
Autoencoder Based Multi-Class Classification 
Method For Alzheimer’s Disease Detection Using 

Brain MRI Data

Tianming Zhu5, Carol Anne Hargreaves1*, Yi Xin Cheng1, Christopher Chen3,4, 
and Saima Hilal2,4 
1Department of Statistics and Data Science, Faculty of Science, National University of 
Singapore, Singapore
2Saw Swee Hock School of Public Health, National University of Singapore and National 
University Health System, Singapore
3The Memory, Ageing, and Cognition Centre (MACC), National University Health System, 
Singapore
4Department of Pharmacology, National University of Singapore, Singapore 
5National Institute of Education, Nanyang Technological University

Introduction
Alzheimer’s Disease (AD) is an irreversible progressive neurological disorder characterized 

by progressive memory loss and a decline in activities of daily life, the retardation of thinking, 
and changes in personality and behaviors [1]. AD is the most common form of dementia that 
affects elderly people. AD causes nerve cells to die frequently, which leads to the loss of tissue 
in the brain that reduces the brain volume dramatically [2]. Mild Cognitive Impairment (MCI) 
causes serious cognitive changes that could be noticeable by the patient, in spite of that, the 
patient has the ability to perform everyday activities. People 60 years of age or older live with 
an MCI of 12-18%. In some individuals, MCI returns to a normal state or remains stable, on 
the other hand, the MCI could develop for various reasons, resulting in the MCI individuals 
going on to develop dementia. MCI can be at an early stage of AD if the hallmark changes in 
the brain are present [3]. A meta-analysis of 41 studies showed that the conversion rate from 
MCI to dementia when the individuals were tracked for 5 years or more, averaged at 38% 
[4]. It is for this reason that we focus on identifying patients with MCI so that clinicians can 
intervene timely and reduce the probability that a patient will progress to the Alzheimer’s 
Disease (AD) status.

In a recent paper on ADNI data classification, Ehsan Hosseini-Asl et al. [5] proposed to use 
a 3D convolutional neural network for feature extraction from MRIs. To be more specific, the 
authors of Ehsan HA et al. [5] used the Deeply Supervised Adaptive 3D-CNN (DSA-3D-CNN) 
which was initialized by training convolutional autoencoders for feature extraction and fine 
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Abstract
Dementia is a decline in cognitive function and typically diagnosed when acquired cognitive impairment 
has become severe enough to compromise social and/or occupational functioning. From No Cognitive 
Impairment (NCI) to dementia, there are many intermediate states in between. Prediction of cognitive 
impairment will be helpful to start treatment to avoid possible further brain damage. In this paper, we 
attempt to classify unseen brain MRI images into three classes-CIND mild, CIND moderate and NCI. This 
was achieved by training three separate Autoencoders, each corresponding to one of the three classes. An 
unseen brain MRI image was then passed into each of these Autoencoders where it was then assigned to 
the class with the smallest reconstruction error returned by each of the Autoencoders. The dataset used 
to train the Autoencoders consisted of 537 T1 images that were drawn from the Singapore Epidemiology 
of Eye Disease (SEED) study. The images were pre-processed by performing skull stripping, cropping, 
resizing and intensity normalization. The three autoencoders managed to achieve an overall accuracy 
of 0.86 and the F1 score and precision were more than 0.7 for all three autoencoders. In this study, we 
demonstrated that the autoencoder model performed well on the classification of 3 different stages of 
dementia patients using T1 brain MRI images.
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tuning the network for classification on different domain images. 
They showed impressive performance compared to the other 
approaches with binary ROC AUC over .96. This approach is the 
closest to the one we propose. An important note is that previous 
ADNI-based studies report results of a binary classification for 
the pairs of available classes, not a multiclass classification. In our 
study, we perform a multinomial classification and also test the 
performance of our proposed models so as to be able to compare 
our results with previous works. We have demonstrated that our 
approach achieves very good results without complicated pre-
processing.

Our paper is the first paper that analyzes brain MRI scan 
images using Singaporean patients. In this paper, we demonstrate 
the end-to-end process from pre-processing (for example, brain 
skull stripping, cropping, resizing, intensity normalization, etc.) to 
classification of the patient as to whether they are Normal (NC), 
Mild Cognitive Impairment (MCI), Moderate Cognitive Impairment 
or have Alzheimer’s Disease (AD). We build two models for the 
classification of MCI using the EDNIS dataset that contains MRI 
brain scan images from Singaporeans. The first model uses a deep 
learning 3D Convolution Neural Network (3D-CNN) architecture 
(our baseline model), while our second model uses a generative 
network architecture, an Autoencoder (AE) model. The objective of 
our paper is to demonstrate that the Autoencoder performs much 
better in classifying MCI patients than a typical baseline 3D CNN 
model when analysing brain MRI scan images. We organize the 
succeeding sections as follows. Section 2 presents related work; 
Section 3 describes proposed network architecture. In Section 4, 
we present our experiments and results of our study. Finally, we 
conclude our findings in Section 5.

Related Work
According to the latest report from Alzheimer’s Disease 

International [6], the number of people with dementia worldwide 
will increase from 50 million in 2019 to 152 million by 2050, and 
the global annual cost of dementia is estimated to increase from US 
$1 trillion in 2019 to US $2 trillion in 2030. Dementia is also the 
seventh-leading cause of death in the world [7]. Globally, dementia 
is a leading cause of death with a doubling in prevalence from 1990 
to 2016 [8]. Due to the increasing burden of AD, methods for early 
detection and hence prevention of AD have become increasingly 
critical. CNNs first developed in the early 1990s [9]. However, 
due to restricted computational capabilities, they did not gain 
widespread appeal at the time. However, with the introduction of 
fast Graphics Processing Unit (GPU) computers and availability 
of labelled training data, CNNs have re-emerged as potent feature 
extraction and classification method, achieving record-breaking 
performance in a variety of significant computer vision issues. 
The success of CNNs in computer vision has motivated a large 
number of investigators in the medical imaging field, resulting in 
a flurry of publications in a short amount of time demonstrating 
the usefulness of CNNs for a range of medical imaging tasks [10]. 
Convolutional Neural Networks (CNNs) are deep multilayer 
artificial neural networks [11] that have the ability for quick feature 
extraction which makes them highly efficient in pattern recognition 

in image data analysis. They have been demonstrated to be highly 
accurate in image classification, in particular, medical imaging 
[12-14]. One of the advantages of CNNs over other neural network 
architectures is that it does not require manual extraction of 
relevant features based on prior knowledge. In image segmentation 
CNNs outperformed other algorithms, such as logistic regression 
and support vector machines that do not have intrinsic feature 
extraction capabilities [15]. CNN models, including several of the 
standard neural network algorithms, such as Google Net and Res 
Net have been proven effective at deep multi-classification analysis 
in medical imaging [12,16-19].

A special type of neural network, an autoencoder is a neural 
network that is trained by unsupervised learning, which is 
trained to learn reconstructions that are close to its original 
input. An autoencoder is composed of two parts, an encoder and 
a decoder. The difference between the original input vector x and 
the reconstruction output z is called the reconstruction error. An 
autoencoder learns to minimize this reconstruction error and 
uses the reconstruction error as the anomaly score. Data points 
with high reconstruction are considered to be anomalies. Only 
data with normal instances are used to train the autoencoder [20]. 
Baur C [21], provided the first application of deep convolutional 
representation learning for Unsupervised Anomaly Detection 
(UAD) in brain Magnetic Resonance (MR) images which operates 
on entire MR slices. 

A large amount of work in the field of deep learning based 
UAD has been devoted to Autoencoders (AEs) due to their ability 
to express non-linear transformations and the ability to detect 
anomalies directly from poor reconstructions of input data [22-
24]. Very recently, the first attempts have also been made with 
deep generative models such as Variational Autoencoders [20,25] 
(VAEs), however limited to dense neural networks and 1D data. 
Noteworthy, most of this work focused on the detection rather 
than the delineation of anomalies. Unfortunately, they suffer from 
memorization and tend to produce blurry images. Generative 
Adversarial Networks (GANs) [26] have shown to produce very 
sharp images due to adversarial training, however the training is 
very unstable and the generative process is prone to collapse to a 
few single samples. The recent formulation of VAEs has also shown 
that AEs can be turned into generative models which can mimic 
data distributions, and both concepts have also been combined 
into the VAEGAN [27], yielding a framework with the best of both 
worlds.

Anomaly GAN (Ano GAN) is a great concept for UAD in patch 
based and small resolution scenarios, but as experiments shown 
by Baur C [21] GANs lack the capability to reliably synthesize 
complex, high resolution brain MR images. Further, the approach 
requires a time-consuming iterative optimization. To overcome 
these issues [21] proposed the Anomaly Variational Autoencoder 
GAN (Ano VAEGAN) to build a model that captures “global” normal 
anatomical appearance rather than the variety of local patches. The 
reconstruction objective allowed them to train a generative model 
on complex, high resolution data such as brain MR slices. In order 
to avoid the memorization pitfalls of AEs and to improve realism 
of the reconstructed samples they trained the decoder part of the 
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network with the help of an adversarial network, ultimately turning 
the model into a VAEGAN [20]. Baur C [21], in their experiments, 
compared the Ano VAEGAN against the Ano GAN framework and 
showed that the AE & VAE models with dense bottlenecks cannot 
reconstruct anomalies, but at the same time lack the capability to 
reconstruct important details in brain MR images such as brain 
convolutions. By utilizing spatial AEs with sufficient bottleneck 
resolution, i.e. 16X16 sized feature maps, they mitigated this 
problem. Noteworthy, a smaller bottleneck resolution of 8X8 size 
seemed to lead to a severe information loss and thus to large 
reconstruction errors in general. For future work, [21] intends 
to utilize 3D autoencoding models for unsupervised anomaly 
detection. This paper inspired us to classify Brain MRI Scan images 
using 3D autoencoder models for unsupervised anomaly detection.

Segmentation of Magnetic Resonance (MR) images is a 
fundamental step in many medical imaging-based applications. 
Traditionally, image segmentation is performed by having 
experienced clinicians scroll through a large number of 2D images 
and manually segmenting regions-of-interest among adjacent 
tissues. However, manual segmentation is time-consuming and 
influenced by the level of human expertise and hence, there are 
errors associated with human interpretation. Manual segmentation 
is subject to inter- and intra-observer variability, which likely leads 

to inconsistent segmentation results [28]. There exist various 
segmentation methods like histogram-based thresholding, fusion 
algorithm and Expectation-Minimization (EM) based algorithm 
which gives promising results. These methods make use of 
the parametric and nonparametric approach to maximize the 
expectation level and these are not always suitable for all types of 
applications [29]. Otsu thresholding is a non-parametric approach 
for image segmentation and an alternative to Bayes decision rule 
[30].

Segmentation using Otsu thresholding gives the segmentation 
of image quickly with better segmentation accuracy results. (Add 
in our ROBEX info) The Liu F [31] study described a new fully 
automated CNN based segmentation method which integrated 
joint adversarial and segmentation CNNs to segment MR images 
with different tissue contrasts using a single set of annotated 
training data. This method was shown to provide rapid and 
accurate segmentation comparable to a state-of-the-art supervised 
CNN method. Additional studies are needed to evaluate potential 
applications of SUSAN for other anatomical structures and for other 
imaging modalities. The new technique may further improve the 
applicability and efficiency of CNN-based segmentation of medical 
images while eliminating the need for large amounts of annotated 
training data (Figure 1).

Figure 1: Flow chart of this study.

Recently, deep neural networks have been applied successfully 
in image-to-image translation, particularly for improving image 
quality from one MRI modality to another [29]. A series of pre-
processing steps were carried out. For example, skull stripping, bias 
field correction, pixel value normalization and data augmentation. 
The brain MRI structure is relatively complicated, and the cause of 
AD is not fully understood, most of the existing CNN-based methods 
are single scale representative features, and it is impossible to 
analyze the image information on the deep structure as most of the 
deformation of CNN is only stretched in the depth and width of the 
network structure, resulting in the model parameters that are too 
large to be used in practical applications. Pipelines used in a number 
of studies that applied deep learning algorithms to neuroimaging 
data mostly required multiple processing steps for feature 
extraction. Sergey Korolev [32] provided a powerful framework for 
automatic feature generation and more straightforward analysis. 
In this paper, Sergey Korolev [32] demonstrated how similar 
performance can be achieved skipping the feature extraction 
steps with the residual and plain 3D convolutional neural network 
architectures.

Following, Shmulev [33] and Senanayake [34] built 3D-ResNet 
and 3D-DenseNet, respectively, but their experimental results were 
not satisfactory. However, the small number of MRI data made 

the 3DCNN-based network difficult to fit completely. At the same 
time, the network had a larger number of parameters and longer 
training time. To address this issue, [35] proposed a novel Multi-
Scale Convolutional Neural Network (MSCNet) to enhance the 
model’s feature representation ability for AD diagnosis. Compared 
with simple extraction of ROIs such as the hippocampus or sending 
raw AD data to CNNs for training, [35] first segment the MRI data 
into WM and GM. Then, a new and efficient network architecture 
with a multi-scale structure and channel attention mechanism 
was introduced to accurately classify images and to improve the 
interdependence between channels and adaptively recalibrate the 
channel direction’s characteristic response. Extensive experiments 
showed that [35] method achieved a good performance in 
AD diagnosis, and its model size was satisfactory. In addition, 
experiments proved that WM is more effective in the diagnosis of 
AD. But the data pre-processing and model training stages in [29] 
method was carried out separately.

Proposed Network Architecture
The details of the process will be discussed in the following 

subsections.

Pre-processing of brain MRI images
Automatic whole-brain extraction from Magnetic Resonance 
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Images (MRI), also known as skull stripping, is a key component 
in most neuroimage pipelines. As the first element in the chain, its 
robustness is critical for the overall performance of the system. 
Many skull stripping methods have been proposed, but the problem 
is not considered to be completely solved yet [36]. Many systems 
in literature have good performance on certain datasets (mostly 
the datasets they were trained/tuned on) but fail to produce 
satisfactory results when the acquisition conditions or study 
populations are different.

A robust, learning-based brain extraction system (ROBEX) 
method that combines a discriminative and a generative model to 
achieve the final result was introduced by [36]. The discriminative 
model was a Random Forest classifier trained to detect the brain 
boundary; the generative model was a point distribution model 
that ensures that the result is plausible. When a new image was 
presented to the system, the generative model was explored to find 
the contour with highest likelihood according to the discriminative 
model. Because the target shape was in general not perfectly 
represented by the generative model, the contour was refined using 
graph cuts to obtain the final segmentation. Brain segmentation, 
also known as skull stripping, is the problem of extracting the brain 
from a volumetric dataset, typically a T1-weighted MRI scan. This 
process of removing non-brain tissue is the first pre-processing 

step of most brain MRI image classification studies. Applications 
such as brain morphometry, brain volumetry, and cortical surface 
reconstructions require stripped MRI scans. Even early pre-
processing steps such as bias field correction benefit from skull 
stripping. Automatic skull stripping is a practical alternative to 
manual delineation of the brain, which is extremely time consuming. 
Note that segmentation in MRI is in general a difficult problem due 
to the complex nature of the images (ill-defined boundaries, low 
contrast) and the lack of image intensity standardization [36].

In our study, we apply the automatic ROBEX software to do 
brain skull stripping. Figure 2 gives an example of ROBEX. It can 
give us a skull stripped image and a mask image for each input 
raw image. The skull stripped images are used for the next pre-
processing steps. After getting the skull stripped images by 
ROBEX, we need to crop them by removing as many zero entries as 
possible without touching non-zero entries. We leave one voxel of 
zero padding around the obtained non-zero area in order to avoid 
sampling issues later on. The cropped images may have different 
sizes since they have different numbers of zero entries. Hence, we 
need to add paddings back to get the same size for all images. The 
last step is intensity normalization. We use Fuzzy C-means (FCM)-
based tissue-based mean normalization in this study which is 
provided by intensity-normalization package [37].

Figure 2: An example of using ROBEX to obtain a skull stripped image and a brain mask image.

Training process
After the raw MRI are normalized using the process in Section 

5.1, we will split the whole dataset into three parts: training dataset 
(70%), validation dataset (15%), and test dataset (15%). The 

validation dataset will be used for hyper parameter tuning and 
the details will be discussed in Section 5.4. The test dataset will 
be used for evaluating our models and the classification results 
are presented in Section 0. In this subsection, we use the training 
dataset to train the Autoencoder models (Figure 3). 

Figure 3: Flowchart of pre-processing steps.
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Autoencoder model
Autoencoder is an unsupervised artificial neural network which 

attempts to produce output identical to its input. The architecture 
of a typical Autoencoder has been introduced in Section 4. As 
mentioned before, when Autoencoder is used for anomaly detection, 
the threshold is always needed to detect whether the reconstruction 

error is large. However, deciding the threshold of reconstruction 
error is difficult and objective (Figure 4). Therefore, to overcome 
this difficulty, for the classification problem in this study, instead 
of training Autoencoder model on normal observations only, we 
trained k Autoencoder models for k classes separately. The training 
process of Autoencoder based multi-class classification method is 
described in (Figure 5). 

Figure 4: An example of normalized MRI.

Figure 5: Training process.

We have three classes in this study, that is, NCI, CIND mild, 
and CIND moderate. We can train three Autoencoder models for 
the three classes based on NCI images, CIND mild images, and 
CIND moderate images from the training dataset, respectively. 
The three models are trained by minimizing the reconstruction 
errors between NCI images or CIND mild images or CIND moderate 
images and their reconstructed images, respectively. In this study, 
we use L1-distance ( |  |)

1
n image reconstructed imagei i i∑ −
=

where n is the size 

of the image, between the input image and reconstructed image as 
the reconstruction error.

Hyper-parameter tuning
We use Optuna tuner for hyper-parameter tuning in this study. 

Optuna [38] is an open-source hyper-parameter optimization 
framework to automate hyper-parameter search. To use Optuna 
tuner, we need to define an objective function, which is used to 
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evaluate the performance of different trials. The tuner will run 
different sets of hyper-parameters and find the one that minimizes 
the objective function. In this study, we use the validation loss 
which is the L1-distance between the images in validation dataset 
and their reconstructed images as the objective function.

We usually use pruning or early stopping in deep learning so 
that we can develop a smaller and more efficient model. Optuna 
provides several pruners. We use the “Median Pruner” which applies 
the median stopping rule. Median stopping rule is a simple strategy, 
and it stops a trial if its performance falls below the median of other 
trials at similar points in time. To avoid the trail stops too early, 
we also add the “warmup _steps” option which means pruning is 
disabled until the trial exceeds the given number of steps. 

To use the Optuna tuner, we need to specify the range of values 
of different hyper-parameters that we want to vary. Instead of 
randomly choosing a value from the given range, we decide to use 
“TPE Sampler”. This TPE Sampler applies Tree-structured Parzen 
Estimator approach [39], and it fits one Gaussian Mixture Model 
(GMM) l(x) to the set of parameter values associated with the best 

objective values, and another GMM g(x) to the remaining parameter 
values. It chooses the parameter value x that maximizes the ratio 
l(x)/g(x). However, we need to run at least 10 trials to let the TPE 
algorithm build the tree. If the number of trials is less than 10, 
random sampling is used.

Inference process
After the three models are trained based on the images 

from three classes, respectively, we can use them to classify new 
coming images. The inference process is described in (Figure 6). 
For a new coming image, we can get three construction errors by 
inputting it into the three Autoencoder models, respectively. This 
new observation will be assigned to the class with the smallest 
reconstruction error. The logic behind this lies in the fact that the 
autoencoders will be highly skilled at reproducing new data that 
is similar to data it has been trained on and vice versa. Therefore, 
the smallest reconstruction error given by the nth Autoencoder 
would imply that this new observation is closest in nature to the 
data corresponding to the nth class and as a result, we would assign 
this new observation to the nth class.

Figure 6: Inference process.

Experiments
We ran a number of experiments to determine the number of 

layers, number of filters for each layer, learning rate, pooling size, 
batch size and dropout probability.

Dataset (based on 3 batches of images)
This study conducted the dataset from Epidemiology of 

Dementia in Singapore (EDIS) study. EDIS Study participants, aged 
60-90 years, were drawn from the Singapore Epidemiology of Eye 
Disease (SEED) study, a population-based study among Chinese 
Singapore Chinese Eye Study [SCES], [40], Malays Singapore Malay 
Eye Study [SiMES-2],[41], and Indians Singapore Indian Eye Study 
[SINDI-2], [42]. These subjects can be divided into four classes 
based on the diagnosis of cognitive impairment and dementia, 

namely, No Cognition Impairment (NCI), Cognitive Impairment No 
Dementia (CIND) mild, CIND moderate, and Dementia. CIND was 
defined as impairment in at least one domain of NTB. The battery 
assesses seven domains which include five non-memory domains 
and two memory domains. CIND mild was diagnosed when ≤2 
domains were impaired and CIND moderate as impairment of >2 
domains. See more details at [40] and [43].

We have 537 T1 images in this EDIS dataset, among which 186 
(30.44%) images are NCI, 156 (25.53%) images are CIND mild, 156 
(25.53%) images are CIND moderate, and 39 (6.38%) images are 
dementia. Since the number of images in dementia is too small, we 
will only consider the classification problem for NCI, CIND mild, and 
CIND moderate classes in this paper. After the pre-processing, the 
normalized skull stripped images were resized to 174×174×174. 
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174 is decided by taking the largest number of non-zero entries for 
all images.

Implementation details (based on three batches of 
images)

We build upon the basic architecture of dense Autoencoder. All 
weights were initialized from a normal distribution with mean 0 and 
standard deviation 0.02. The encoder is a 3D convolutional neural 
network (CNN) that contains multiple layers. We set the number of 
channels in the input image for the first 3D convolutional layer as 
1, and the number of channels produced by the first convolution as 
parameter “num_channels”. The number of layers in the encoder is 
determined by the parameters kernel_size (size of the convoluting 

kernel), stride (stride of the convolution) and num_channels. We 
limit the number of layers for encoder be less than 5 and set the 
kernel_size as (4,4,4), and stride as (2,2,2). The optimal values of 
stride and num_channels are selected by Optuna. The decoder is 
also a neural network that consists of multiple 3D de-convolutional 
layers. It performs a process that is opposite to that of the encoder. 
The encoder and decoder are connected by a fully connected 
neural network. The length of latent space z is the parameter 
called “embedding” which is also selected by Optuna. Moreover, we 
also use batch normalization [44] and ReLU [45] in both encoder 
and decoder and use dropout [46] with dropout rate 0.5 to avoid 
overfitting in the fully connected neural network. The architecture 
for the model trained on NCI data is presented in Figure 7 below.

Figure 7: The diagram of Autoencoder model trained by NCI images.

Hyperparameter tuning
All models were trained by using Adam optimizer with optimal 

learning rate selected by Optuna. The optimal parameters selected 
by Optuna for the three Autoencoder models are displayed in Table 
1. Based on the optimal parameters selected by Optuna in Table 1, 
the structure of the Autoencoder model which was trained by NCI 

images is described in Figure 7. The structures of the Autoencoder 
models trained on CIND mild images and CIND moderate images are 
similar to that in Figure 7. Figure 8 above shows that the difference 
between the training and validation losses are minimal and close to 
0. This shows that the three trained Autoencoder models were not 
overfitted and have reached convergence.

Figure 8: Loss plots of three Autoencoder models.

Table 1: Optimal parameters selected by Optuna for the three Autoencoder models.

Batch Size Epochs Learning Rate Embedding Num channels

NCI 60 380 1e-3 128 3

CIND mild 40 380 1e-3 128 3

CIND moderate 40 260 1e-3 64 3
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Result
The unseen test dataset contained 57 images, which among 22 

(38.59%) images are NCI, 15 (26.32%) images are CIND mild, and 
20 (35.09%) images are CIND moderate. We used 4 measures to 
compare the performance of the methods we used, namely, overall 
accuracy, precision, recall, and f1-score. Except overall accuracy, 
the other three metrics are used for binary classification and the 
equations below indicates how to calculate them for each class:

TP TP 2 × TP
TP+FP' TP+FN' 2 × TP + FP + FN'

Precision =  Recall =  and F1 - Score = 

where FP, FN, TP, TN are given as false positives, false negatives, 
true positives, and true negatives, respectively. The classification 
results are presented in Table 2. The three autoencoders all 
performed well on the unseen brain MRI test images and managed 
to achieve an overall accuracy of 0.86. The F1 score and precision 
were also more than 0.7 for all three autoencoders.
Table 2: Classification results.

Precision Recall F1-score O v e r a l l 
Accuracy

NCI 0.88 0.95 0.91

0.86CIND mild 1 0.6 0.75

C I N D 
moderate 0.79 0.95 0.86

Conclusion and Future Work
We proposed an autoencoder for the classification of brain MRI 

scans for MCI. We demonstrated performance of the convolutional 
neural networks and the autoencoder based on the EDNIS dataset 
which is a large available dataset of structural MRIs of Singaporean 
subjects with Alzheimer’s disease and normal controls. We showed 
that applying the proposed models to the MRI classification problem 
achieved results comparable to previously used approaches. The 
major advantage of our method is that there is no need for feature 
selection and the ease of use. Our proposed approach is useful for 
the automatic prediction of any given MRI scan for MCI. However, 
further studies will be needed to validate the autoencoder’s use in 
clinical practice.

A detailed examination and discussion on whether the SEED 
data is representative of the eventual target population and 
the possibility of sample biasness should also be conducted to 
support the generalizability of this study. For the eventual targeted 
deployment, issues such as model explanation and trustworthy 
computing will also be investigated, together with from-the-field 
insights. This will address any potential issues of biasness and 
showcase the robustness of the model. Further study in these 
directions is interested and warranted.
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