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Introduction
Multi-objective Optimization (MOO) is a powerful and versatile field that optimizes 

many conflicting objectives. Multi-objective Optimization seeks trade-off solutions rather 
than an ideal one. Cost reduction, efficiency, safety, and profit are examples. Decision-
makers often face real-world challenges when maximizing one objective is not enough or 
may harm other areas. A lighter, less durable device may cost more in engineering design 
[1]. Multi-objective Optimization offers solutions that balance all objectives in such cases. 
Multi-objective Optimization uses Pareto optimality. Pareto-optimal methods improve one 
goal without hurting another. The trade-off region between objectives is the Pareto front, 
or Pareto optimal solutions. Multi-objective Optimization problems are hard to solve due 
to the huge search space and complex trade-offs. Multi-objective Optimization is effective. 
GA, PSO, EA, ACO, and others optimize multi-objectively. Fitness assignment, elitism, and 
dominance relations identify Pareto optimum solutions in these algorithms. Engineering, 
finance, logistics, resource allocation, portfolio Optimization, and more use multi-objective 
Optimization. It optimizes technical design, controls, and parameters. Multi-objective 
Optimization enhances financial portfolio management and risk analysis. It optimizes logistics 
and supply chain management. Innovative cobots, or collaborative robots, work alongside 
people in shared offices. Collaborative cobots are safer and more human-friendly, allowing 
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Abstract
Multi-objective Optimization algorithms like Swarm Intelligence Algorithms are becoming more useful 
in complex, dynamic collaborative robot working environments. These environments allow humans 
and robots to work securely and productively. Collaborative robot behaviour is aimed to be optimised 
via swarm intelligence techniques. Social insect-inspired swarm intelligence algorithms are robust 
and adaptive to multi-objective Optimization approaches. They enjoy exploring the solution space and 
balance the competing goals. These algorithms let collaborative robots balance task productivity, safety, 
human-robot interaction, energy utilization, and other related issues. This paper is aimed to build swarm 
intelligence algorithms for multi-objective Optimization in a collaborative robot environment. Define 
objectives, formulate the problem, choose the algorithm, encode and decode robot configurations, fitness 
assignment, initialization, iterative Optimization, convergence, and post-processing discoveries. Swarm 
intelligence algorithms help collaborative robots navigate their workplace, adapt, and safely interact with 
humans. Decision-makers can choose Pareto front or non-dominated solutions for optimal trade-offs. 
Validation and simulation enable Pareto-optimal and safe and collaborative robot behaviours. Fine-tuning 
algorithm parameters enhance performance and convergence. Collective intelligence solves complex, 
dynamic multi-objective Optimization issues. As collaborative robots transform many industries, swarm 
intelligence algorithms will shape safe, efficient, and productive human-robot interactions.
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humans and machines to work together. Collaborative robots were 
created to fulfil the demand for flexible and adaptable automation 
technologies that can operate with people.

Traditional robots work alone and require substantial safety 
measures. Collaborative robots improve workplaces by working 
with people. Collaborative robot working environments must 
prioritize safety [2]. These robots recognize humans and avert 
accidents through force/torque sensors, collision detection, and 
speed decrease. Collaboration robots are intuitive. Non-experts 
can programme and control them. This simplifies deployment and 
integration, enabling human-robot collaboration. Collaborative 
robots are flexible. Their fast reprogramming and deployment 
enhance small-batch production and flexible manufacturing. 
Lightweight, small, and transportable robots reduce operator 
strain [3]. They reduce repetitive strain injuries in strenuous work. 
Humans and machines can collaborate. The robot’s precision and 
repeatability improve the operator’s decision-making and cognition, 
enhancing productivity and efficiency. Collaborative robots 
perform mundane tasks, so that people may focus on higher-value 
tasks like product quality and speed increase [4]. Manufacturing, 
logistics, healthcare, agriculture, research, and even homes use 
collaborative robots. They assemble, inspect, and help with 
healthcare. Collaborative robots allow human-robot collaboration. 
They improve global industry efficiency, adaptability, and creativity 
by working safely and efficiently with humans. Collaborative robots 
will improve productivity and peace in the future [5].

Multi-objective optimization for a collaborative robot in 
a working environment

Multi-objective Optimization for a collaborative robot in a 
workplace ensures safe and efficient collaboration with people 
and other robots. To reduce human-robot collisions, dangerous 
movements, and compliance with safety standards and laws, safety 
limits should be addressed during Optimization. The robot should 
reduce energy, resources, and task completion time. Optimizing 
the robot’s path, mobility, and work distribution could enhance 
productivity. The robot’s conduct should be designed for smooth 
and intuitive collaboration with humans. This includes predictable, 
natural actions, clear communication, and avoiding surprises. The 
optimizer should delegate jobs to several robots based on their 
capabilities and the system’s aims. Coordinating task execution and 
resource sharing requires multi-robot communication to optimize 
data and transmission overhead. To optimize for workplace 
change, the robot should adapt to new challenges. NSGA-II, NSGA-
III, SPEA2, and MOEA/D optimize many objectives simultaneously. 
These algorithms solve objective trade-offs Pareto-optimally. 
Dynamic collaboration demands real-time Optimization. The robot 
should quickly adapt to changing conditions to maintain efficiency 
and safety. User preferences or utility functions let operators or 
supervisors optimize. This ensures solutions match stakeholder 
needs.

Implementation 

Multi-objective Optimization methods like swarm intelligence 
algorithms for collaborative robot work require numerous steps. 
Process overview:

A. Specify the various collaborative robot working environment 
objectives that is required to optimize like Safety, task 
efficiency, human-robot interaction, energy consumption, etc.

B. Model multi-objective Optimization. Define collaborative robot 
environment limitations, decision variables, and objective 
functions.

C. Select a swarm intelligence algorithm for multi-objective 
Optimization. PSO, ACO, GA, and DE are common evolutionary 
algorithms. Evaluate the problem and each algorithm.

D. Use functions to evaluate each candidate solution (robot 
behaviour/configuration) based on the given objectives. 
Swarm intelligence algorithm fitness functions will be these.

E. Encode decision variables for the swarm intelligence 
algorithm and decode them back to the robot’s configuration 
during Optimization. This phase corrects the Optimization 
algorithm’s robot parameters.

F. Use the swarm intelligence algorithm to award fitness scores 
to each candidate solution based on their performance across 
several objectives. The algorithm should favour Pareto-front 
non-dominated solutions.

G. Create a random or well-distributed swarm of candidate 
solutions within the viable range.

H. Optimize the swarm intelligence algorithm iteratively. Each 
iteration, the swarm updates candidate solution positions 
based on fitness and dynamics.

I. Set an algorithm stopping criterion, such as a maximum 
number of iterations or convergence, after meeting the 
requirement, the algorithm stops.

J. Analyze algorithm-converged solutions. Extract the Pareto 
front or a representative subset of non-dominated solutions 
that represent objective trade-offs.

K. Test the results in a collaborative robot environment. Based on 
the chosen answers, assess the robot’s performance.

To increase Optimization performance and convergence 
time, fine-tune algorithm parameters including population size, 
convergence criteria, and inertia weights for PSO. Swarm intelligence 
methods for multi-objective Optimization in a collaborative robot 
working environment must consider the problem, objectives, 
and robot behaviour. Validate the optimised solutions to ensure 
they meet the collaborative environment’s safety and efficiency 
requirements.

Improved particle swarm optimization algorithm for 
collaborative robot environment

An improved Particle Swarm Optimization (PSO) algorithm is 
a version of the regular PSO algorithm that has been made better 
and bigger. Its goal is to get around the problems that come with 
the normal PSO method and make it better at solving Optimization 
problems. According to the standard Particle Swarm Optimization 
(PSO) method, this is a population-based Optimization method 
that is based on how birds flock or fish school. Using this method 



3

COJ Robotics & Artificial Intelligence       Copyright © John Alexis S

COJRA.000564. 3(3).2023

is based on the idea that particles move through a solution space 
to find the best answer. In Improved Particle Swarm Optimization 
(PSO) algorithms, extra features, changes, or strategies are added to 
improve the performance of PSO in a variety of situations. Possible 
improvements to a better Particle Swarm Optimization (PSO) 
method could be included.

The use of dynamic inertia weight schemes might help find 
a good mix between exploring and exploiting when it comes to 
controlling inertia weight. At different points in the planning 
process, the inertia weight is changed to fit the properties of the 
search space. Constriction factors are very important for making 
the Particle Swarm Optimization (PSO) method more stable and 
helping it settle. By constantly searching the areas around the best 
sites, local search techniques built into search engines can help 
people who get stuck in local optima. The use of adaptive processes 
to change Particle Swarm planning (PSO) parameters, like cognitive 
and social weights, to improve convergence during the planning 
process is known as adaptive parameter tuning. The main topic of 
this study is how to make Particle Swarm Optimization (PSO) work 
better for problems with more than one goal.

This method makes it possible to find Pareto front solutions 
by letting you work on multiple goals at the same time. The focus 
of this study is on handling constraints, especially coming up with 
methods for doing this in a way that makes sure the algorithm 
can come up with possible solutions. When you combine Particle 
Swarm Optimization (PSO) with other Optimization methods or 
strategies, you can take advantage of their strengths and work 
around their weaknesses. This is called hybridization. The study’s 
goal is to show methods that make it easier to remember and 
handle past successful solutions, so that they can guide the swarm’s 
exploration process. Topology Variations is looking into different 
neighbourhood topologies that go beyond the usual global and local 
topologies. These include structures like the ring, star, and fully 
connected topologies. Adaptive swarm size means that the size of 
a swarm changes on the fly during the Optimization process based 
on how much progress has been made in achieving agreement. This 
research is mainly about dynamic environment adaptation, more 
specifically coming up with ways for particles to change how they 
act when the problem space changes. Improvements to Stability 
and Robustness: Adding ways to deal with problems like early 
convergence, slow convergence, or swings that happen during the 
search process.

Improved Particle Swarm Optimization (PSO) methods are 
made to work with certain types of problems and might be able to 
give better Optimization abilities. How the additions and changes 
are chosen depends on the specifics of the Optimization problem 
at hand as well as the speed gains that are wanted. Researchers 
and practitioners often try out different methods to see which ones 
work best for their specific uses.

Pseudocode

Initialize PSO parameters:

population_size, max_iterations, inertia_weight,cognitive_
weight, social_weight

- robot_positions[]  // Current positions of collaborative robots

- robot_velocities[]  // Current velocities of collaborative robots

- pBest_positions[]  // Best-known positions for each robot

- gBest_position  // Global best-known position

- task_assignments[]  // Assignment of tasks to robots

Initialize collaborative robot positions and tasks:

- Assign initial positions and tasks to robots

- Evaluate the performance using an objective function

Initialize pBest_positions and gBest_position:

- Set pBest_positions[robot] and gBest_position based on the 
initial evaluations

for iteration in max_iterations:

    for each robot in population:

        Update robot_velocities[robot] using the PSO equations:

        - new_velocity = inertia_weight * current_velocity

                        + cognitive_weight * rand() * (pBest_positions[robot] 
- robot_positions[robot])

                        + social_weight * rand() * (gBest_position - robot_
positions[robot])

        Update robot_positions[robot] using the new velocities:

        - robot_positions[robot] = robot_positions[robot] + new_
velocity

        Update task_assignments[robot] based on the robot’s 
position:

        - Determine the tasks the robot can reach based on its 
position

        - Update task_assignments[robot] accordingly

    End of robot loop

    Evaluate robot performance using an objective function:

    - Consider task completion time, energy consumption, etc.

    Update pBest_positions and gBest_position:

    - If a robot’s performance is better than its pBest_position:

      - Update pBest_positions[robot]

    - If any robot’s performance is better than gBest_position:

      - Update gBest_position

End of iteration loop

Return the gBest_position as the optimized task allocation for 
collaborative robots

It is possible that the Particle Swarm Optimization (PSO) method 
may need to have its parameters optimised and the pseudocode 
will need to be modified, to accommodate the specific requirements 
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of your application. This includes overcoming restrictions, making 
it easier for robots to communicate with one another, adapting 
to dynamic changes in the surrounding environment, and taking 
precautions to prevent collisions.

Conclusion
The multi-objective Optimization collaborative hybrid 

with swarm intelligence algorithms is very effectively used to 
optimize the collaborative robot behaviour in dynamic working 
environments. These multi-objective Optimization techniques 
balance multiple opposing goals. Collaborative robot workplaces 
must balance safety, task efficiency, human-robot interaction, and 
other performance indicators. Swarm intelligence algorithms can 
search the vast solution space for Pareto optimal solutions that 
trade-off these objectives. Swarm intelligence algorithms can 
boost productivity, safety, and ergonomics in collaborative robots. 
These algorithms let robots adapt to environmental changes and 
adjust their behaviour in real time, making them ideal for agile 
manufacturing and flexible production. Swarm intelligence systems 
also aid decision-makers. The Pareto front or non-dominated 
set of options helps people understand objective trade-offs and 
pick actions that satisfy their needs. Successful implementation 
requires rigorous examination of the collaborative robot working 
environment’s challenges and goals. Validation and simulation 

guarantee optimum behaviours meet safety and collaborative 
norms. Fine-tuning algorithm parameters speeds convergence and 
performance. Swarm intelligence algorithms will change human-
robot collaboration as collaborative robots transform several 
industries. These algorithms optimize complex and dynamic 
activities to make robot-human interactions safe, efficient and 
productive.
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