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Introduction
The metamaterial is a special designed man-made substance that exhibits properties 

that we don’t find naturally, for example, negative index. Metamaterial works on the principle 
of an LC circuit where we can vary the inductance and capacitance of the circuit to achieve 
different resonance frequencies. Resonance frequency also depends upon the periodicity and 
thickness of the substrate used. The metamaterial can be used as an absorber as it absorbs the 
EM wave of particular frequencies at the resonance. Here we tried to design the metamaterial 
with a resonance frequency between 0.1THz to 1THz. We have used Kapton as substrate with 
thickness 0.3mm and 5um as width and length. Kapton has a refractive index µ =1.88 + 0.04j.

 To calculate the absorptivity percentage, we can use the following relation between 
reflection coefficient, transmission coefficient and absorptivity [6-8]

Absorptivity in % = (1 - abs(S11)2 - abs(S21)2

here S11 and S21 are reflection and transmission coefficients. Here S21 is 0 as we have 
covered the bottom layer with perfect electric conductor, hence we can use the following 
formula,

Absorptivity in % = (1 - abs(S11)2) × 100

Design, Simulations and Result
Now let’s see the design for our metamaterial. We have used COMSOL for design and 

simulation. The whole thing is made up of two blocks, one of air and another of our substrate 
(Figure 1 & 2).
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Abstract
With the technological advancement we are exhausting different frequency bands in such a time 
metamaterial absorber which works in terahertz frequency band opens up the new avenue to look in. 
We can use this for the development of 6G technology and a lot of other applications. In contrast to the 
current situation where megahertz bandwidth is sufficient to drive audio and video components for user 
applications, future 2030s networks will require bandwidth at several gigahertz (GHz) (from tens of 
gigahertz to 1 terahertz [THz]) to function properly. Based on the current radiofrequency distribution 
chart, it is not possible to detect such a wide radio spectrum below 90GHz (0.09THz). Interestingly, these 
interlocking radio spectrum blocks are readily available at higher electrical spectrum, especially in the 
Terahertz (THz) frequency band [1-5].
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Figure 1: The dimensions for the substrate are as follow:
Width=length=0.03mm
Thickness= 0.2mm

Figure 2: The actual design here:
W=0.5um
H=3.5um
A1=5um

A2= 6.5um

The material used here is PEC/gold fabricated on the Kapton 
substrate of 0.2mm. The thickness of the air domain is 0.4mm 
[9-11]. And we have applied the perfect electric condition on the 
bottom layer and on design so that the incident wave cannot be 
transmitted (Figure 3-5).

Figure 3

Figure 4

Figure 5
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Along with a metamaterial structure, different boundary 
conditions need to be applied to the blocks, in order to have the 
required periodicity and electromagnetic condition.

We need to initialize the refractive index of the substrate as

µ =1.88 + 0.04j.

Once every condition is set, we can start the simulation (Figure 
6).

Figure 6

We can see clearly how the Electric field is trapped between 
the parallel plate structure. The range for this experiment is kept 
between 0.1THz to 1THz. We have applied the electric field of 1V/m 
in both x and y directions hence the resultant electric field is at 45 
deg to x-axis. The arrow in Figure 6 show the direction of electric 
field and we can see that how there is electric is an electric field 
between the plates along the direction of arrow (Figure 7).

Figure 7

In Figure 7 we have plotted absorbance along the Y axis and 
frequency along the x axis in terahertz. We are getting three peaks 
which shows multiple resonance frequency but at 0.89THz (Figure 
8) we are getting the maximum peak around 80% absorbance [11-
13].

Figure 8

Conclusion
We can conclude from the above result that our design shows 

good absorbance, and it further can be optimized to get much 
sharper results. In contrast to the current situation where megahertz 
bandwidth is sufficient to drive audio and video components for 
user applications, future 2030s networks will require bandwidth 
at several gigahertz (GHz) (from tens of gigahertz to 1 terahertz 
[THz]) to function properly. Based on the current radiofrequency 
distribution chart, it is not possible to detect such a wide radio 
spectrum below 90GHz (0.09THz). In such a scenario our work 
is a step toward developing metamaterials that help to solve this 
problem. New advances in different technologies have made the 
previously unused terahertz frequency band accessible for imaging 
systems [14]. The ‘Terahertz Gap’ has a frequency degree from ∼0.3 
THz to ∼10THz in the electromagnetic spectrum which in among 
microwave and infrared. The terahertz radiations are invisible to 
naked eye & in assessment with X-ray they may be intrinsically 
safe, non-unfavorable and non-invasive. that is such a new subject 
that researchers round the arena race to build the primary sensible 
device [15]. It resolves many of the questions left unanswered via 
complementary strategies, such as optical imaging, Raman and 
infrared. Terahertz spectroscopy has quantity of packages run from 
detecting defects in tablet coating, product inspection (industry), 
spectroscopy (chemistry, astronomy), cloth characterization 
(physics), weapons concealed below garb (airports), detection 
of most cancers and caries. within the pharmaceutical industries 
it allows nondestructive, internal, chemical analysis of capsules, 
capsules and other dosage forms. This paper attempts therefore 
now not best to provide a short evaluation over the imaging era, but 
also over the complete variety of modern-day systems and studies 
in terahertz generation [16-20].
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