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Introduction
Analysis of raw EEG data remains a complex problem. EEG is a vast and complicated 

provider of multiple information and, at the same time, is vulnerable to noise and artifacts [1]. 
Thus, understanding what can be inferred from this delicate dynamic dance of electrical activity 
requires modern analytics. EEG and other electrophysiological recordings may help elucidate 
the complex computations in the brain [2]. The Fourier Transform is the groundwork of EEG 
analysis [3]. A traditional measurement tool for analyzing any waveform breaks it down into 
parts by their frequency content [4]. This breakage enables peak frequencies associated with 
a state of the brain. Some examples are slow waves associated with deep sleep, alpha waves 
linked with relaxation and beta waves aligned with focused attention [5]. By understanding 
which frequency bands are activated within the EEG spectrum, researchers can use them to 
access the underlying brain activity quickly. Short-Time Fourier Transform (STFT) takes the 
analysis to the next level [6]. The STFT assumes that the signals are dynamic but not steady 
and, hence, represent them in the time-frequency domain [7]. Also, there is another technique, 
called spectrogram, which is representing color intensity by the strength of each frequency 
while remaining consistent over time [8]. When applying it to EEG, this allows us to see sections 
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Abstract
This study investigated the effects of different transforming techniques on the Electroencephalography 
(EEG) signal analysis in classifying the emotional SEED-V EEG dataset. Using different traditional and 
advanced transformation methods, including the Fourier Transform (FT), Short-Time Fourier Transform 
(STFT), Spectrogram Transform, Spectrogram Contrast Limited Adaptive Histogram Equalization 
(SCLAHE) and Hilbert Transform, the study examines the ability of these preprocessing approaches to 
clarify and extract more features of the EEG data by transforming them from Real numbers to the Complex 
numbers. Accordingly, the results enhance the processing of the spectrogram pictures, and further, 
SCLAHE and the Hilbert Transform significantly enhance the classification of the data. In particular, the 
Hilbert Transform was able to extract instantaneous phase and amplitude information, allowing for a 
better understanding of brain connection and synchronization, seeing a 49% increase in the Feedforward 
Neural Networks (FFNN) classification accuracy compared to using the main EEG signal result as a 
benchmark. Also, for the CNN, the accuracy improves by over 100% compared to the STFT benchmark 
when applying SCLAHE preprocessing on data. The results indicate a significant advantage behind the 
use of multiple preprocessing methods, allowing for complex interaction identification within the EEG 
results, offering a way for further research to develop this idea and combine it with computational models 
for a deeper insight into brain operations.

Keywords: Electroencephalography (EEG); Fourier Transform (FT); Short-Time Fourier Transform 
(STFT); Contrast Limited Adaptive Histogram Equalization (CLAHE); Hilbert Transform; Spectrogram 
Contrast Limited Adaptive Histogram Equalization (SCLAHE)

Abbreviations: EEG: Electroencephalography; FT: Fourier Transform; STFT: Short-Time Fourier 
Transform, CLAHE: Contrast Limited Adaptive Histogram Equalization, CNN: Convolutional Neural 
Networks, FFNN: Feedforward Neural Networks
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of the brain “activate” and “inactivate,” which reveals how brain 
activity as represented by EEG bands alternates as one ponders or 
receives a stimulus of any kind [9,10]. The underlying signal of raw 
EEG data is distorted by noise and artifacts. That is when Contrast 
Limited Adaptive Histogram Equalization (CLAHE) comes into play 
[11]. CLAHE is a pre-processing technique that works by increasing 
the contrast of the low-contrast regions to better show their details 
[12]. It is like changing the contrast and brightness of an image to 
enhance hidden features. CLAHE enables increased signal quality of 
raw EEG data, allowing later transformers to perform more precise 
and robust analysis.

The understanding of the phase relationships between various 
brain regions is critical for the processing [13] such as the aspect of 
the EEG signal measured using the Hilbert Transform. An imaginary 
component of an actual signal is developed, which can then be used 
to establish the analytical signal. Based on this imaginary signal, it 
becomes possible to extract the instantaneous phase information of 
the EEG signal, which is pivotal in describing the rapidly changing 
brain connectivity and oscillatory patterns. Consider the analysis of 
the timing relationship between electrical activity of different brain 
areas as they correlate to perform cognitive functions [14]. Proper 
interpreting EEG provides possibility for innovative methods in the 
analysis of complex neural data, such as Machine Learning [15]. In 
this study, we are interested in applying Hilbert Transformation to 
the EEG data to enrich the ML models’ feature input, thus improve 
the performance of brain signal classification and analysis. The 
basis of comparison for all our metrics was the FFNN model, 
whether we feed the original signal or the Hilbert Transform data. 
The data was preprocessed, and after normalization, both the 
original EEG signal and the HL-applied EEG signal were fed into the 
FFNN model with the test accuracy used to compare the effects of 
HL on the original features. Our objective was to examine Hilbert 
Transformation impact, which gives a broader analytical view 
of the signal Amplitude envelope and the instantaneous phase, 
contributes to enriching the input Features better. Therefore, 
the other metric that we used to compare the impact of STFT, 
spectrograms, and CLAHE on the analysis of EEG data was CNN. 
The STFT, spectrogram, and CLAHE respectively applied to the 
zero-centered signal data processor, and to compare the test 
accuracies achieved by the CNN model. These metrics; FFNNs, and 
CNNs, enable us to exhaustively compare the signal processing 
techniques and choose the most effective in improving ML model 
performance for the classification of EEG signals. In addition, it 
should be considered that FFNN and CNN are the most primitive 
forms of neural networks. Due to their high sensitivity to input data, 
these models have been used as benchmark models in this paper; 
if the data is correctly pre-processed, it would boost the quality of 
the data prepared for the input of the neural network. Furthermore, 
it is critical to note that in the considered study the input data are 
kept constant by not performing the data shuffling procedure at 
any time during the study. Additionally, all hyperparameters for 
the two model types, FFNN and CNN, were frozen. Therefore, any 
increase in test accuracy could be exclusively attributed to the type 
of pre-processing technique conducted to the input data.

Materials and Methods
Dataset description

In this work, the SEED-V dataset [16] was employed, which is 
an advanced multimodal dataset created by the BCMI laboratory. 
The dataset is a cornerstone of many tasks in emotion recognition 
by providing both EEG signals as well as eye movement attributes 
in five emotional conditions: happiness, sadness, fear, disgust, and 
neutrality. More specifically, we mainly considered the emotional 
EEG data inside SEED-V; this allowed us to use this standardized 
data source to evaluate our methods. With over 5,800 applications 
performed by more than 1,000 research organizations up to 
December 2023, the SEED series datasets demonstrate remarkable 
significance and prospects for use in academia.

Evaluation methodology

Our methodology employed FFNNs and CNNs to evaluate 
test accuracy as metrics for our models. Our primary focus lies 
on the emotional EEG data, which we utilize to evaluate our 
analytical models. FFNNs are used for the Hilbert-transformed 
and original EEG signals, and CNNs are used to assess the efficacy 
of other image-based signal processing techniques such as STFT, 
spectrograms, and SCLAHE. Initially, we normalized data and 
froze all hyperparameters. This approach allowed us to maintain a 
consistent input format, avoiding data shuffling to ensure repeatable 
and reliable results. For the Hilbert Transformer evaluation, the 
normalized EEG signals were first classified using an FFNN. We 
measured the test accuracy to establish a baseline for EEG data 
classification. Subsequently, we applied the Hilbert Transformer to 
the EEG data and repeated the classification process, comparing the 
test accuracies to evaluate the impact of this preprocessing step. 
This iterative approach, with fixed hyperparameters for both the 
FFNN and CNN models, ensured that any observed improvements 
in test accuracy could be attributed to the enhanced quality of 
input data provided to the neural networks. Furthermore, we 
conducted comparative analyses using STFT, Spectrogram, and 
SCLAHE preprocessing techniques, employing a consistent CNN 
architecture as a classifier. These comparisons aimed to determine 
the efficacy of different preprocessing methods in improving model 
accuracy by introducing additional features into the input data. It 
is important to note that while EEG datasets are inherently time 
series sequences, typically suggesting a preference for other types 
of neural network architectures, our methodology justified the use 
of FFNNs and CNNs. By augmenting the EEG data with extra features 
through preprocessing, we hypothesized that if the preprocessing 
was effective, it would be reflected in increased test accuracy of 
the models. This approach is designed to demonstrate that, despite 
the conventional wisdom regarding neural network applications to 
time series data, significant improvements can be achieved through 
strategic data preprocessing.

Fourier transform

Brain signals’ complexity and variability, coupled with noise 
and artifacts, often render raw EEG traces challenging to interpret 
directly [17]. This complexity limits our ability to distinguish brain 
activities associated with different tasks or states directly from raw 
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EEG signals. One of the pivotal mathematical tools used to overcome 
these limitations is the FT. The invention of the Fast Fourier 
Transform (FFT) by Cooley and Tukey in 1965 revolutionized signal 
processing, enabling efficient frequency analysis of EEG data [18]. 
This led to the broader adoption of the FT for EEG analysis. The 
FT is a mathematical transform that decomposes a function (often 
a time-domain signal) into its constituent frequencies [19]. For a 
continuous, time-domain signal x(t), the Fourier Transform X(f) is 
given by:

( 2 )( ) ( ) j ftX f x t e dtπ∞ −

−∞
= ∫

Where:

- x(t) is the input signal,

- e(-j2π f t) is the complex exponential function,

- f is the frequency in hertz,

- j is the imaginary unit.

By decomposing a signal into its constituent frequencies, the 
FT enables researchers to analyze the spectral content of EEG data, 
providing insights into the brain’s rhythmic activity that is not 
readily apparent in the time-domain waveforms [20]. Applying the 
FT to EEG data facilitates several advantages over analyzing raw 
EEG signals [21]. Many noise sources and artifacts in EEG data, such 
as power line interference or muscle activity, have characteristic 
frequencies [22]. By analyzing the frequency spectrum of EEG data, 
researchers can more easily identify and filter out these unwanted 
signals, improving the signal-to-noise ratio and the reliability of the 
data. Changes in specific bands of the EEG frequency spectrum are 
associated with different cognitive and motor tasks. By examining 
changes in the power spectral density within these bands, we 
can distinguish between brain states associated with various 
tasks, even when such differences are not discernible in the raw 
EEG waveforms. Although the FT itself does not directly provide 
temporal information about when specific frequencies occur, 
extensions of the FT, such as the STFT and wavelet transforms, 
allow for the analysis of how the frequency content of EEG signals 
changes over time [23]. This capability is vital for studying dynamic 
brain processes.

Short-time fourier transform

The STFT addresses a crucial limitation of the basic FT when 
applied to EEG data, which is the lack of temporal resolution in 
the frequency domain [24]. While the FT is adept at revealing a 
signal’s frequency components, it does not provide information 
about when these components occur in time [25]. This limitation is 
particularly problematic for EEG analysis, given the brain’s dynamic 
nature, where the significance of neural oscillations can vary 
dramatically over short periods. The STFT is used to determine the 
sinusoidal frequency and phase content of local sections of a signal 
as it changes over time [26]. The STFT of a signal is obtained by 
multiplying the signal by a window function that slides over time:

( 2 ){ ( )}( , ) ( ) ( )? j ftSTFT x t f x t w t e dtπτ τ
∞ −

−∞
= −∫

Where:

- w(t-τ) is the window function centered around τ,

- f is the frequency,

- τ represents the time around which the window function 
is centered.

The STFT extends the FT’s capabilities by dividing the EEG 
signal into short, overlapping time segments and applying the 
Fourier Transform to each segment individually. This process 
results in a two-dimensional signal representation, where one 
axis represents time and the other frequency. In this work, we 
implemented STFT to analyze the non-stationary nature of EEG 
signals over time. Time-frequency representations Spectrograms 
were created, illustrating the evolution of frequency bands over 
cognitive tasks or stimuli. Thus, the STFT provides a time-varying 
frequency spectrum of the EEG signal, offering insights into how 
the power of different frequency bands evolves over an experiment 
or cognitive task. The STFT facilitates examining transient brain 
activities and their evolution over time [27]. By providing a time-
frequency representation of EEG data, the STFT allows us to 
pinpoint the frequency components present in the signal and when 
these components occur [28].

This dual information is critical for understanding brain 
dynamics during different cognitive processes or in response to 
external stimuli. Similar to the FT, the STFT identifies artifacts with 
distinct time-frequency signatures. However, its time-resolved 
nature allows for more precise artifact removal. It can identify 
when the artifact occurs, enabling targeted filtering that preserves 
the integrity of the underlying brain signal. However, the choice 
of duration of each time segment requires a trade-off between 
time and frequency resolution; a larger window provides better 
frequency resolution but worse time resolution, and vice versa. 
This trade-off is known as the Heisenberg uncertainty principle 
of signal processing. Despite this limitation, the STFT’s ability to 
provide a time-resolved frequency analysis makes it an invaluable 
tool in EEG research. It allows a more nuanced understanding of 
brain activity’s complex, dynamic patterns, facilitating advances in 
neuroscience, clinical diagnostics, and brain-computer interfaces.

Spectrogram

A spectrogram is a visual representation of a signal’s spectrum 
of frequencies as it varies with time. The spectrogram is the squared 
magnitude of the STFT and is represented as:

2( , ) | { ( )}( , ) |S f STFT x t fτ τ=

The spectrogram provides a 2D representation of the signal [29]. 
One axis represents time, the other frequency, and the intensity of 
each point represents the magnitude of the frequency at that time. 
In EEG analysis, the spectrogram plays a crucial role by offering a 
compelling and intuitive way to examine and interpret the complex 
dynamics of brain electrical activity [30]. Creating a spectrogram 
involves dividing the EEG signal into short, overlapping segments, 
applying the Fourier Transform to each segment to obtain its 
frequency spectrum, and then plotting these spectra as a function 
of time [31]. The result is a two-dimensional graph with time on the 
horizontal axis and frequency on the vertical axis. The intensity of 
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each frequency at each point in time is represented by the color or 
brightness of each point on the graph. This transformation enhances 
the detection of specific brain activities that might be less apparent 
in standard spectral analyses. The Transformed of Spectrum 
analysis leverages advanced signal processing techniques to isolate 
and magnify features within the EEG data, offering a new layer of 
insight into the neural dynamics underlying different cognitive 
states and responses to stimuli [32]. Spectrograms provide a clear, 
visual means of identifying changes in brain activity over time. This 

includes the onset and offset of specific frequency bands associated 
with different cognitive states or responses to stimuli, offering 
immediate insights that might be less apparent through numerical 
analysis alone. Spectrograms maintain the inherent trade-off 
between time and frequency resolution due to the Heisenberg 
uncertainty principle. However, they allow researchers to visually 
assess the balance between these resolutions and adjust their 
analysis parameters accordingly (Table 1).

Table 1: Improvement of neural network accuracy by applying transformations on EEG data.

Neural Network Transformer Accuracy (%) Improvement of Accuracy (%)

CNN

STFT 22 Benchmark

Spectrogram 33 50

SCLAHE 45 104

FFNN
Without applying Transformation 53 Benchmark

Hilbert Transformer 79 49

Contrast limited adaptive histogram equalization

Applying CLAHE to EEG signal analysis represents an innovative 
crossover from image to biomedical signal processing. Traditionally, 
CLAHE is utilized to enhance the contrast in images, particularly 
in contexts where it’s crucial to identify details obscured by poor 
lighting or similar factors [33]. Its adaptation for EEG signal 
analysis involves an abstract yet insightful approach, leveraging 
the technique’s core principles to enhance the interpretability 
of EEG data visualizations, such as time-frequency maps, brain 
topographies, and other graphical representations derived 
from EEG signals. The mathematical description of histogram 
equalization involves calculating the Cumulative Distribution 
Function (CDF) of the pixel intensities and mapping it to a new set 
of values to spread out the most frequent intensity values [34]. We 
break down the process into sequential steps to detail the CLAHE 
algorithm mathematically, especially considering an image as a 
matrix. Each step involves specific operations on the image’s pixel 
values. CLAHE is an image processing technique used to improve 
the contrast of images and unlike ordinary histogram equalization, 
CLAHE operates on small regions in the image, called tiles, rather 
than the entire image [35]. The algorithm enhances the contrast of 
each tile, so when the tiles are stitched back together, the contrast 
of the entire image is improved without significantly amplifying 
noise. The process is described as follows:

Divide the Image into tiles: Consider an image represented 
as a matrix I of size M×N, where M is the number of rows (height) 
and (N) is the number of columns (width). The image is divided 
into non-overlapping tiles of size (m×n). The number of tiles can 
be calculated as:

,x y
M NT T
m n

   = =      
where Tx and Ty are the numbers of tiles along the x and y 

directions, respectively, and (⌈⋅⌉) denotes the ceiling function.

Apply histogram equalization to each tile: For each tile, 
we calculate its histogram Hk(i), where k is the tile index and i is 

the intensity level ranging from 0 to (L-1) (e.g., for an 8-bit image, 
(L=256). The histogram equalization transformation function Tk (i) 
for each tile is then given by:

( 0)

( )( ) ( 1)
i

k
k

j

H jT i L
m n=

 
= − × 

∑
where (⌊⋅⌋) denotes the floor function.

Clip the histogram (contrast limiting): To prevent excessive 
contrast enhancement, the histogram is clipped at a predefined 
threshold (C). If (Hk(i)>C), the excess is redistributed uniformly 
across all intensity levels. The clipped histogram ' ( )kH j  is given by:

1
'

0

1( ) ( ( ), ) (0, ( ) )
L

k k k
j

H i min H i C max H j C
L

−

=

= + −∑

Calculate the new transformation function: Using the 
clipped histogram, we calculate a new transformation function 

' ( )kT i  for each tile:
'

'
1 '

( 0)
0

( )( ) ( 1)
( )

i
k

k L
j kl

H jT i L
H l−

=
=

 
 = −
  

∑
∑

Interpolation: To eliminate artificially induced boundaries 
between tiles, bilinear interpolation is applied using the 
transformation functions ' ( )kT i of the four nearest tiles. For a pixel 
(x,y) within a tile, its new intensity I’ (x,y) is calculated as:

( , ) &(1 )(1 ) ' ( ( , ))
(1 ) ' ( ( , ))

(1 ) ' ( ( , )) ' ( ( , ))

top left

top right

bottom left bottom right

I x y a b T I x y
a b T I x y

a bT I x y abT I x y

−

−

− −

′ = − −

+ −

+ − +

Where (a) and (b) are the horizontal and vertical distances of 
the pixel from the top-left corner of the tile it belongs to, normalized 
by the tile dimensions. This process enhances each region’s local 
contrast while controlling the image’s overall contrast enhancement 
to avoid amplifying noise. CLAHE is particularly effective for 
enhancing the contrast of medical images or photographs taken 
in low-light conditions. As CLAHE enhances contrast in localized 
regions within an image to reveal hidden details, applying it to EEG 
visualizations enhances the distinction between different signal 
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components. This could improve the visibility of subtle oscillatory 
patterns, phase-amplitude coupling, or transient events like spikes 
and sharp waves, which are significant in diagnosing neurological 
conditions.

One of the critical challenges in EEG analysis is the presence 
of noise and artifacts, such as those caused by muscle movements, 
eye blinks, or external electrical sources [36]. The contrast-limiting 
aspect of CLAHE can be particularly beneficial in EEG visualizations 
by preventing the overamplification of noise, ensuring that genuine 
brain activity is highlighted without exaggerating the underlying 
noise and artifacts. While EEG signals fundamentally differ from 
photographic images, many forms of EEG analysis involve creating 
visual representations, such as spectrograms, topographic maps, or 
brain connectivity graphs [37]. Applying CLAHE to spectrograms 
or time-frequency plots of EEG data can make identifying specific 
frequency bands and their temporal dynamics easier, which is 
critical for understanding brain states and diagnosing disorders 
[38]. For EEG topographies that show the distribution of electrical 
activity across the scalp, CLAHE can enhance the contrast between 
regions of high and low activity, facilitating the localization of brain 
activity or abnormalities [39]. By limiting contrast enhancement 
in areas with minimal signal variability, which might otherwise 
amplify noise, CLAHE helps maintain a balance where the focus is 
on meaningful EEG signal components [40].

Hilbert transform
The Hilbert Transform is a fundamental tool in signal 

processing, particularly valued for its application in analyzing EEG 
signals [41]. This mathematical transform derives the analytic 
representation of a real-valued signal, enabling the extraction of 
its amplitude envelope and instantaneous phase [42]. Utilizing 
the Hilbert Transform in EEG signal analysis facilitates a deeper 
understanding of brain activity’s complex, oscillatory nature, 
offering insights into the amplitude and phase dynamics of neural 
oscillations across different brain states and conditions [43]. 
By applying the Hilbert Transform to EEG signals that have been 
filtered into specific frequency bands (e.g., delta, theta, alpha, beta, 
and gamma), researchers can isolate and analyze the dynamics 
of these bands [44]. This is particularly useful in studies related 
to sleep, cognition, and various neurological disorders, where 
different frequency bands are associated with distinct brain states 
and functions. The Hilbert Transform offers a robust framework for 
enhancing emotion classification tasks using EEG signals [45]. By 
providing a comprehensive time-frequency analysis, it enables the 
extraction of features that are crucial for distinguishing between 
different emotional states. The following subsections detail the 
application and benefits of the Hilbert Transform in this context.

Feature extraction: The Hilbert Transform facilitates extracting 
instantaneous features from EEG signals, such as amplitude, 
frequency, and phase. These features can directly correlate with 
various emotional states, offering a nuanced understanding of 
brain responses to emotional stimuli.

[ ]( ) ( ) . ( )ax t x t j H x t= +

1 ( )( ) ( ) , ( ) arg( ( )), ( )
2a a

d tA t x t t x t f t
dt
φφ

π
= = =

where xa(t) is the analytic signal, A(t) the instantaneous 
amplitude, ϕ(t) the instantaneous phase and f(t) the instantaneous 
frequency.

Phase synchronization analysis: The phase information 
provided by the Hilbert Transform can be utilized to investigate the 
synchronization between different brain regions during emotional 
processing. This is crucial for understanding the network dynamics 
underlying different emotional states.

( ) ( ) ( )ij i jt t tφ φ φ∆ = −

where Δϕij(t) represents the phase difference between EEG 
signals from regions i and j.

Enhanced classification models: Features derived from 
the Hilbert Transform can significantly enhance the performance 
of machine learning models for emotion classification. By 
incorporating these features, classifiers can better distinguish 
between subtle differences in EEG signals corresponding to 
different emotions.

( ( ), ( ), ( ),...)ijClassifier A t f t t Emotion Stateφ∆ →

where the classifier uses instantaneous amplitude, frequency, 
and phase synchronization, among others, to predict the emotional 
state.

Temporal dynamics of emotions: The Hilbert Transform’s 
ability to capture the temporal dynamics of EEG signals allows for 
analyzing how emotional states evolve over time. This temporal 
aspect is critical to understanding the transient nature of emotions 
and their impact on brain activity.

( ) ( ( ), ( ),...)E t Function A t f t=
where E(t) represents an emotional state at time t, as a function 

of instantaneous amplitude, frequency, and other features.

Results and Discussion
In this investigation, a STFT was applied to two distinct 

emotional states, Happiness and Fear, extracted from the SEED-V 
dataset, as depicted in Figure 1. Upon analysis, it was observed that 
after the application of STFT, no intuitive or visually discernible 
differences between the ‘Happiness’ and ‘Fear’ categories could 
be identified. This lack of distinction suggests that when STFT is 
employed as a preprocessing technique, it introduces complexities 
for NN models in efficiently evaluating and classifying the processed 
data. It is intended to be empirically demonstrated within this study 
that this preliminary observation is accurate, thereby underscoring 
the challenges NN models encounter in classifying data that has 
undergone STFT preprocessing. Subsequently, an experiment was 
meticulously designed, wherein the data, processed through STFT 
from the SEED-V dataset, were input into a specifically configured 
Convolutional Neural Network (CNN) (Figure 2). The architecture of 
this CNN was meticulously crafted, incorporating two convolutional 
layers with filters set to a dimension of 3x3 and channel counts set 
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at 32 and 64, respectively. Following the convolutional layers, a 
fully connected layer was introduced. This layer was designed with 
128 neurons, employing the Rectified Linear Unit (ReLU) activation 
function, with the aim of classifying the Electroencephalogram 
(EEG) signals. This approach was chosen to meticulously address 
the classification challenges presented by EEG data that had been 
preprocessed with STFT, demonstrating the complexities and 

considerations involved in preparing EEG data for neural network-
based analysis. The utilization of STFT after integration into the 
CNN model yielded an accuracy of 22%. Figure 3. illustrates the 
training and validation losses. It is noteworthy to mention that CNN 
serves as the metric in our study, and it should be emphasized that 
achieving the maximum test accuracy for classification is not the 
primary objective.

Figure 1: Comparison of Happy (a and b) and Fear (c and d) conditions pre-STFT (a and c) and post-STFT (b and d) 
processing.

Figure 2: The CNN architecture used in this study.
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Figure 3: The loss for training and validation after using STFT.

Based on the observations Figure 4, it was intuitively anticipated 
that the Happy and Fear classes would have more pronounced 
differences. Specifically, the image corresponding to the ‘Fear’ 
class exhibited a greater extent of red-colored areas, indicative of 
heightened distinctions between the two classes. Consequently, 
it was hypothesized that feeding spectrogram images to the CNN 
would yield higher accuracy compared to utilizing the STFT 
transformation alone. Indeed, the incorporation of spectrogram 
images into the CNN model resulted in an improved accuracy of 33%, 
surpassing the accuracy obtained with the STFT transformation, 
which stood at 22%. The training and validation losses are 
illustrated in Figure 5. In another method explored in this study, 
we initially applied Spectrogram transformation to the EEG signals. 
Subsequently, we subjected the data to CLAHE Transformation. 
As depicted in Figure 6, there are discernible differences between 

the CLAHE-Transformed data, indicating significant alterations in 
the data distribution. Consequently, it was anticipated that this 
preprocessing approach would lead to improved accuracy post-
classification (Figure 7). Upon feeding these transformed data 
into the CNN model, a test accuracy of approximately 45% was 
obtained, surpassing the accuracies achieved with Spectrogram 
alone (22%) and Spectrogram followed by STFT (33%). This finding 
underscores the efficacy of combining Spectrogram and CLAHE 
transformations as a preprocessing step to enhance classification 
accuracy in EEG signal analysis. In Figure 8, it is evident that both 
the Happy and Fear classes display similar characteristics following 
the application of the Hilbert transformation. However, the true 
potency of mathematical techniques emerges through the Hilbert 
Transform’s ability to extract additional features.

Figure 4: Comparison of Happy (a and b) and Fear (c and d) conditions pre-Spectrogram (a and c) and post-
Spectrogram (b and d) processing.
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Figure 5: The loss for training and validation after applying Spectrogram Transformation.

Figure 6: Comparison of Happy (a and b) and Fear (c and d) conditions pre-SCLAHE (a and c) and post-SCLAHE (b 
and d) processing.
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Figure 7: The loss for training and validation after using CLAHE Enhanced Spectrogram Transformation.

 

 
Figure 8: Comparison of Happy (a and b) and Fear (c and d) conditions pre-Hilbert Transformation (a and c) and 

post-Hilbert Transformation (b and d) processing.

Initially, when the raw EEG data was input into the FFNN 
network without undergoing any transformation, the accuracy 
plateaued at approximately 53%. This outcome implies that 
FFNN networks may not be optimally tailored for tasks involving 
time sequences. However, upon implementing the Hilbert 
transformation, a notable improvement in accuracy, reaching about 
79%, was observed. Therefore, we conclude that applying the 
Hilbert transformation on raw EEG data could improve accuracy 
by 49%. Subsequently, both the original EEG data and the Hilbert-
transformed data were fed into the FFNN network. This network 
comprised four hidden layers, each housing 512 neurons with ReLU 

activation functions. It is pertinent to note that this neural network 
architecture is deliberately kept simple, and the study’s objective 
does not solely focus on maximizing accuracy. The schematic of 
the FFNN fully connected model is delineated in Figure 9. The loss 
curves for training and evaluation of both the original EEG data 
and the Hilbert-transformed data are depicted in Figure 10. By 
applying the Hilbert transformer to EEG data, we extract additional 
information for each EEG sample. These auxiliary features provide 
richer representations of the data, enabling the FFNN model to 
classify more accurately. Therefore, in the current EEG data analysis, 
the transformative techniques examined through this study are an 
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essential aid in discovering the puzzle of the brain electrical signals. 
The FT is truly a bedrock for frequency analysis. Nevertheless, 
the method has its limitations on the treatment and resolution of 
non-stationary signals that call for methods that provide a time-
core domain, such as the STFT. However, with its time-frequency 
representation, the method provides a limit in precision forfeiting 
the rapid neural dynamics subtleties. Preprocessing using the 
SCLAHE enhances the signal clarity, especially in discouraging 
noise, providing a clean ground for all the future process. The use of 
the Hilbert transformation and SCLAHE on preprocessing phase on 
our data inputs significantly reduce the computational complexity 
involved. This methodology is amazing due to its unique capabilities. 

In problem areas where methods such as synchronization and brain 
connectivity flounder, the Hilbert Transform is almost the only thing 
that can be effectively applied. Given that the Hilbert methodology 
allows us to obtain the phase of the signal, which is fundamentally 
a more important area of research due to synchronization regions 
in the brain. Among the possible future work directions, one can 
note the integration of transformative technologies with advanced 
computational models such as deep learning. This integration will 
significantly increase the accuracy and granularity of EEG analysis, 
which will make it possible to open up completely new perspectives 
in the field of cognitive science and neurovascular engineering.

Figure 9: The schematic of FFNN fully connected classifier metric model.

Figure 10: The loss for training and evaluation for original EEG data (left hand-side) and Hilbert transformed data 
(right hand-side).
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Conclusion
In this work, we investigated the effect of different preprocessing 

methods on the accuracy in EEG classification on the basis of SEED-V 
EEG dataset. Initially, STFT failed to show significant differences 
among states. But further checks with a CNN seemed to prove that 
using spectrogram images increased and produced more correct 
results than the STFT alone. Combining the Spectrogram and 
CLAHE transformations further enhanced accuracy, demonstrating 
the worth of multi-step preprocesses in this area. Moreover, our 
study of Hilbert transformations showed that they had a positive 
effect on the classification accuracy of raw EEG features. This 
suggests the importance of applying mathematical transformations 
to time sequence data for improved performance in processing. 
It was also pointed out that the accuracies of FFNN models with 
raw EEG data reach some limit. But factoring in the Hilbert 
transformation strikingly improved performance of the FFNN 
model with a notable 49% increase in accuracy, indicating ability 
to turn this transformation optimally delivering improvements in 
NN efficiency. In addition, by incorporating spectrogram images 
from STFT data the CNN architecture could be kept consistent with 
fixed hyperparameters throughout. Furthermore, the spectrogram 
data obtained a 50% accuracy improvement with this move. 
When CLAHE was applied to spectrogram data (SCLAHE), this 
improvement dramatically increased to a whopping 104%. This 
clearly highlights the combined strength of different pre-processing 
techniques on model accuracy in neural networks. Discussion 
the current research emphasizes the absolute importance of 
advanced preprocessing in EEG signal analysis. It proves that using 
transformations can have a large impact upon neural network-
based classification accuracy, and illuminates the fine details and 
necessary considerations involved in pre-processing raw EEG data 
for practical analysis.
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