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Introduction
Generative Artificial Intelligence (GenAI) has made significant strides in recent years, 

particularly in natural language processing, image synthesis, and multimodal learning. Its 
integration with robotics an area traditionally dominated by deterministic control systems, 
perception algorithms, and classical planning signals a paradigm shift toward more adaptable, 
data-driven, and creative robotic systems. Recent advancements in GenAI are reshaping the 
eld of robotics, opening new possibilities for learning, adaptation, and interaction. Unlike 
traditional robotics, which often relies on pre-programmed behaviors and narrowly defined 
tasks, GenAI enables robots to reason, imagine, and create solutions in dynamic environments 
[1]. This shift marks a critical evolution in how robots are designed and deployed, with the 
potential to impact industries ranging from manufacturing and healthcare to education 
and the creative arts. Through the integration of large vision language models, multimodal 
learning, and imitation from demonstrations, robots can now learn new tasks continuously 
from diverse sources including online content, user instructions, and their own experiences 
[2,3]. This approach dramatically reduces the need for manual programming and expands the 
range of environments in which robots can operate e effectively.

GenAI also improves human-robot interaction by making communication more natural 
and intuitive. Robots equipped with generative models can interpret spoken or written 
commands, understand context, and generate appropriate responses or actions. Moreover, the 
creative potential of GenAI is unlocking new roles for robots in art, design, and entertainment. 
To support these sophisticated functions, researchers are increasingly exploring new 
computational architectures, AI techniques and collected robotics datasets. They make 
the deployment of advanced robotic systems more practical and scalable. Together, these 
developments suggest a future in which GenAI is a foundational element of next-generation 

Crimson Publishers
Wings to the Research

Mini Review

*Corresponding author: John Atkinson, 
AI-Empowered, Santiago, Chile

Submission:  May 30, 2025
Published:  July 17, 2025

Volume 4- Issue 5

How to cite this article: John Atkinson*. 
The Future of Generative AI in Robotics. 
COJ Rob Artificial Intel. 4(5). COJRA. 
000596. 2025.
DOI: 10.31031/COJRA.2025.04.000596

Copyright@ John Atkinson, This article is 
distributed under the terms of the Creative 
Commons Attribution 4.0 International 
License, which permits unrestricted use 
and redistribution provided that the 
original author and source are credited.

1COJ Robotics & Artificial Intelligence

Abstract
Generative Artificial Intelligence (GenAI) is fundamentally reshaping robotics, moving the eld beyond 
rigid, pre-programmed systems toward flexible, adaptive, and creative machines. Traditional robotics has 
long relied on precise control systems, detailed planning, and narrow task definitions, but GenAI through 
technologies such as large vision-language models, diffusion models, and imitation learning enables 
robots to learn from demonstrations, natural language, and online data. These advances are further 
amplified by collaborative efforts like Open X-Embodiment, which pool data from diverse robots to build 
scalable, generalist AI models. Despite these breakthroughs, significant challenges remain before robots 
can be fully integrated into everyday life. Issues such as safety, interpretability, data efficiency, and real-
time performance continue to limit deployment in high- stakes or consumer-facing contexts. Moreover, 
robots still lack the general- purpose commonsense needed for complex, multi-step tasks in unstructured 
environments. Nonetheless, the future of robotics is being rapidly transformed by GenAI, with promising 
directions including open-ended skill acquisition, personalized user interactions, and integration with 
emerging technologies. Accordingly, this review discusses recent research, challenges and applications of 
GenAI and robotics and its impact in real-life applications.
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robotics. This review explores the current trajectory and future 
prospects of GenAI in robotics.

Review
Tasks that are cognitively or physically trivial for humans 

often pose substantial challenges for robotic systems, whereas 
tasks that demand sustained precision or endurance are relatively 
straightforward for machines to perform [4]. For instance, a robot 
can play chess or maintain a fixed grip on an object indefinitely 
with high reliability. In contrast, tasks such as tying shoelaces, 
intercepting a moving object, or engaging in natural language 
dialogue require sophisticated perceptual, motor, and cognitive 
integration. These challenges stem from several key limitations: 

1.	 Imprecise motor control and coordination

2.	 Constrained perceptual understanding due to dependency 
on limited-resolution sensor data, and 

3.	 An absence of intuitive physical reasoning, which humans 
typically develop through embodied experience.

Traditionally, roboticists have addressed these limitations 
through model- based control and explicit motion planning. This 
approach typically involves the use of vision systems to detect and 
classify objects and environments, followed by the construction of 
detailed predictive models to estimate the consequences of specific 
motor commands. Based on these models, planners generate highly 
deterministic action sequences, which are rigorously tested and 
incrementally refined in controlled laboratory settings to ensure 
robustness and repeatability [5]. This approach has its limits. 
Robots trained like this are strictly choreographed to work in one 
specific setting. Compared with other elds, such as computer vision, 
robotics has been in the dark ages. But that might not be the case 
for much longer, because the eld is experiencing a big shake-up. 
Thanks to new approaches such as GenAI, the focus is now shifting 
from feats of physical dexterity to building general-purpose robot 
brains in the form of deep neural networks. Much as the human 
brain is adaptable and can control different aspects of the human 
body, these networks can be adapted to work in different robots 
and different scenarios.

Recent technological trends in GenAI and robotics are 
being driven by the integration of advanced generative models, 
particularly foundation models that combine multiple modalities 
such as vision, language, and motor control [6]. These large-scale, 
general-purpose models enable robots to generalize across diverse 
tasks and environments, representing a major step toward true 
embodied intelligence. Additionally, diffusion models are emerging 
as powerful tools for robotic planning, capable of generating 
high-quality action sequences, adaptive policies, and even full 
simulations providing greater flexibility and robustness in decision-
making [7,8].

Another key area is simulation-to-real transfer, where 
generative models play a critical role in narrowing the gap between 
virtual training and real-world deployment. By generating realistic 
textures, physics behaviors, and sensor noise, these models make it 

easier to transfer skills learned in simulation to physical robots. At 
the same time, researchers are working on embodied agents that 
incorporate memory and reasoning capabilities, aiming to create 
robots that can understand context, recall relevant experiences, 
and reason symbolically. These trends collectively point toward 
a future of more autonomous, intelligent, and adaptable robotic 
systems. Thus, instead of the traditional painstaking planning 
and training, deep learning and neural networks have been used 
to create systems that learn from their environment on the go and 
adjust their behavior accordingly. 

At the same time, the emergence of low-cost hardware such 
as commercially available components and affordable robotic 
platforms like Stretch has significantly lowered the barrier to entry 
for conducting large-scale robotic experimentation. In general, 
current research leverages artificial intelligence and Generative AI 
(GenAI) to train robotic systems via two state-of-the-art techniques 
[9]:

A.	 Reinforcement learning (RL): it allows systems to 
improve through trial and error, so the robotic system can adapt 
its movements in new environments. It can be used learning to 
create a robotic system that can do extreme tasks (i.e., parkour) 
with minimal pre-programming. This approach is inspired by 
human navigation in which Humans receive information about 
the surrounding world from their eyes, and this helps them 
instinctively place one foot in front of the other to get around 
in an appropriate way. Thus, a robot can use a camera to look 
ahead. The robot was then able to memorize what was in front 
of it for long enough to guide its leg placement. The robot 
learned about the world in real time, without internal maps, 
and adjusted their behavior accordingly [9,10].

B.	 Imitation learning: a model learns to perform tasks by, 
for example, imitating the actions of a human tele-operating 
a robot or using a VR head- set to collect data on a robot. 
This technique has recently become more popular with 
robots that do manipulation tasks. By pairing this technique 
with GenAI methods such as Large Language Models (LLM), 
GANs (Generative Adversarial Networks), Transformers and 
Diffusion models, researchers have been able to quickly teach 
robots to do many new tasks. This may extend the technology 
propelling GenAI from the realm of text, images, and videos into 
the domain of robot movements [11,12].

A common approach begins with human teleoperation, where 
a human operator manually controls the robot to demonstrate 
target behaviors. These demonstrations serve as foundational 
data for training, which is subsequently leveraged by generative AI 
(GenAI) techniques such as diffusion models to enable the robot to 
learn complex skills autonomously from the provided data [5]. For 
instance, researchers have successfully trained robots to perform 
over 200 distinct tasks, including fine motor activities such as 
peeling vegetables and pouring liquids, with ongoing efforts 
aimed at scaling this capability to over 1,000 skills by year-end 
[13]. In parallel, industry efforts have advanced the development 
of multimodal robotic foundation models. A notable example is 
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Covariant’s RFM-1, which integrates diverse input modalities 
text, images, video, robot command sequences, and sensor 
measurements to facilitate flexible task specification and execution.

GenAI models not only enhance a robot’s ability to interpret 
complex multimodal instructions but also enable the generation of 
contextual visual representations (e.g., task-related images or video 
simulations). A recent development by Stanford researchers, ALOHA 
(Affordable Low-cost Open-source Hardware for teleoperation), 
demonstrated that a robot could learn to perform tasks such 
as cooking shrimp using as few as 20 human demonstrations, 
supplemented by data from unrelated tasks (e.g., removing a paper 
towel or tape) [14]. These findings indicate that GenAI enables 
cross-task generalization, where training on a specific task can 
improve performance on others through shared representational 
learning and transferable skill acquisition.

Recent advancements suggest that GenAI has the potential to 
render many conventional robotics methodologies obsolete. This 
evolution is timely, as the robotics eld despite decades of rigorous 
algorithmic development and system engineering continues 
to face significant limitations in core areas such as perception, 
motion planning, reasoning, grasping, manipulation, and human 
robot interaction, particularly when operating in unstructured, 
dynamic environments characteristic of the human world [15]. 
Deep learning-based approaches are increasingly demonstrating 
competitive performance relative to traditional, model-based 
techniques in both control and sensorimotor processing tasks. 
In particular, large language models (LLMs), when trained on 
sufficiently diverse and large-scale datasets, exhibit a compelling 
capacity to generalize across a wide range of tasks and situational 
contexts, offering a promising new paradigm for robotic autonomy 
and adaptability [16,17].

However, gathering training data for robots is costly and 
slow. Some estimates show that to reach a similar amount of data 
available for Natural Language Processing (NLP), from streams of 
images and text produced by internet users, robotics training data 
needs to scale up by a factor of 27 million. A recent community 
effort named Open X-Embodiment has produced a dataset of 22 
robots, 527 skills and 160,266 tasks, which seems a sizeable start. 
However, the feasibility of ever gathering sufficient data to develop 
a general-purpose robotics model is questionable.

The complexity of real-world human robot interactions requires 
exceptionally high standards of reliability and robustness. While 
zero-shot performance rates of 50% to 75% may be considered 
notable achievements under controlled laboratory conditions, 
such performance levels remain insufficient for safety-critical or 
human-facing deployment scenarios. Beyond quantitative bench-
marks, concerns related to the reliability and trustworthiness of 
general-purpose robotic models present significant challenges. 
Unlike language-based systems (e.g., ChatGPT or Gemini), where 
occasional factual inaccuracies or hallucinations may be tolerable, 
physical robotic systems operating in human environments must 
adhere to strict safety and dependability constraints. Consequently, 

robotics must continue to integrate models grounded in physical 
reasoning and embodied understanding of the environment.

To address these challenges, researchers have begun exploring 
the integration of Large Vision-Language Models (LVLMs) into 
robotic systems [18,19]. Early research suggests that LVLMs 
significantly enhance capabilities in scene understanding, human 
robot interaction, and high-level action planning. Models such as 
GPT-4 and Gemini, having been trained on internet-scale multimodal 
data, exhibit a form of emergent commonsense knowledge that can 
potentially be leveraged for robotic reasoning and decision-making 
in open-world environments [20]. However, this commonsense 
representation remains fundamentally different from human-like 
under- standing and continues to raise questions about reliability 
and interpretability. Nevertheless, the semantic priors embedded 
within LVLMs particularly regarding everyday objects, actions, and 
interactions offer a promising foundation for advancing robotic 
perception and interaction in complex, dynamic settings.

Nonetheless, significant challenges remain in addressing the 
complexities associated with operating in dynamic, unstructured 
environments. How robots can physically interact with their 
environment will depend on their bodies, and a next step is 
highlighted in the `SayCan’ project [21], in which the PaLM model 
is grounded in the affordances of real-world mobile robots into two 
primary components:

a)	 LLM: it uses language models such as GPT-4 that 
understands and generates natural language. This model is 
good at understanding contextual nuances, inferring implicit 
intents, and generating actionable plans based on natural 
language inputs (aka. prompts).

b)	 Action model: it performs semantic grounding by 
translating natural language commands into executable low-
level robotic actions. It evaluates the operational feasibility of 
candidate actions, ranks them according to task-specific and 
environmental context, and manages their sequential execution 
within the robot’s control architecture.

A related research direction is to develop LVLMs with an 
advanced, physical commonsense understanding of the world. An 
essential ingredient is curated data collection of examples from 
videos for a better understanding of physical properties of objects 
and physical effects in manipulating them [22]. Designing robotic 
systems that can safely and reliably work in the real world remains 
a challenging issue, but GenAI is injecting the eld with fresh ideas.

Other effort such as Open X-Embodiment [23] aims at 
collaboratively developing generalist AI models for robots (aka. 
RT-X models), that can learn and adapt to various robots, tasks, and 
environments. It involves creating a large, open-source dataset of 
real robot trajectories, and providing standardized data formats 
and model checkpoints for research. The goal is to move beyond 
training separate models for each robot and task to enable robots 
to leverage experience from diverse sources. The initiative has been 
able to partner with 34 research labs and about 150 researchers to 
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collect data from 22 different robots. The resulting dataset consists 
of robots demonstrating 527 skills, such as picking, pushing, and 
moving. The initiative sought to establish a robot internet by 
aggregating robotic data from laboratories worldwide, thereby 
enabling access to larger, more scalable, and diverse datasets for 
the research community. This effort parallels the deep learning 
breakthrough catalyzed by the introduction of ImageNet, a large-
scale online image dataset that significantly advanced computer 
vision and laid the foundation for modern generative AI. In this 
context, researchers developed two implementations of a robotic 
model named RT-X: one designed for local deployment on individual 
laboratory infrastructure, and another accessible remotely via 
web-based interfaces, facilitating distributed experimentation and 
collaboration.

The larger, web-accessible model was pretrained with internet 
data to develop a ‘visual commonsense’, or a baseline understanding 
of the world, from LLMs and image models. When the RT-X model 
was ran on many different robotics platforms, robots were 
observed to learn skills 50% more successfully than in the systems 
each individual lab was developing. These large robotic dataset and 
GenAI which are able to analyze image and language data, might 
offer robots important hints as to how the surrounding world 
works. These models provide high-level semantic representations 
of the world, which can support robotic systems in tasks involving 
reasoning, inference, and visual understanding. In order to evaluate 
this capability, researchers deployed a robot pre-trained on a large 
multimodal model and instructed it to identify a specific person’s 
image. Despite the absence of explicit training data containing 
images of the individual, the robot successfully localized the target 
image, leveraging its web-scale, multimodal knowledge to infer its 
identity through contextual and semantic associations.

Novel LVLMs has been introduced for robots using the previous 
approach, RT-2 This model gets its general understanding of the 
world from online text and images it has been trained on, as well 
as its own interactions in the real world. It translates that data into 
robotic actions. Each robot has a slightly different way of translating 
English into action.

While rapid advancements in robotic systems are advancing, 
significant challenges remain before they can be viably deployed 
in real-world, consumer-facing environments. Current platforms 
exhibit limited dexterity and reliability, making it difficult to 
justify their high cost for everyday users. Moreover, these systems 
generally lack robust commonsense reasoning capabilities, which 
constrains their ability to perform multitask operations or adapt to 
unstructured scenarios. Progress is still needed to transition from 
basic manipulation tasks such as object grasping and placement 
to more complex, goal-directed activities involving sequential and 
context-aware actions. For instance, tasks like reassembling a board 
game, packaging its components, and returning it to a designated 
storage location exemplify the level of functional autonomy yet to 
be achieved. Accordingly, several applications could be useful in the 
near future, including:

A.	 Motion and trajectory generation: Generative models 
like Variational Autoencoders (VAEs), GANs, and diffusion 
models are increasingly used to generate plausible movement 
trajectories for complex robotic systems.

B.	 Grasp and manipulation planning: Generative models 
can create synthetic grasp configurations or infer manipulation 
strategies in high-dimensional spaces, often outperforming 
traditional planning methods in unstructured environments.

C.	 Scene understanding and simulation: GenAI can 
produce synthetic environments and simulate sensor data, 
which is useful for training robots in virtual worlds before 
deployment.

D.	 Language-to-action translation: LLMs combined with 
generative policies allow robots to interpret and act on natural 
language commands, enabling more intuitive human-robot 
interaction.

E.	 Design and prototyping: Generative design tools assist 
in the physical design of robotic components by creating novel, 
optimized shapes or mechanical architectures.

As a consequence, generative models face several critical 
challenges that limit their deployment in real-world robotics. 
Safety and reliability remain major concerns, as these models 
are inherently stochastic and can produce unpredictable or 
unsafe outputs, which is particularly problematic in high-stakes 
domains like healthcare or manufacturing. Additionally, data 
efficiency is a barrier as training such models typically requires 
large-scale datasets that are costly and impractical to obtain in 
physical environments; research is ongoing in self- supervised 
and few-shot learning to address this. Another demanding issue is 
interpretability it is often unclear why a generative model made a 
particular decision, complicating debugging and eroding user trust, 
especially in settings that demand human-robot collaboration. 
Finally, the real-time performance of generative models poses a 
challenge due to their high computational demands, motivating 
efforts to optimize them for efficient inference on edge devices.

Based on the recent advances, future directions in robotics 
will be increasingly shaped by the integration of GenAI, paving the 
way for more adaptive, creative, and intelligent machines. One key 
trend is open-ended skill acquisition, where robots continually 
learn new tasks through interaction, web-based information, and 
human demonstrations, moving beyond pre-programmed behavior. 
This adaptability also supports the emergence of creative robotics, 
allowing machines to contribute to fields like art, architecture, and 
music. Additionally, generative AI enables personalized robotics, 
where systems tailor their actions to individual user preferences 
especially impactful in domestic and healthcare settings.

Conclusion
GenAI is poised to revolutionize robotics by enabling systems 

that are not only reactive but also imaginative, adaptive, and creative. 
While significant challenges remain in safety, interpretability, and 
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efficiency, the convergence of generative modeling and robotics 
opens the door to more intelligent, versatile, and collaborative 
machines. A major breakthrough is in open-ended learning, where 
robots leverage generative models to acquire new skills from 
human demonstrations, natural language, and large-scale internet 
data moving away from rigid, pre-programmed instructions. This 
allows robots to generalize across tasks, adapt in real time, and 
handle more complex, unstructured scenarios. Generative AI also 
enhances human-robot interaction by allowing robots to interpret 
intent, generate natural language responses, and refine their 
behavior through continuous feedback. Furthermore, GenAI is 
pushing robotics into creative and personalized domains. Robots 
can now participate in artistic, architectural, and musical endeavors, 
suggesting a future where machines become collaborators in 
creative industries. In personal settings, generative models enable 
robots to tailor their behavior to individual users, especially 
valuable in assistive healthcare and home automation. Overall, 
GenAI will transform robotics from task-specific tools into adaptive, 
intelligent partners capable of evolving with human needs.
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