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Abstract

In this study, bifurcation analysis and multi-objective nonlinear model predictive control are performed
on an asthma transmission model. Bifurcation analysis is a powerful mathematical tool used to deal with
the nonlinear dynamics of any process. Several factors must be considered, and multiple objectives must
be met simultaneously. The MATLAB program MATCONT was used to perform the bifurcation analysis.
The MNLMPC calculations were performed using the optimization language PYOMO in conjunction with
the state-of-the-art global optimization solvers IPOPT and BARON. The bifurcation analysis revealed the
existence of branch points. The MNLMPC converged to the Utopia solution. The branch points (which
cause multiple steady-state solutions from a singular point) are very beneficial because they enable the
Multi objective nonlinear model predictive control calculations to converge to the Utopia point (the best
possible solution) in the model.
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Background

Ghosh [1], developed a mathematical model concerning industrial pollution and Asthma.
D’amato et al. [2], discussed the environmental risk factors (outdoor air pollution and climatic
changes) and the increasing trend of respiratory allergy. Martinez FD [3], researched the
relationship between genes, environments, development, and asthma. Gauderman et al. [4]
studied the effect of traffic on lung development. Ionescu et al. [5,6], developed parametric
models characterizing respiratory input impedance and investigated the relationship between
fractional-order model parameters and lung pathology in chronic obstructive pulmonary
disease. Epton et al. [7] studied the effect of ambient air pollution on the respiratory health
of school children. Ram et al. [8] developed a nonlinear mathematical model for Asthma.
Strickland et al. [9] studied the short-term associations between ambient air pollutants and
pediatric asthma emergency department visits. lonescu et al. [10,11] performed theoretical
work using fractional order models of asthma and respiration. Tawhai et al. [12], developed
multi-scale lung models. Annesi-Maesano et al. [13] studied indoor air quality and sources
in schools and related health effects. Ionescu et al. [14], developed a respiratory impedance
model with a lumped fractional order diffusion compartment. Kim et al. [15] investigated the
regulation of Th1/Th2 cells in asthma development. Lim et al. [16], studied the short-term
effect of fine particulate matter on children’s hospital admissions and emergency department
visits for asthma. Faria et al. [17], studied forced oscillation, integer and fractional-order
modelling in asthma. Alejo et al. [18] modelled the association between the seasonal asthma
prevalence and upper respiratory infections. Cohen et al. [19] studied the trends of the global
burden of disease attributable to ambient air pollution. lonescu et al. [20] investigated the role
of fractional calculus in modeling biological phenomena. Landrigan et al. [21] studied the effect
of pollution on children’s health. Whittle et al. [22] studied the molecular characterisation
of human dust-mite-associated allergic asthma. Shah et al. [23] developed a mathematical
model for Asthma due to Air Pollution. In this work, bifurcation analysis and multiobjective
nonlinear model predictive control are performed on a dynamic model describing asthma
due to air pollution [23]. The paper is organized as follows. First, the model equations are
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presented, followed by a discussion of the numerical techniques
involving bifurcation analysis and Multiobjective Nonlinear Model
Predictive Control (MNLMPC). The results and discussion are then
presented, followed by the conclusions.

Model equations

In this model, individuals experiencing an asthma exacerbation
are av, individuals affected by indoor smoke are sv, and individuals
affected by air pollution are pv. Indoor smoke increases the intensity
of pollution in the air at a rate of 1 Asthma-infected individuals
infect their surrounding environment at a rate of B3 while the
rate at which asthma exacerbation is caused by indoor smoke and
outdoor air pollution is 2 and p4 . #a and U represent the death
rate because of asthma exacerbation and a natural degradation rate
for all three variables.

o (dStV) — bpar - Pi(sv) pv - B2(sv)av+ B3(av) - p(sv)
—d (pv) = Bl(sv) pv— B4(av) pv— u(pv)

t M
“ Sl,—v) = Ba(av) pv— B3(av) + f2Asv)av— u(av) - pa(av)

The base parameter values are
bpar =0.1; f1=0.15; 82 =0.25; B3=0.3; B4 =035 u=0.3;ua=0.2.
The variables and parameters can be summarized as

a) individuals experiencing an asthma exacerbation av

b) individuals affected by indoor smoke sv

¢) individuals affected by air pollution pv

d) Indoor smoke increases the intensity of pollution in the air at
arate f1

e) Asthma-infected individuals infect their

environment at a rate 43

surrounding

f) rate at which asthma exacerbation is caused by indoor smoke

52

g) rate at which asthma exacerbation is caused by outdoor air
pollution g4

h) represent the death rate because of asthma exacerbation H4
i) natural degradation rate for all three variables u
Bifurcation analysis

The MATLAB software MATCONT is used to perform the
bifurcation calculations. Bifurcation analysis deals with multiple
steady-states and limit cycles. Multiple steady states occur because
of the existence of branch and limit points. Hopf bifurcation points
cause limit cycles. A commonly used MATLAB program that locates
limit points, branch points, and Hopf bifurcation points is MATCONT
[24,25]. This program detects Limit Points (LP), Branch Points (BP)
and Hopf bifurcation points(H) for an ODE system

dx

E = f(xaa) (2)

xeR" Let the bifurcation parameter be @ . Since the gradient
is orthogonal to the tangent vector,

The tangent plane at any point w=[w,,w,,w;,w,,...w,,;] must

Pl
satisfy

Aw=0 3)
Where A is
A=[of /ox |of /0a] (4)

Where 0f /Ox is the Jacobian matrix. For both limit and branch
points, the Jacobian matrix J = [of / ox]must be singular.

For a limit point, there is only one tangent at the point of
singularity. At this singular point, there is a single non-zero vector,
y, where Jy=0. This vector is of dimension n. Since there is only
one tangent the vectory=(,,V,,Vs,V,,...y,) must align with
W= (W, Wy, W;,W,,..W,) . Since

Jv=Aw=0 (5)

the n+1™ component of the tangent vector w,,, = 0 at a Limit
Point (LP).

For a branch point, there must exist two tangents at the
singularity. Let the two tangents be z and w. This implies that

Az=0 6)

Aw=0

Consider a vector v that is orthogonal to one of the tangents
(say w). v can be expressed as a linear combination of z and w (
v=az+ pw), Since Az=Aw=0, Av=0 and since w and v are
orthogonal, w'y=0. Hence Bv:[:l}v:o which implies that B is
singular.

A

Hence, for a Branch Point (BP) the matrix B—{ T:|must be
singular. "

At a Hopf bifurcation point,

det(2/, () @1,)=0 (7)

@ indicates the bialternate product while is the n-square
identity matrix. Hopf bifurcations cause limit

cycles and should be eliminated because limit cycles make
optimization and control tasks very difficult.

More details can be found in Kuznetsov [26,27] & Govaerts [28].

Multiobjective Nonlinear Model Predictive Control
(MNLMPC)

The rigorous Multiobjective Nonlinear Model Predictive Control
(MNLMPC) method developed by Flores Tlacuahuaz et al. [29] was
used.

Consider a problem where the variables z q,(t) (j=1, 2.n)
have to be optimized simultaneously for a dynar;ﬁc problem

dx
E =F(x,u) (8)

I; being the final time value and n the total number of objective
variables and u the control parameter. The single objective optimal
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control problem is solved 1nd1v1dually optimizing each of the
Varlables Zq (%) The optimization of Zq () will lead to the values
> Then, the Multiobjective Optimal Control (MOOC) problem that
w1ll be solved is
min(Y (Y ¢,(t)-4))’
J= i

subject to % =F(x,u); 9

This will provide the values of u at various times. The first
obtained control value of u is implemented and the rest are
discarded. This procedure is repeated until the implemented and
the first obtained control values are the same or if the Utopia point
where ( /i q,(t)=¢; for all j) is obtained.

Pyomo Hart et al. [30] is used for these calculations. Here, the
differential equations are converted to a Nonlinear Program (NLP)
using the orthogonal collocation method The NLP is solved using
IPOPT Wachter And Biegler [31] and confirmed as a global solution
with BARON Tawarmalani M et al. [32].

The steps of the algorithm are as follows
a) Optimize %:q/(t') and obtain ¢.

b)  Minimize (i(iﬁq,(z,)—qj))2 and get the control values at

various times.
c¢) Implement the first obtained control values

d) Repeatsteps 1 to 3 until there is an insignificant difference
between the implemented and the first obtained value of the
control variables or if the Utopia point is achieved. The Utopia point
is when ri‘i 4,)=4, for all j.

Sridh’;r [33] demonstrated that when the bifurcation analysis
revealed the presence of limit and branch points, the MNLMPC
calculations to converge to the Utopia solution. For this, the
singularity condition, caused by the presence of the limit or branch
points was imposed on the co-state equation Upreti [34]. If the
minimization of ¢ lead to the value qf and the minimization of ¢,
lead to the value qZ The MNLPMC calculations will minimize the

function (¢, —gq;)* +(q, —¢,)* - The multiobjective optimal control
problem is
. 2 2 . dx
min (g, —q,) + (qz —4,) subject to E =F(x,u) (10)

Differentiating the objective function results in

d o v ed ad
TX‘((ql_ql) +(qz_q2) )—2((11 ql)dxl (ql q1)+2(qz qz)dxl (qZ qz) (11)

The Utopia point requires that both (¢,—¢;) and (¢, —¢,) are

zero. Hence
L (- +( -4 =0
dx,, 1 1 2 2 (12)
The optimal control co-state equation [34] is

GO )L 20020 (13)

4, is the Lagrangian multiplier. ¢, is the final time. The first
term in this equation is 0, and hence

*(/1)— ~f A4 (t,) =0 (14)

dx
Atalimit or a branch point, for the set of ODE ;= Sxu) 7o
smgular Hence there are two different vectors-values for [1,] where
*M >0 and 7(4)<0 In between there is a vector [4] where <,)_,
. This coupled with the boundary condition 4,(z,)=0 will lgad to
[4]=

problem, and the optimal solution is the Utopia solution.

0 This makes the problem an unconstrained optimization

Results and Discussion
Theoretical development
Theorem

If one of the functions in a dynamic system is separable into
two distinct functions, a branch point singularity will occur in the
system.

Proof
Consider a system of equations
dx
—=f(xa) (2
i (2)
x € R". Defining the matrix A as

[ I A I A

ox, Ox, Ox, Ox, ox, Oa
ox, ox, ox, ox, ox, Oa

3)

& s the bifurcation parameter. The matrix A can be written in
a compact form as

9 9
A= [LJ ﬁ]
Ox, oa” (4)
The tangent atany pointx; (z =[z,,z,, z;, z,,....z,,, ] ) must satisfy
Az=0 (5)
L

The matrix @ must be singular at both limit and branch
points. The n+1" component of the tangent vector Z,,;= 0 at
Limit Point (LP) and for a Branch Point (BP) the matrix B= E
must be singular. Any tangent at a point y that is defined by

z2=[2,,2,,2;,245-Z,1] must satisfy
Az=0 (6)

For a branch point, there must exist two tangents at the
singularity. Let the two tangents be z and w. This implies that
Az=0
(7
Aw=0
Consider a vector v that is orthogonal to one of the tangents
(say z). v can be expressed as a linear combination of z and w (
v=az+pw). Since Az=Aw=0; Av=0 and since z and v are

orthogonal,

A
z'v=0. Hence Bv:|: T}V=O which implies that B is singular
where p_ 4 :
T

zZ
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Let any of the functions f, are separable into 2 functions &.¢, as

fi = ¢1¢2 8

At steady-state f;(x,@) =0 and this will imply that either ¢ =0
or ¢, =0 orboth ¢ and ¢, mustbe 0. This implies that two branches
# =0 and ¢, =0 will meet at a point where both ¢ and ¢, are 0.

At this point, the matrix B will be singular as a row in this
matrix would be

%

wél( 0>a¢2+¢2(=0)
6¢1] 0

However, =0(Vk=1.,,n)

Lgi 0)5¢2+¢2( 0) (10)
¥,

9%\ 9,
This 1mp11es that every element in the row [ (M] would be
A
0, and hence the matrix B would be singular. The singularity in B

implies that there exists a branch point.
Numerical results

Bifurcation results: When Bl is the bifurcation parameter a
branch point occurs at (sv,pv,av, g1) values of (0.333333 0, 0, 0.9)
(Figure 1a)

Bifurcation (beta1)

AKA
ox, oa (9)
08 r

0.4 0.6 0.8 1

1.2 1.4 1.6 1.8

betai

Figure la: Bifurcation diagram (Al is the bifurcation parameter) revealing a branch point at
(sv,pv,av, B1) values of (0.333333 0, 0, 0.9).

Here, the two distinct functions can be obtained from the
second ODE in the model

@ = Pl(sv) pv— p4(av) pv— p(pv) (11)

The two distinct equations are
pv=0
Bl(sv) = f4(av)—u=0
With pv=0, Bl =0.9, av=0, u=0.3; sv =0.33333 both distinct
equations are satisfied, validating the theorem.

(12)

When g2 is the bifurcation parameter a branch point occurs

at (sv,pvav, g2) values of (0.333333 0 0 2.4) (Figure 1b). Here, the
two distinct functions can be obtained from the third ODE in the
model

()

o PA(av)pv— B3(av)+ B2(sv)av— u(av) — pa(av) (13)

The two distinct equations are
av=0
A - B3+ B2sv) - - pa=0 P
With pv=0, f2=24, p3=0.3; Ha=02; pv=0, u=0.3; sv
=0.33333, both distinct equations are satisfied, validating the
theorem.
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Bifurcation (beta2)

05
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& 035[

03r

025

25 3 3.5

Figure 1b: Bifurcation diagram (42 is the bifurcation parameter) revealing a Branch Point (BP) at (sv,pv,av, 52)
values of (0.333333 0 0 2.4).

MNLMPC results For the MNLMPC, pl1,B2,are the control
parameters, and va(t) stwwere minimized individually, and each
led to a value of 0. The overall optlmal control problem will involve
the minimization of @pv(t) o7 +(st(t> 0" subject to the equations
governing the model. Thls led to a value of zero (the Utopia point).
The MNLMPC values of the control variables, g1, 52, were 0.505,
0.00578. The MNLMPC profiles are shown in Figure 2a-2d. The
control profiles of B1,52, were exhibited noise (Figure 2c) and this
was remedied using the Savitzky-Golay filter to produce the smooth
profiles plsg, p2sg (Figure 2d).

— pv

S & 8

—

(=]

T T T

0 2 4
t

Figure 2a: MNLMPC pv, sv proﬁles for the combined

b=t

minimization of £ va(l) st(t)

400

300

200

100

t

Figure 2b: MNLMPC av profile for the combined

=t 4=t

.. . . (), sv(t,)
minimization of ,zn: g‘

1.00
—— beta1l
0.751 —— beta2
0.50 - -\/\/’
0.25
.00, ——mMmM8@8M8Mm ———

Figure 2c: MNLMPC noisy control profiles for g1, 52
before filtering.

COJ Biomed Sci & Res

Copyright © Lakshmi N Sridhar



COJBSR.000547.2(5).2025

0.6
0.4 — betalsg
—— beta2sg
0.2 //
0.0 - ——
0 2 4
t

Figure 2d: MNLMPC plsg, f2sg which are filtered noisy
profiles of f1,52.

The presence of the branch point causes the MNLMPC
calculations to attain the Utopia solution, validating the analysis of
Sridhar [33].

Conclusion

It is of utmost importance to understand the dynamics of
asthma transmission in order to control it effectively. This study
demonstrates the application of integrated bifurcation analysis
and MNLMPC to an asthma transmission model, revealing that this
integrated approach enables us to understand the nonlinearity
and obtain the most control profiles. The proposed link between
branch points and optimal control convergence is the main
contribution demonstrating a link between applied mathematics,
systems biology, and control engineering. The bifurcation analysis
revealed the existence of branch points. The branch points (which
cause multiple steady-state solutions from a singular point) are
very beneficial because they enable the Multiobjective nonlinear
model predictive control calculations to converge to the Utopia
point (the best possible solution) in the models. A combination of
bifurcation analysis and Multiobjective Nonlinear Model Predictive
Control (MNLMPC) on an asthma transmission model is the main
contribution of this paper.
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