[{“sensor_id”: “S1”, “value”: 23.5, “timestamp”: “2025-08-17T12:00:00Z”}]

Server → RPi POST /rpi/commandjson {“command”: “activate”, “device”: “fan”, “duration”: 300}

RPi → Arduino Serial message: json {“action”: “relay_on”, “relay_id”: 2}

Arduino → Relays Electrical signal (no JSON, hardware level)

The proposed software architecture is described by diagrams
and charts showing the components and their relationships and
constraints. The proposed software architecture is expressed by
using 4 + 1 views [27].

The four views of this model are the logical view, the process
view, the development view, and the physical view. In addition
to these views, the model also uses use cases to describe the
architecture.

a)	 Logical view: This view shows the capabilities that the
designed system provides to end users.

b)	 Process view: This view shows the dynamic aspects
of the system and describes the system processes and their
interactions as well as the runtime behavior of the system. This
view covers the concurrency, distribution, performance, and
scalability aspects.

c)	 Development view: This view describes the designed
system from the software developers’ point of view and deals
with software management. This view is also referred to as the
implementation view.

d)	 Physical view: This view shows the system from a
system engineer’s perspective and focuses on the topology
of the physical layer software components and their physical
connections.

e)	 Scenarios: Scenarios describe the architecture by
describing the sequence of relationships between objects as
well as the processes. This view is also referred to as the use
case view [27].

The following are 4 + 1 views for the proposed architecture.

Usecase view: Different systems may have different
requirements, and developers are responsible for assessing each
need and designing a system that meets those requirements.
These requirements can generally be divided into two categories:
functional requirements and non-functional requirements.
Functional requirements refer to the ability of the system to perform
the task for which it was designed. For each of the subsystems,
several primary and functional requirements must be satisfied [28].

For a better understanding of the proposed system behavior,
the use case diagram [29] of this system is shown in Figure 2.

6

COJ Robotics & Artificial Intelligence Copyright © Mona Kouhi

COJRA.000601. 5(1).2025

Figure 2: General use case diagram for the proposed system.

According to Figure 2, the Structure Admin is generally
responsible for the overall system structure and focuses on the
landscape, devices, connections, location of devices, and installed
sensors/relays. The Setup Admin focuses more on commands,
scheduling, and task management. The third component is the
user (farmer) who can manage schedules, and plants and execute
manual commands.

Deployment view: To describe the deployment view, we
used the deployment diagram. A deployment diagram shows the
hardware components, software components, and the connections
of the different parts of the system [30]. Figure 3 shows how the
components are arranged in the system.

7

COJ Robotics & Artificial Intelligence Copyright © Mona Kouhi

COJRA.000601. 5(1).2025

Figure 3: System deployment diagram.

In order to install and make the system available in a real-
world environment, the purpose of each part and component of the
system and their location must be determined. The components of
this system include the following 5 components:

A.	 Device browser component (component for mobile
devices): Connection between users and the web server.

B.	 Web server component: receiving data and executing
functions and commands and controlling all conditions.

C.	 Gateway component: Transferring data from the
Raspberry Pi to the web server and vice versa.

D.	 Raspberry Pi board component: data processing
and comparison: when data is sent from the sensor to the
Raspberry Pi, the Raspberry Pi stores it. On the other hand,
sensor data is expected to change when a command is executed,
and Raspberry Pi stores the new data as well. One of the most
important tasks of Raspberry Pi in this system is to compare
the stored data (previous data) with the new data to prevent
system failure.

E.	 Arduino board component: Data transfer between
sensors, relays, and Raspberry Pi.

a.	 Relay component: Changing device state to “on” or “off”.

b.	 Sensor component: Sending device data to the Arduino
board.

All components can be accessed via wireless networks, cables,

and USB. In the proposed system, the components are connected
as follows:

1.	 The sensors and relays are connected to the Arduino
board through a cable.

2.	 The Arduino board and the Raspberry Pi board are
connected via USB.

3.	 The Raspberry Pi board is connected to the web server via
the gateway.

4.	 Finally, the device browser component is connected to the
web server component via the Internet.

Sequence diagram: A sequence diagram is used to represent
the routine sequence of system processes. It specifies a sequence
of events to perform an action. This diagram is used in the analysis
and design phase to understand how the proposed system works
[31].

A.	 Sequence diagram from the perspective of the remote
user: The remote user who wants to use the system first logs in. If
the entered username and password are correct, the user can select
an option from the menu. However, if the entered username and
password are not correct, the user can try again. On the main page,
the user can select 3 options: 1. Get the latest greenhouse data. 2.
Monitor the live status using the live camera. 3. CRUD settings of
the greenhouse. And then the user logs out. Figure 4. shows the
sequence diagram from the perspective of the remote user.

8

COJ Robotics & Artificial Intelligence Copyright © Mona Kouhi

COJRA.000601. 5(1).2025

Figure 4: Sequence diagram from the perspective of the remote user.

Figure 5: Sequence diagram from the system perspective.

9

COJ Robotics & Artificial Intelligence Copyright © Mona Kouhi

COJRA.000601. 5(1).2025

B.	 Sequence diagram from the system perspective: To check
the general condition of the greenhouse, the Raspberry Pi compares
the data sent by the sensors with the data table. If the conditions in
the greenhouse are suitable, no action is taken. However, if even one
of the conditions was not suitable, a command must be executed.
For example, if the water level is low, the Raspberry Pi sends a

command to the relay via the Arduino to turn on the pump. After
the pump is turned on, the water level is raised. Other cases are
shown in Figure 5.

System workflow: According to Figure 6, the workflow of the
system from the remote user’s point of view consists of 7 sections:

Figure 6: System workflow from the perspective of the remote user.

A.	 To access the system, the user enters his username and
password and sends the information to the central server,
which verifies the entered information with the information
of the approved users in the database. If the information is
correct, the user is redirected to the main menu of the system.

B.	 The user is redirected to the main page of the system and
can select the desired option from the defined options and is
redirected to the page associated with each option to continue
the process. These options include checking the current system
status, generating reports, viewing the greenhouse environment
live, and attempting to manually disable and enable any of the
system settings.

C.	 If the user selects the option to view the system status,
the corresponding request is sent to the central server and the

latest information collected by the sensors is sent to the user
and displayed to the user in the web app.

D.	 If the user selects the report generation option, he will
be redirected to the corresponding page. By applying the
desired filters, the report request is sent to the server, and the
information is retrieved from the database and sent to the user.
In this section, the user can download these reports to their
smart device.

E.	 If the user selects the option of live video of the greenhouse,
the request is sent to the server, and if there is no error in the
communication, the user can view the video online.

F.	 If the user selects the option of manual settings, under
certain circumstances he can disable some elements that can

10

COJ Robotics & Artificial Intelligence Copyright © Mona Kouhi

COJRA.000601. 5(1).2025

be disabled, but it is recommended to leave the activities to the
system and not make any changes.

G.	 The user can exit the system by selecting the Exit (Logout)
option (Figure 6).

Design a scheduler
In the proposed system, a scheduler is designed and

programmed using Python’s multithreaded programming [32].
The system uses a queue to store incoming commands from three
sources: User Manual Command, SchOnTime command (commands

that must be executed at a specific time), and SchPeriodic command
(commands that must be executed periodically). Commands are
executed in order of their arrival time, suggesting a First-In, First-
Out (FIFO) queueing policy. However, since the commands are
executed “according to their arrival time,” the queue incorporates
a timestamp to prioritize commands, indicating a FIFO policy with
timestamp-based priority.

Figure 7 shows the process of queuing the commands from
their sources to the relays in the designed schedule.

Figure 7: Queue in the designed schedule.

Figure 8: Lock function for command scheduling.

Furthermore, since this system is a multi-threaded system and
in multi-threaded systems, threads may access shared resources

simultaneously, leading to possible conflicts and data corruption,
we used synchronization mechanisms to coordinate the execution of
threads to maintain data integrity and prevent possible corruption.
So, we used the lock function (or mutex), which is a primitive
synchronization function that allows only one thread to access a
shared resource at a time. So, we used the lock function (or mutex),
which is a primitive synchronization function that allows only one
thread to access a shared resource at a time. Figure 8 shows a code
snippet that uses the lock function to prevent priority conflict.

On the other hand, since many commands to control devices
(Lights, water pump, etc.) may reach the actuators at the same time,
for this purpose

a.	 Each actuator command is executed in its own action
thread. This helps to isolate long-running or blocking I/Os
without stopping the main program.

b.	 Use the _do_with_timeout function, which causes the
hardware call to be executed in a separate thread and imposes
a timeout. If the hardware operation does not finish within the
timeout, a Timeout Error error occurs.

c.	 If a timeout occurs for executing a command, the command
can be retried up to the number of retries.

d.	 When turning on an actuator with a specified timeout,
the code keeps the actuator on for the same number of seconds
(unless canceled), then automatically turns it off.

11

COJ Robotics & Artificial Intelligence Copyright © Mona Kouhi

COJRA.000601. 5(1).2025

e.	 Central management Actuator Manager keeps track
of active actions and prevents overlapping and conflicting
commands in an actuator/action pair by canceling any existing
tasks before starting a new one.

Figure 9 shows a portion of the program code that demonstrates
how threads handle long-running actuator commands.

12

COJ Robotics & Artificial Intelligence Copyright © Mona Kouhi

COJRA.000601. 5(1).2025

13

COJ Robotics & Artificial Intelligence Copyright © Mona Kouhi

COJRA.000601. 5(1).2025

Figure 9: Handling actuator commands by threads.

14

COJ Robotics & Artificial Intelligence Copyright © Mona Kouhi

COJRA.000601. 5(1).2025

Security
In this section, system security is examined.

Authentication and access control:

A.	 Intended controls:

a.	 API keys/JWTs: Token-based authentication is used to
identify and authorize both data sources (sensors) and control
recipients (actuators) interfacing with the Raspberry Pi and the
web server.

b.	 Scopes and roles: Tokens are restricted to specific
operations, such as:

I.	 Read access for sensor data streams

II.	 Write/execute access for actuator commands

c.	 Token lifetimes: Short-lived tokens are preferred with
refresh capabilities to minimize risk if a token is compromised.

d.	 Replay protection: Nonces or time-bound tokens are
implemented for critical command paths to mitigate replay attacks.

B.	 Known limitations:

a)	 Token storage security on resource-constrained devices
(sensors/actuators) varies; Secure storage methods are chosen
to suit the hardware.

b)	 Token validation relies on secure key management;
Rotations and revocations are maintained to prevent the use of
compromised keys.

1.	 c)	 API keys for non-human clients may be less expressive
than JWTs/OAuth2; Strict monitoring of API keys is intended.

Device whitelisting:

1.	 Intended controls:

I.	 A whitelist of approved devices (sensors, the Raspberry
Pi edge gateway, and authorized client endpoints) allowed to
communicate with the system is maintained.

II.	 Device identifiers are bind to credentials (per-device keys
or certificates) to establish trust at the edge and between the
web server and gateway.

III.	 Revocation paths are implemented for decommissioned
or compromised devices.

2.	 Known limitations

I.	 Whitelist management can be challenging in large or
dynamic deployments (e.g., seasonal sensors or movable units).

II.	 Compromised whitelisted devices plus stolen credentials
can broaden attack surface.

III.	 Device identity spoofing risk; Device certificates are
considered.

Transport security (gateway ↔ server):

1.	 Intended controls

a)	 Data is encrypted in transit using TLS.

b)	 Mutual TLS (mTLS) is implemented to authenticate both
the Raspberry Pi gateway and the web server endpoints.

c)	 Strong certificate validation is implemented and a PIN
code is included to prevent MITM.

d)	 Secure channels are ensured for both sensor data uplinks
(edge to server) and actuator command paths (server to edge).

2.	 Known limitations

a)	 TLS setup and certificate lifecycle management (issuance,
rotation, revocation) require coordinated operations;
Coordinated operations are in place.

b)	 mTLS adds overhead on the edge device; It has been
ensured that provisioning and rotation processes are robust.

c)	 Proxies, load balancers, or network devices must preserve
end-to-end security; Correct configurations are in place to
ensure and enhance protections.

The hardware view
The hardware part of the proposed system consists of 2

components: an Arduino board (with sensors, relays, relay board,
and Arduino board) and a Raspberry Pi board. The connection
between these components is such that the sensors send the data of
temperature, water level, brightness, and humidity to the Arduino
board, the Arduino board sends the data to the Raspberry Pi board,
the Raspberry Pi board sends the data to the database and from
there the data is sent to the server. After viewing the data on the
web, the user (or administrator) can execute a command that can
turn a relay on or off, set a time for a command, etc. Each of these
changes is stored in the database, then the Raspberry Pi retrieves
the data from the database and sends it to the Arduino to finally
apply it to the desired relay. The data between these components is
transferred via wireless internet, USB, power, and cable. Figure 10
shows the hardware components of the proposed system.

Figure 10: The hardware components of the proposed
system.

15

COJ Robotics & Artificial Intelligence Copyright © Mona Kouhi

COJRA.000601. 5(1).2025

Figure 11: The environment of the created greenhouse.

There are 5 devices installed in this greenhouse to change the
conditions. The water pump, light, mist maker, heater, and AC are
the devices that receive data from the Arduino and change the
conditions of the greenhouse for better plant growth. Figure 11
shows the overall view of the greenhouse environment created
and how these devices are connected in the distributed systems
research lab.

Result
A.	 After setting up the greenhouse and verifying all
connections and equipment, we initiated planting and
cultivation.

B.	 Strawberry seedlings were grown with remote control
of environmental conditions from the server side, minimizing
on-site labor interventions. Under these conditions, the first
harvestable fruits were obtained at approximately three
months, which is comparable to our baseline manual practice
(2.5-3.5 months for similar cultivars, 120 plants per batch).
Fruit size and visual quality were consistent with the baseline
range, and environmental setpoints were maintained within
target tolerances (temperature ±0.5°C, RH ±3%, EC ±0.1 mS/
cm).

Architectural Analysis
Architectural assessment methods are used to investigate

or measure the quality characteristics and quality assurance of
software products. Software architecture assessment is an effective
mechanism for improving the quality of software systems [33].
Various techniques are used to evaluate software architecture. One
of them is a scenario-based technique. Since it is related to a specific
system and is part of the system development process, it basically
covers all aspects of the system and performs a complete evaluation
of the system. ATAM (Architecture Trade-off Analysis Method)
is a method used to evaluate the quality attributes of a software
architecture. It is used to reduce risks in software architecture in
the early stages of the software development life cycle [34]. The
ATAM consists of four phases:

Phase 0: Preparation, planning, and stakeholder
recruitment

Preparation, planning, stakeholder recruitment, and team
formation are done in this phase. In addition, the components of the
integrated greenhouse control system are introduced and the tasks
of each team member are described in this phase. Table 3 shows the
members of the evaluation team.
Table 3: Members of the evaluation team.

No. Expertise Role

1 Software Engineer Developer, team leader

2 Software Engineer Developer, evaluation leader

3 Senior Architect Developer, process observer

4 Agricultural Engineer User, questioner

5 Farmer User, questioner

Phase 1: Evaluation process
This phase includes steps 1 to 6.

Step 1: Present ATM: This step presents the concept of the
process to all stakeholders of the process and answers the questions
of the participants. This step familiarizes the participants with the
process.

Step 2: Present business drivers: In this step, the business
drivers of the system are presented. For this purpose, in this step,
a view of the integrated greenhouse control system based on the
Internet of Things is examined. This view includes the following:

A.	 The main important requirements of the system:

I.	 To identify the system requirements, a use case diagram is
shown in Figure 1.

B.	 The objectives of the integrated greenhouse control
system:

I.	 Provide an open platform for connecting IoT nodes in the
greenhouse environment.

II.	 Intelligently control greenhouses and IoT nodes.

III.	 Enable access to multiple geographically distributed
greenhouses from one point.

IV.	 Reduce the production cost of agricultural products and
improve crop quality.

C.	 The following quality attributes are ranked as high
priority:

I.	 Availability: The integrated control system for
greenhouses should be available at all times.

II.	 Interoperability: This system consists of specific and
separate components, each performing specific tasks in the
system. These components and the relationship between them
are designed to harmonise with each other.

III.	 Performance: When new data arrives in this system
during peak load and information processing, the system
performs the processing as quickly as possible and applies the
necessary changes and commands.

16

COJ Robotics & Artificial Intelligence Copyright © Mona Kouhi

COJRA.000601. 5(1).2025

Step 3: Present architecture: In this step, a brief overview of
the architecture is presented by the architect with an appropriate
level of detail. In addition, the main components and tasks of the
system, as well as the relationships between them, were explained
to provide knowledge to the team members. A description of the
architecture can be found in Section 3.4.

Step 4: Identify architectural approaches: At this stage, the
architect presents specific architectural approaches to the team,
and then the proposed architecture is discussed. The analysis
performed at this stage is used as a basis for the activities of the
next stages.

a)	 The system design is based on the component that
satisfies the reusability characteristic.

b)	 Divide the system into subsystems that achieve high
variability.

c)	 Reduce the complexity of the system design with a
component-based design that increases comprehensibility.

d)	 Increases data security on components and
communication between components to achieve data integrity
and performance assurance.

Step 5: Generate quality attribute utility tree: In this step,
technical requirements of the system are defined and the quality
attributes of the system are generated. Quality attributes such as
availability, interoperability, and performance are reviewed. Table
4 shows the quality attributes of the system, and the associated
scenarios [35] (Table 4).
Table 4: The quality attributes and their related scenarios.

Quality Attributes Scenario

Availability

The system must be available under all
circumstances. Therefore, if a problem occurs
in the system, this problem will be reported to

the server administrator through a notification,
and the server administrator will find and fix

the problem.

Interoperability The system components should be coordinated
and compatible with each other.

Performance

When new data arrives during the peak time
and data processing, the proposed system will

perform the processing as soon as possible and
apply the necessary changes and commands.

Step 6: Analyze architectural approaches: In this step, each
scenario is prioritized based on importance and application, and
then the scenarios that have the highest priority are mapped on the
architecture.

A.	 Availability: The integrated greenhouse control system
must be available at all times. Therefore, when the system
encounters problems, a message is sent to the system
administrator to check the server and fix the problem. If
the error is caused by the designed website, users can use
smartphones to connect to the server until the problem is
fixed. In Tables 5&6, two scenarios of availability are examined
according to their priority.

Table 5: Analysis of the availability 1 quality attribute.

Quality Attribute Scenario

Availability 1

Source of stimulus: Within the system
Stimulus: An internal error may occur,

such as a dramatic sudden difference in the
values of the sensors - or no change in the
new information coming from the sensors

after the relay state is changed, etc.

Artifact: Server

Environment: After receiving information
from the database

Response: Send a message to the system
administrator

Response measurement: In case of failure,
there is no downtime.

Table 6: Analysis of the availability 2 quality attribute.

Quality Attribute Scenario

Availability 2

Source of stimulus: An external factor
generates the stimulus.

Stimulus: The failure to send information
from the sensors to the server Artifact:

Server

Environment: When sensors send
information

Response: Send a message to the system
administrator

Response measurement: in case of failure,
there is no downtime.

B.	 Interoperability: This attribute allows different systems
and components to work together seamlessly and effectively,
improving the overall efficiency and effectiveness of the system.
In this system, for coordination and communication between
components, the same data format (Json) is considered for
receiving and sending data in different parts of the system.
In Table 7, the quality characteristic of interoperability is
examined.

Table 7: Analysis of the interoperability quality attribute.

Quality Attribute Scenario

Interoperability

Source of stimulus: Information is entered.

Stimulus: Sending information to databases
and relays Artifact: Relays

Environment: System is detected before
execution time.

Response: The information is converted to
the standard required by the destination

components (relays).

Response measurement: The information is
exchanged properly with high probability

C.	 Performance: Performance refers to the ability of a
system to meet its functional and non-functional requirements
efficiently and effectively. In this system, events are responded
to in the shortest possible time because of the multi-threaded
and parallel instructions. When a new event occurs during peak

17

COJ Robotics & Artificial Intelligence Copyright © Mona Kouhi

COJRA.000601. 5(1).2025

hours, the system can respond to it as quickly as possible. In
Table 8, the performance quality characteristic is examined.

Table 8: Analysis of the performance quality attribute.

Quality Attribute Scenario

Performance

Source of stimulus: From within the
system, an event is reached by the

sensors.

Stimulus: All information is sent to the
server for processing.

Artifact: Server

Environment: At peak time on the server

Response: The server performs the
processing as fast as possible.

Response measurement: The
information is processed as fast as

possible.

Phase 2: Evaluation process 2
In this phase, steps 7 to 9 from the ATAM analysis phase are

performed.

Step 7: Brainstorm scenarios: In this step, the evaluation team,
which includes the stakeholders, architects, and other technical
experts, brainstorm a set of scenarios that represent the usage of the
system or product under evaluation and the meeting participants
vote for them. Table 9 shows the high priority scenarios and their
associated quality attributes.
Table 9: High priority scenarios and related quality
attributes.

No. Scenario Quality Attribute

1 The system is resistant to unauthorized
intrusion. Security

2 All commands are processed as fast as
possible. Performance

3 All problems and bugs must be resolved
quickly. Availability

4 System errors in processing must be
supported. Reliability

5 New requests in the system are created in the
shortest possible time without side effects. Modifiability

6 All components of the system work in
harmony with each other. Function

7 The system components should be
coordinated and compatible with each other. Interoperability

8 In complex cases, it is possible to extend the
framework of the system architecture. Variability

9 Enable a secure data structure. Security

10 The system can be easily migrated from one
hardware/software environment to another. Portability

In this step, members vote on the scenarios. The number of
votes is calculated in the form of Phrase 2:

Phrase 2 calculates the number of votes [35]. Each member
can cast three votes on the scenarios. The members vote for the
scenarios according to their expertise. Table 10 shows the voting
results of the members. In Table 11, the scenarios are arranged in
descending order according to the number of votes.

Table 10: The voting results of the members.

Scenario
Number

Quality

Attribute

User

 Vote

System
Developer

Vote

System
Architecture

Vote

Total

Vote

2 Performance 1 1 1 3

3 Availability 1 1 1 3

4 Reliability 1 0 1 2

5 Modifiability 1 1 0 2

6 Function 0 0 1 1

7
Intero-

perability
1 1 1 3

8 Variability 0 1 0 1

Table 11: Sorted scenarios based on the number of votes.

Scenario

Number
Quality Attribute Scenario

3 Availability All problems and bugs must be
solved quickly.

7 Interoperability
System components should be

coordinated and compatible with
each other.

2 Performance All commands are processed as fast
as possible.

5 Modifiability
New requests in the system are

created in the shortest possible time
without side effects.

4 Reliability User errors during processing must
be supported.

6 Function All components of the system work
in harmony with each other.

8 Variability
In complex cases, it is possible to

extend the framework of the system
architecture.

Step 8: Analyze architectural approaches 2: This step is similar
to step 6 and analyzes the scenarios created by stakeholders in the
previous step. This step may lead to the discovery of scenarios not
yet analyzed in Step 6.

a.	 Modifiability: Modifiability tests whether the system can
be easily modified in a short period of time. This architecture
has a high degree of modifiability because all components are
separate. If a specific component needs to be added to this
architecture, the adaptability can be done at the lowest cost.
Table 12 examines the modularity quality attribute.

Table 12: Analysis of the modifiability quality attribute.

Quality Attribute Scenario

Modifiability

Source of stimulus: Developer

Stimulus: Quality attribute

Artifact: System user interface or system
components

Environment: Design time

Response: Modifies without affecting other
functions.

Response measurement: Extent to which this
affects other functions or quality attributes.

18

COJ Robotics & Artificial Intelligence Copyright © Mona Kouhi

COJRA.000601. 5(1).2025

b.	 Reliability: Reliability examines the behavior of the
system in response to errors in the system. The proposed
system detects all invalid inputs and data and denies the input.
If there is a significant difference between the data coming
from the sensors in a certain period of time, the system notices
this difference and sends an error message to the server and
notifies the server administrator about these errors. In Table
13, the reliability quality attribute is examined.

Table 13: Analysis of the reliability quality attribute.

Quality Attribute Scenario

Reliability

Source of stimulus: Through the sensors

Stimulus: In a period of time, different data
come from a sensor.

Artifact: Server

Environment: At the processing time

Response: Send a message to the system
administrator

Response measurement: In case of failure,
there is no downtime.

Step 9: Present results: At the end of the second phase, the
evaluation team reviews all the results and the results of the
analysis performed in the previous phase are presented to the
stakeholders. These results include:

a)	 The architectural approaches

b)	 The set of scenarios and their prioritization

c)	 The utility tree

d)	 The risks

e)	 The sensitivity points and tradeoff points

f)	 The project risks:

I.	 The processes for troubleshooting are not fully defined.
Multiple fault detection scenarios have been explored, although
customers may encounter a fault that has not been explored.

II.	 There are issues with documentation. There is
documentation such as UML diagrams, but no explanation of
system development, testing, and maintainability.

Phase 3: Report
In this phase, the tangible result is a written report. The outcome

of the meeting held in this phase facilitates the rapid preparation of
the final written report. The preparation of the final document is a
simple task that brings together the results of the previous steps.

Conclusion
In this paper, the software layer of the IoT-based integrated

greenhouse control system is proposed. A scheduler is designed
that can execute the system commands in parallel. Also, the SCADA
system is mentioned to upgrade this system with SCADA or integrate
it with SCADA in the future. The proposed software architecture
is presented with 4 + 1 views. The Architecture Tradeoff Analysis
Method (ATAM) is applied to evaluate different scenarios. The
trade-off analysis has proven the suitability and competence of
the proposed architecture. Since the proposed system is only

designed to control and monitor one greenhouse, a system that can
control and monitor multiple greenhouses simultaneously can be
developed for the future of this research. Cloud technology can also
be used to store and analyze data in these systems with multiple
greenhouses.

References
1.	 Li Z, Wang J, Higgs R, Zhou L, Yuan W (2017) Design of an intelligent

management system for agricultural greenhouses based on the internet
of things. 22017 IEEE International Conference on Computational
Science and Engineering (CSE) and IEEE International Conference on
Embedded and Ubiquitous Computing (EUC), Guangzhou, China, pp:
154-160.

2.	 Fang T, Yang Y (2022) Distributed communication protocol in wireless
sensor network based on internet of things technology. Wireless
Personal Communications 126(3): 2361-2377.

3.	 Sofwan A, Sumardi S, Ahmada AI, Ibrahim I, Budiraharjo K, et al. (2020)
Smart Greet things: Smart greenhouse based on internet of things for
environmental engineering. 2020 International Conference on Smart
Technology and Applications (ICoSTA), Surabaya, Indonesia, pp: 1-5.

4.	 Farooq MS, Riaz S, Abid A, Abid K, Azhar Naeem M (2019) A survey on
the role of IoT in agriculture for the implementation of smart farming.
IEEE Access 7: 156237-156271.

5.	 Tolentino LKS, Celline PDP, Jatt DI, Benjamin ENJ, Luigi James DS, et al.
(2021) Development of an IoT-based intensive aquaculture monitoring
system with automatic water correction. International Journal of
Computing and Digital Systems 10(1): 1355-1365.

6.	 Nath SD, Shahadat Hossain M, Hasan M, Chakma R, Akber Chowdhury
I, et al. (2021) Design and implementation of an IoT based greenhouse
monitoring and controlling system. Journal of Computer Science and
Technology Studies (JCSTS) 3(1): 1-6.

7.	 Abbasi M, Rafiee M, Khosravi MR (2020) Investigating the efficiency of
multithreading application programming interfaces for parallel packet
classification in wireless sensor networks. Turkish Journal of Electrical
Engineering & Computer Sciences 28(3): 1699-1715.

8.	 Kitpo N, Kugai Y, Inoue M, Yokemura T, Satomura S (2019) Internet of
things for greenhouse monitoring system using deep learning and bot
notification services. 2019 IEEE International Conference on Consumer
Electronics (ICCE), Las Vegas, Nevada, USA, pp: 1-4.

9.	 Geng X, Zhang Q, Wei Q, Zhang T, Cai Y, et al. (2019) A mobile greenhouse
environment monitoring system based on the internet of things. IEEE
Access 7: 135832-135844.

10.	Burchi G, Chessa S, Gambineri F, Kocian A, Massa D, et al. (2018)
Information technology-controlled greenhouse: A system architecture.
2018 IoT Vertical and Topical Summit on Agriculture-Tuscany (IOT
Tuscany), IEEE, Tuscany, Italy.

11.	Bersani C, Ruggiero C, Sacile R, Soussi A, Zero E (2022) Internet of things
approaches for monitoring and control of smart greenhouses in industry
4.0. Energies 15(10): 3834.

12.	Drewnowski J (2019) Advanced supervisory control system
implemented at full-scale WWTP-A case study of optimization and
energy balance improvement. Water 11(6): 1218.

13.	Dedeepya P, Srinija USA, Gowtham Krishna M, Sindhusha G, Gnanesh T
(2018) Smart greenhouse farming based on IOT. 2018 2nd International
Conference on Electronics, Communication and Aerospace Technology
(ICECA), IEEE, Coimbatore, India.

14.	Subahi AF, Bouazza KE (2020) An intelligent IoT-based system design
for controlling and monitoring greenhouse temperature. IEEE Access 8:
125488-125500.

15.	Arshad J, Tariq R, Saleem S, Rehman AU, Munir HM, et al. (2020)
Intelligent greenhouse monitoring and control scheme: An arrangement
of Sensors, Raspberry Pi based Embedded System and IoT platform.
Indian Journal of Science and Technology 13(27): 2811-2822.

https://ieeexplore.ieee.org/document/8005989
https://ieeexplore.ieee.org/document/8005989
https://ieeexplore.ieee.org/document/8005989
https://ieeexplore.ieee.org/document/8005989
https://ieeexplore.ieee.org/document/8005989
https://ieeexplore.ieee.org/document/8005989
https://link.springer.com/article/10.1007/s11277-021-09203-7
https://link.springer.com/article/10.1007/s11277-021-09203-7
https://link.springer.com/article/10.1007/s11277-021-09203-7
https://ieeexplore.ieee.org/document/9079264
https://ieeexplore.ieee.org/document/9079264
https://ieeexplore.ieee.org/document/9079264
https://ieeexplore.ieee.org/document/9079264
https://ieeexplore.ieee.org/document/8883163
https://ieeexplore.ieee.org/document/8883163
https://ieeexplore.ieee.org/document/8883163
https://journal.uob.edu.bh/items/c2c720a8-cb22-40d5-8179-8ca38e2f90fc
https://journal.uob.edu.bh/items/c2c720a8-cb22-40d5-8179-8ca38e2f90fc
https://journal.uob.edu.bh/items/c2c720a8-cb22-40d5-8179-8ca38e2f90fc
https://journal.uob.edu.bh/items/c2c720a8-cb22-40d5-8179-8ca38e2f90fc
https://al-kindipublisher.com/index.php/jcsts/article/view/1015
https://al-kindipublisher.com/index.php/jcsts/article/view/1015
https://al-kindipublisher.com/index.php/jcsts/article/view/1015
https://al-kindipublisher.com/index.php/jcsts/article/view/1015
https://journals.tubitak.gov.tr/elektrik/vol28/iss3/34/
https://journals.tubitak.gov.tr/elektrik/vol28/iss3/34/
https://journals.tubitak.gov.tr/elektrik/vol28/iss3/34/
https://journals.tubitak.gov.tr/elektrik/vol28/iss3/34/
https://ieeexplore.ieee.org/document/8661999
https://ieeexplore.ieee.org/document/8661999
https://ieeexplore.ieee.org/document/8661999
https://ieeexplore.ieee.org/document/8661999
https://ieeexplore.ieee.org/document/8839049
https://ieeexplore.ieee.org/document/8839049
https://ieeexplore.ieee.org/document/8839049
https://ieeexplore.ieee.org/document/8373044
https://ieeexplore.ieee.org/document/8373044
https://ieeexplore.ieee.org/document/8373044
https://ieeexplore.ieee.org/document/8373044
https://ieeexplore.ieee.org/document/8474713
https://ieeexplore.ieee.org/document/8474713
https://ieeexplore.ieee.org/document/8474713
https://ieeexplore.ieee.org/document/8474713
https://ieeexplore.ieee.org/document/9136708
https://ieeexplore.ieee.org/document/9136708
https://ieeexplore.ieee.org/document/9136708

19

COJ Robotics & Artificial Intelligence Copyright © Mona Kouhi

COJRA.000601. 5(1).2025

16.	Suma N (2020) IOT based smart agriculture monitoring system. Regular.

17.	Danita M, Mathew B, Shereen N, Sharon N, John Paul J (2018) IoT based
automated greenhouse monitoring system. 2018 2nd International
Conference on Intelligent Computing and Control Systems (ICICCS),
IEEE, Madurai, India.

18.	Patil MA, Adamuthe AC, Umbarkar AJ (2020) Smartphone and IoT based
system for integrated farm monitoring. Techno-Societal 2018, Springer
International Publishing, Switzerland, pp: 471-478.

19.	Soheli SJ, Jahan N, Hossain B, Adhikary A, Rahman Khan A, et al. (2022)
Smart greenhouse monitoring system using internet of things and
artificial intelligence. Wireless Personal Communications 124(4): 3603-
3634.

20.	Nadiri F, Banirostam T, Rad AB (2025) On a novel localization
methodology for humanoid soccer robots via sensor fusion and
perspective transformation. International Journal of Intelligent Robotics
and Applications.

21.	Slimani H, El Mhamdi J, Jilbab A (2025) Real-time greenhouse
management using IoT, digital twin, and augmented reality for optimal
control and decision-making. Acta IMEKO 14(2): 1-15.

22.	Berezovskyi A, Inam R, El-khoury J, Mokrushin L, Fersman E (2024)
Integrating systems of systems with a federation of rule engines. Journal
of Industrial Information Integration 38: 100545.

23.	Wang H, Wang X (2025) Exploration of soft motion control platform
for real-time Linux system and ethernet fieldbus. Lecture Notes in
Education, Arts, Management and Social Science 3(1): 35-40.

24.	Raghunandan K (2022) Supervisory Control and Data Acquisition
(SCADA). Introduction to Wireless Communications and Networks,
Springer International Publishing, Switzerland, pp: 321-337.

25.	Nurjannah DR, Supriadi D, Sutiawan A, Kustiawan I (2020) Designing
smart greenhouse systems using SCADA based on IoT. IOP Conference
Series: Materials Science and Engineering 850: 1-6.

26.	Ara A (2022) Security in Supervisory Control and Data Acquisition
(SCADA) based Industrial Control Systems: Challenges and solutions.
IOP Conference Series: Earth and Environmental Science 1026(1):
012030.

27.	Kruchten PB (1995) The 4+1 view model of architecture. IEEE Software
12(6): 42-50.

28.	Maier MW, Emery D, Hilliard R (2001) Software architecture: Introducing
IEEE standard 1471. Computer 34(4): 107-109.

29.	Aquino ER, Saqui-Sannes PD, Vingerhoeds RA (2021) A methodological
assistant for UML and SysML use case diagrams. Model-Driven
Engineering and Software Development, Springer International
Publishing, Switzerland, pp: 298-322.

30.	Bernardi S, Gómez A, Merseguer J, Perez-Palacin D, Requeno JI (2022)
DICE simulation: A tool for software performance assessment at the
design stage. Automated Software Engineering 29(1): 36.

31.	Tatale S, Chandra Prakash V (2022) Combinatorial test case generation
from sequence diagram using optimization algorithms. International
Journal of System Assurance Engineering and Management 13(1): 642-
657.

32.	Jaworsky M, Ziadé T (2021) Expert python programming: Master python
by learning the best coding practices and advanced programming
concepts. (4th edn), Packt Publishing, Birmingham, England, UK, p. 630.

33.	Babar MA, Kitchenham B, Zhu L, Gorton I, Jeffery R (2006) An empirical
study of groupware support for distributed software architecture
evaluation process. Journal of Systems and Software 79(7): 912-925.

34.	Kazman R, Barbacci M, Klein M, Jeromy Carriere S, Woods SG (1999)
Experience with performing architecture tradeoff analysis. Proceedings
of the 1999 International Conference on Software Engineering (IEEE
Cat. No.99CB37002), IEEE, Los Angeles, California, USA.

35.	Bass L, Clements P, Kazman R (2012) Software architecture in practice.
(3rd edn), Pearson Education, London, UK.

https://ieeexplore.ieee.org/document/8662911
https://ieeexplore.ieee.org/document/8662911
https://ieeexplore.ieee.org/document/8662911
https://ieeexplore.ieee.org/document/8662911
https://link.springer.com/chapter/10.1007/978-3-030-16848-3_43
https://link.springer.com/chapter/10.1007/978-3-030-16848-3_43
https://link.springer.com/chapter/10.1007/978-3-030-16848-3_43
https://link.springer.com/article/10.1007/s11277-022-09528-x
https://link.springer.com/article/10.1007/s11277-022-09528-x
https://link.springer.com/article/10.1007/s11277-022-09528-x
https://link.springer.com/article/10.1007/s11277-022-09528-x
https://link.springer.com/article/10.1007/s41315-025-00451-5
https://link.springer.com/article/10.1007/s41315-025-00451-5
https://link.springer.com/article/10.1007/s41315-025-00451-5
https://link.springer.com/article/10.1007/s41315-025-00451-5
https://acta.imeko.org/index.php/acta-imeko/article/view/1988
https://acta.imeko.org/index.php/acta-imeko/article/view/1988
https://acta.imeko.org/index.php/acta-imeko/article/view/1988
https://www.sciencedirect.com/science/article/abs/pii/S2452414X23001188
https://www.sciencedirect.com/science/article/abs/pii/S2452414X23001188
https://www.sciencedirect.com/science/article/abs/pii/S2452414X23001188
https://journal.whioce.com/index.php/LNE/article/view/576/541
https://journal.whioce.com/index.php/LNE/article/view/576/541
https://journal.whioce.com/index.php/LNE/article/view/576/541
https://link.springer.com/chapter/10.1007/978-3-030-92188-0_16
https://link.springer.com/chapter/10.1007/978-3-030-92188-0_16
https://link.springer.com/chapter/10.1007/978-3-030-92188-0_16
https://iopscience.iop.org/article/10.1088/1757-899X/850/1/012002/pdf
https://iopscience.iop.org/article/10.1088/1757-899X/850/1/012002/pdf
https://iopscience.iop.org/article/10.1088/1757-899X/850/1/012002/pdf
https://iopscience.iop.org/article/10.1088/1755-1315/1026/1/012030
https://iopscience.iop.org/article/10.1088/1755-1315/1026/1/012030
https://iopscience.iop.org/article/10.1088/1755-1315/1026/1/012030
https://iopscience.iop.org/article/10.1088/1755-1315/1026/1/012030
https://ieeexplore.ieee.org/document/469759
https://ieeexplore.ieee.org/document/469759
https://ieeexplore.ieee.org/document/917550
https://ieeexplore.ieee.org/document/917550
https://link.springer.com/chapter/10.1007/978-3-030-67445-8_13
https://link.springer.com/chapter/10.1007/978-3-030-67445-8_13
https://link.springer.com/chapter/10.1007/978-3-030-67445-8_13
https://link.springer.com/chapter/10.1007/978-3-030-67445-8_13
https://link.springer.com/article/10.1007/s10515-022-00335-z
https://link.springer.com/article/10.1007/s10515-022-00335-z
https://link.springer.com/article/10.1007/s10515-022-00335-z
https://link.springer.com/article/10.1007/s13198-021-01579-w
https://link.springer.com/article/10.1007/s13198-021-01579-w
https://link.springer.com/article/10.1007/s13198-021-01579-w
https://link.springer.com/article/10.1007/s13198-021-01579-w
https://www.sciencedirect.com/science/article/pii/S0164121205001846
https://www.sciencedirect.com/science/article/pii/S0164121205001846
https://www.sciencedirect.com/science/article/pii/S0164121205001846
https://ieeexplore.ieee.org/document/840995?signout=success
https://ieeexplore.ieee.org/document/840995?signout=success
https://ieeexplore.ieee.org/document/840995?signout=success
https://ieeexplore.ieee.org/document/840995?signout=success

	Designing the Software Layer of an IoT-Based Integrated Greenhouse Control System
	Abstract
	Introduction
	Related Works
	Proposed System
	Architectural Analysis
	Conclusion
	References

