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Historical Background
The class of group operator algebras was a typical model Murray and von Neumann 

studied in initiating the theory of operator algebras [1-8]. Since then, the interplay between 
groups and operator algebras has been a main line in the development of operator algebras. 
In this article, we review the recent work on determining when a countable discrete group is 
C*-simple, i.e., its reduced group C*algebra has no nontrivial closed two side ideas. We also 
discuss the question for twisted group algebras. All groups in this article are assumed to be 
countable and discrete. Let G be a group. 

The left regular unitary representation ( )( )λ →G B l G2 :  is defined by ( )( )( ) ( )λ ξ = ξ −g h g h  1

, for all g, ∈h G  and ( )ξ ∈ l2 G . The C*-algebra generated by ( )λ ∈g  :  g{ G } is the reduced group 
C*-algebra of G denoted by 

TC* (G) .

In 1949, I. Kaplansky asked R. Kadison whether any simple unital C*-algebra other 
than C has a nontrivial projection. In 1968, Kadison suggested R. Powers to study from this 
point of view the reduced group C* algebra T 2C* (F ) of the non-abelian free group with two 
generators. Powers showed within a week that is simple and published the work several years 
later [9,10]. Since then, considerable efforts have been made in finding C*-simple groups. The 
generalization/modification of Powers’ proof had been the only method in finding C*-simple 
groups until M. Kalantar and M. Kennedy’s breakthrough work [6].

Recent Prograss on C*-Simple Groups
Recall that an action of a group G on a compact Hausdorff space X is said to be strongly 

proximal if for each probability measure µ on X, the week ∗-closure of the orbit G.µ contains a 
point-mass δx, for some ∈x X . An action ∩G  X  is a boundary action if it is strongly proximal 
and minimal. In this case, we call X a G-boundary. Recall also that the amenable radical Rad(G) 
of a group G is defined as the largest normal amenable subgroup of G.

The following Furman’s result gives the existence of boundary actions of a group.

Theorem 0.1 [4]
Let G be a group and ∈t G . Then t /∈ Rad(G) if and only if there is a G-boundary X such 

that t acts non-trivially on X.

An action ∩G  X  is free if = ∈ = =∅gX   x X  :  x   x }g  { for every non-identity ∈g G . An 
action ∩G  X is topologically free if = ∈ =gX   x X  :  gx  {  x } has an empty interior for every 
non-identity element ∈g G . Kalantar and Kennedy proved in [6] that a discrete group G is C*-
simple if and only if G acts topologically freely on some G-boundary. By Proposition 2.5 in [3], 
the action of G on its universal boundary ∂FG  is free if it is topologically free. Hence, we have 
the following characterization of C*-simple groups.
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Theorem 0.2 [3]
A group G is C*-simple if and only if G acts freely on some 

G-boundary X. A subgroup H of group G is recurrent if there is a 
finite subset { }⊆F G\ e such that −∩ =∅1F gHg  , ∀ ∈g G . Kennedy 
[7] obtained the following intrinsic characterization of C*-simple 
groups.

Theorem 0.3 [7]
A group is C*-simple if and only if it has no amenable recurrent 

subgroups.

U. Haagrep [5] characterized C*-simple groups in terms of 
Dixmier-type properties.

Theorem 0.4 [5]
Let G be a group. Then G is C*-simple if and only if for all 

{ }∈1 mt , ...,t G \  e ,

( ) ( ) ( ) ( )λ λ λ λ∈ + + ∈m0 conv s t1   ... t s :  s{ ( ) * G },

Where conv  is the closure of all convex combinations of the 
elements in the set.

Twisted Group C*-Algebras
The theory of twisted group C*-algebras is closed related 

to projective unitary representations of groups with important 
applications in various fields of mathematics and physics [9].

Let G be a group and ( )π → :  G  U H , where ( )U H  is the unitary 
group of Hilbert space H. We say that π is a projective unitary 
representation of G if

(1) ( ) ( ) ( ) ( )π π σ π= ∀ ∈g h   g,h gh , g,h G ,

where σ → :  G  T  is a function on G and = ∈ =T   z C  :  z  {  1}
. From (1), we get

(2) ( ) ( ) ( ) ( ) ( ) ( )σ σ σ σ σ σ= = = ∀ ∈g,e   e , g   1, g,h gh,k   g,hk h,k , g,h,k G.

A function σ → :  G  T  is called a 2-cocycle on G if it satisfies 
(2). The above described representation π is called a σ-projective 
unitary representation of G. We define ( )( )λσ → 2 :  G  U l G

by ( )( )( ) ( ) ( )σλ ξ σ ξ− −= 1 1g h  g, g h g h , , for g, ∈h G  and ( )ξ ∈ 2l G
. This representation is called the left regular σ-projective 
unitary representation of G. The C*-algebra generated by 

( ) ( )( )λσ ∈ 2g  :  g G  in } B l{ G is called the reduced twisted group C*-
algebra of σTC* (G, ) .

Let ( )π → :  G  U H be a σ-projective unitary representation of 
G and ξ ∈H . The map ( )ϕ π ξ ξ: g g ,  is called a diagonal matrix 
coefficient of π. Given two σ-projective unitary representations π 
and ρ of a group G, say that π is weakly contained in ρ, write π ρ
, if any diagonal matrix coefficient of π is a limit of sums of diagonal 
matrix coefficients of ρ, uniformly on every finite subsets of F. We 
say that π is weakly equivalent to ρ, write π ρ∼ , if π ρ  and ρ π .

Determining when ( )σ∗
rC G , is simple a very popular question 

in operator algebras. There are many discussions on this topic. For 
instance, Bedos and Omland [2] gave some sufficent conditions for 

( )σ∗
rC G , be to simple. They also applied their results to different 

types of groups such as wreath products and Baumslag-Solitar 
groups. Very recently, we used weak containment of projective 
unitary representations to give a characterization of the simplicity 
of ( )σ∗

rC G ,

Theorem 0.5 [1]
The algebra σ*

rC (G , ) is simple if and only if for every 
σ-projective unitary representation π of G, if σπ λ  then σπ λ∼ .
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