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Background
Ghosh [1], developed a mathematical model concerning industrial pollution and Asthma. 

D’amato et al. [2], discussed the environmental risk factors (outdoor air pollution and climatic 
changes) and the increasing trend of respiratory allergy. Martinez FD [3], researched the 
relationship between genes, environments, development, and asthma. Gauderman et al. [4] 
studied the effect of traffic on lung development. Ionescu et al. [5,6], developed parametric 
models characterizing respiratory input impedance and investigated the relationship between 
fractional-order model parameters and lung pathology in chronic obstructive pulmonary 
disease. Epton et al. [7] studied the effect of ambient air pollution on the respiratory health 
of school children. Ram et al. [8] developed a nonlinear mathematical model for Asthma. 
Strickland et al. [9] studied the short-term associations between ambient air pollutants and 
pediatric asthma emergency department visits. Ionescu et al. [10,11] performed theoretical 
work using fractional order models of asthma and respiration. Tawhai et al. [12], developed 
multi-scale lung models. Annesi-Maesano et al. [13] studied indoor air quality and sources 
in schools and related health effects. Ionescu et al. [14], developed a respiratory impedance 
model with a lumped fractional order diffusion compartment. Kim et al. [15] investigated the 
regulation of Th1/Th2 cells in asthma development. Lim et al. [16], studied the short-term 
effect of fine particulate matter on children’s hospital admissions and emergency department 
visits for asthma. Faria et al. [17], studied forced oscillation, integer and fractional-order 
modelling in asthma. Alejo et al. [18] modelled the association between the seasonal asthma 
prevalence and upper respiratory infections. Cohen et al. [19] studied the trends of the global 
burden of disease attributable to ambient air pollution. Ionescu et al. [20] investigated the role 
of fractional calculus in modeling biological phenomena. Landrigan et al. [21] studied the effect 
of pollution on children’s health. Whittle et al. [22] studied the molecular characterisation 
of human dust-mite-associated allergic asthma. Shah et al. [23] developed a mathematical 
model for Asthma due to Air Pollution. In this work, bifurcation analysis and multiobjective 
nonlinear model predictive control are performed on a dynamic model describing asthma 
due to air pollution [23]. The paper is organized as follows. First, the model equations are 
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presented, followed by a discussion of the numerical techniques 
involving bifurcation analysis and Multiobjective Nonlinear Model 
Predictive Control (MNLMPC). The results and discussion are then 
presented, followed by the conclusions.

Model equations 

In this model, individuals experiencing an asthma exacerbation 
are av, individuals affected by indoor smoke are sv, and individuals 
affected by air pollution are pv. Indoor smoke increases the intensity 
of pollution in the air at a rate of 1β  Asthma-infected individuals 
infect their surrounding environment at a rate of 3β  while the 
rate at which asthma exacerbation is caused by indoor smoke and 
outdoor air pollution is 2β  and 4β  . aµ  and µ  represent the death 
rate because of asthma exacerbation and a natural degradation rate 
for all three variables.

( )

( )

( )

1( ) 2( ) 3( ) ( )

1( ) 4( ) ( )

4( ) 3( ) 2( ) ( ) ( )

d sv
bpar sv pv sv av av sv

d pv
sv pv av pv pv

d av
av pv av sv av av a av

dt

dt

dt

β β β µ

β β µ

β β β µ µ

= − − + −

= − −

= − + − −

 (1)

The base parameter values are 

0.1; 1 0.15; 2 0.25;  3 0.3; 4 0.35;  0.3; 0.2.bpar aβ β β β µ µ= = = = = = =

The variables and parameters can be summarized as 

a)	 individuals experiencing an asthma exacerbation av

b)	 individuals affected by indoor smoke sv

c)	 individuals affected by air pollution pv

d)	 Indoor smoke increases the intensity of pollution in the air at 
a rate 1β

e)	 Asthma-infected individuals infect their surrounding 
environment at a rate 3β

f)	 rate at which asthma exacerbation is caused by indoor smoke 
2β

g)	 rate at which asthma exacerbation is caused by outdoor air 
pollution 4β

h)	 represent the death rate because of asthma exacerbation   aµ

i)	 natural degradation rate for all three variables µ  

Bifurcation analysis 

The MATLAB software MATCONT is used to perform the 
bifurcation calculations. Bifurcation analysis deals with multiple 
steady-states and limit cycles. Multiple steady states occur because 
of the existence of branch and limit points. Hopf bifurcation points 
cause limit cycles. A commonly used MATLAB program that locates 
limit points, branch points, and Hopf bifurcation points is MATCONT 
[24,25]. This program detects Limit Points (LP), Branch Points (BP) 
and Hopf bifurcation points(H) for an ODE system 

( , )dx f x
dt

α=  (2)

 nx R∈  Let the bifurcation parameter be α . Since the gradient 
is orthogonal to the tangent vector, 

The tangent plane at any point 1 2 3 4 1[ , , , ,.... ]nw w w w w w +=  must 
satisfy 

0Aw = 	  (3)

 Where A is 

[ / | / ]A f x f α= ∂ ∂ ∂ ∂ 	 (4)

Where /f x∂ ∂  is the Jacobian matrix. For both limit and branch 
points, the Jacobian matrix [ / ]J f x= ∂ ∂ must be singular. 

For a limit point, there is only one tangent at the point of 
singularity. At this singular point, there is a single non-zero vector, 
y, where Jy=0. This vector is of dimension n. Since there is only 
one tangent the vector 1 2 3 4( , , , ,... )ny y y y y y=  must align with 

1 2 3 4ˆ ( , , , ,... )nw w w w w w= . Since 

ˆ 0Jw Aw= = 	  (5)

the n+1th component of the tangent vector 1nw +  = 0 at a Limit 
Point (LP). 

For a branch point, there must exist two tangents at the 
singularity. Let the two tangents be z and w. This implies that 

0
0

Az
Aw

=
=

	 (6)

Consider a vector v that is orthogonal to one of the tangents 
(say w). v can be expressed as a linear combination of z and w (
v z wα β= + ). Since 0Az Aw= = ; 0Av =  and since w and v are 
orthogonal, 0Tw v = . Hence 0T

A
Bv v

w
 

= = 
 

 which implies that B is 
singular. 

Hence, for a Branch Point (BP) the matrix T

A
B

w
 

=  
 

must be 
singular. 

At a Hopf bifurcation point, 

det(2 ( , )@ ) 0x nf x Iα =  (7)

@ indicates the bialternate product while is the n-square 
identity matrix. Hopf bifurcations cause limit

cycles and should be eliminated because limit cycles make 
optimization and control tasks very difficult.

More details can be found in Kuznetsov [26,27] & Govaerts [28].

Multiobjective Nonlinear Model Predictive Control 
(MNLMPC) 

The rigorous Multiobjective Nonlinear Model Predictive Control 
(MNLMPC) method developed by Flores Tlacuahuaz et al. [29] was 
used. 

Consider a problem where the variables 
0

( )
i f

i

t t

j i
t

q t
=

=

∑  (j=1, 2..n) 
have to be optimized simultaneously for a dynamic problem 

( , )dx F x u
dt

= 	  (8)

ft  being the final time value and n the total number of objective 
variables and u the control parameter. The single objective optimal 
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control problem is solved individually optimizing each of the 
variables 

0

( )
i f

i

t t

j i
t

q t
=

=

∑  The optimization of 
0

( )
i f

i

t t

j i
t

q t
=

=

∑  will lead to the values 
*
jq . Then, the Multiobjective Optimal Control (MOOC) problem that 

will be solved is 

0

* 2

1
min( ( ( ) ))

( , );

i f

i

t tn

j i j
j t

q t q

dxsubject to F x u
dt

=

=

=

−

=

∑ ∑

	 (9)

This will provide the values of u at various times. The first 
obtained control value of u is implemented and the rest are 
discarded. This procedure is repeated until the implemented and 
the first obtained control values are the same or if the Utopia point 
where ( 

0

*( )
i f

i

t t

j i j
t

q t q
=

=

=∑  for all j) is obtained. 

Pyomo Hart et al. [30] is used for these calculations. Here, the 
differential equations are converted to a Nonlinear Program (NLP) 
using the orthogonal collocation method The NLP is solved using 
IPOPT Wächter And Biegler [31] and confirmed as a global solution 
with BARON Tawarmalani M et al. [32]. 

The steps of the algorithm are as follows 

a)	 Optimize 
0

( )
i f

i

t t

j i
t

q t
=

=

∑  and obtain *
jq .

b)	 Minimize 
0

* 2

1
( ( ( ) ))

i f

i

t tn

j i j
j t

q t q
=

=

=

−∑ ∑  and get the control values at 
various times.

c)	 Implement the first obtained control values 

d)	 Repeat steps 1 to 3 until there is an insignificant difference 
between the implemented and the first obtained value of the 
control variables or if the Utopia point is achieved. The Utopia point 
is when 

0

*( )
i f

i

t t

j i j
t

q t q
=

=

=∑  for all j. 

Sridhar [33] demonstrated that when the bifurcation analysis 
revealed the presence of limit and branch points, the MNLMPC 
calculations to converge to the Utopia solution. For this, the 
singularity condition, caused by the presence of the limit or branch 
points was imposed on the co-state equation Upreti [34]. If the 
minimization of 1q  lead to the value *

1q and the minimization of 2q  
lead to the value *

2q  The MNLPMC calculations will minimize the 
function * 2 * 2

1 1 2 2( ) ( )q q q q− + − . The multiobjective optimal control 
problem is

* 2 * 2
1 1 2 2min ( ) ( ) ( , )dxq q q q subject to F x u

dt
− + − = 	 (10)

Differentiating the objective function results in 
* 2 * 2 * * * *

1 1 2 2 1 1 1 1 2 2 2 2(( ) ( ) ) 2( ) ( ) 2( ) ( )
i i i

d d dq q q q q q q q q q q q
dx dx dx

− + − = − − + − −  (11)

The Utopia point requires that both *
1 1( )q q−  and *

2 2( )q q−  are 
zero. Hence 

* 2 * 2
1 1 2 2(( ) ( ) ) 0

i

d q q q q
dx

− + − =  (12)

The optimal control co-state equation [34] is 
* 2 * 2

1 1 2 2( ) (( ) ( ) ) ; ( ) 0i x i i f
i

d d q q q q f t
dt dx

λ λ λ= − − + − − =  (13)

iλ  is the Lagrangian multiplier. ft  is the final time. The first 
term in this equation is 0, and hence 

( ) ; ( ) 0i x i i f
d f t
dt

λ λ λ= − =  (14)

At a limit or a branch point, for the set of ODE ( , )dx f x u
dt

=  xf  is 
singular. Hence there are two different vectors-values for [ ]iλ  where 

( ) 0i
d
dt

λ >  and ( ) 0i
d
dt

λ < . In between there is a vector [ ]iλ  where ( ) 0i
d
dt

λ =

. This coupled with the boundary condition ( ) 0i ftλ =  will lead to 
[ ] 0iλ =  This makes the problem an unconstrained optimization 
problem, and the optimal solution is the Utopia solution.

Results and Discussion
Theoretical development

Theorem

If one of the functions in a dynamic system is separable into 
two distinct functions, a branch point singularity will occur in the 
system. 

Proof

Consider a system of equations 

( , )dx f x
dt

α=  (2)

 nx R∈ . Defining the matrix A as 

1 1 1 1 1 1

1 2 3 4

2 2 2 2 2 2

1 2 3 4

..........

..........

...........................................................

.................................................

n

n

f f f f f f
x x x x x
f f f f f f
x x x x x

A

α

α

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

=

1 2 3 4

..........

..........n n n n n n

n

f f f f f f
x x x x x α

 
 
 
 
 
 
 
 
 
 ∂ ∂ ∂ ∂ ∂ ∂
 
∂ ∂ ∂ ∂ ∂ ∂ 
  

 (3)

 α  is the bifurcation parameter. The matrix A can be written in 
a compact form as 

[ . | ]p p

q

f f
A

x α
∂ ∂

=
∂ ∂  (4)

The tangent at any point x; ( 1 2 3 4 1[ , , , ,.... ]nz z z z z z += ) must satisfy 

 0Az =  (5)

The matrix { }p

q

f
x
∂

∂  must be singular at both limit and branch 
points. The n+1th component of the tangent vector 1nz + = 0 at a 
Limit Point (LP) and for a Branch Point (BP) the matrix T

A
B

z
 

=  
 

 
must be singular. Any tangent at a point y that is defined by 

1 2 3 4 1[ , , , ,.... ]nz z z z z z +=  must satisfy 

0Az =  (6)

For a branch point, there must exist two tangents at the 
singularity. Let the two tangents be z and w. This implies that 

0
0

Az
Aw

=
=

 (7)

Consider a vector v that is orthogonal to one of the tangents 
(say z). v can be expressed as a linear combination of z and w (
v z wα β= + ). Since 0Az Aw= = ; 0Av =  and since z and v are 
orthogonal, 

 0Tz v = . Hence 0T

A
Bv v

z
 

= = 
 

 which implies that B is singular 
where 

T

A
B

z
 

=  
 
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Let any of the functions fi are separable into 2 functions 1 2,φ φ  as 

1 2if φφ=  (8)

At steady-state ( , ) 0if x α =  and this will imply that either 1 0φ =  
or 2 0φ =  or both 1φ  and 2φ  must be 0. This implies that two branches 

1 0φ =  and 2 0φ =  will meet at a point where both 1φ  and 2φ are 0. 

At this point, the matrix B will be singular as a row in this 
matrix would be 

[ | ]i i

k

f f
x α
∂ ∂
∂ ∂  (9)

However, 2 1
1 2

2 1
1 2

[ ( 0) ( 0) 0( 1., , )

( 0) ( 0) ] 0

i

k k k

i

f k n
x x x
f

φ φφ φ

φ φφ φ
α α α

∂ ∂ ∂
= = + = = ∀ =

∂ ∂ ∂
∂ ∂ ∂

= = + = =
∂ ∂ ∂

 (10)

This implies that every element in the row [ | ]i i

k

f f
x α
∂ ∂
∂ ∂  would be 

0, and hence the matrix B would be singular. The singularity in B 
implies that there exists a branch point. 

Numerical results

Bifurcation results: When 1β  is the bifurcation parameter a 
branch point occurs at (sv,pv,av, 1β ) values of (0.333333 0, 0, 0.9) 
(Figure 1a)

Figure 1a: Bifurcation diagram ( 1β  is the bifurcation parameter) revealing a branch point at
(sv,pv,av, 1β ) values of (0.333333 0, 0, 0.9).

Here, the two distinct functions can be obtained from the 
second ODE in the model 

( ) 1( ) 4( ) ( )
d pv

sv pv av pv pv
dt

β β µ= − −  (11)

The two distinct equations are 

1( ) 4(
0

) 0sv
p

v
v

aβ β µ− − =
=

 (12)

With pv=0, 1β =0.9, av=0, µ =0.3; sv =0.33333 both distinct 
equations are satisfied, validating the theorem. 

When 2β  is the bifurcation parameter a branch point occurs 

at (sv,pv,av, 2β ) values of (0.333333 0 0 2.4) (Figure 1b). Here, the 
two distinct functions can be obtained from the third ODE in the 
model 

( ) 4( ) 3( ) 2( ) ( ) ( )
d av

av pv av sv av av a av
dt

β β β µ µ= − + − −  (13)

The two distinct equations are 	  

4( ) 3 2( ) 0
0
pv s a

a
v

v
β β β µ µ− + − − =

=
 (14)

With pv=0, 2β =2.4, 3β =0.3; aµ =0.2; pv=0, µ =0.3; sv 
=0.33333, both distinct equations are satisfied, validating the 
theorem. 
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Figure 1b: Bifurcation diagram ( 2β  is the bifurcation parameter) revealing a Branch Point (BP) at (sv,pv,av, 2β ) 
values of (0.333333 0 0 2.4).

MNLMPC results: For the MNLMPC, 1, 2,β β are the control 
parameters, and 

0 0

( ), ( )
i f i f

i i

t t t t

i i
t t

pv t sv t
= =

= =

∑ ∑ were minimized individually, and each 
led to a value of 0. The overall optimal control problem will involve 
the minimization of 

0 0

2 2( ( ) 0) ( ( ) 0)
i f i f

i i

t t t t

i i
t t

pv t sv t
= =

= =

− + −∑ ∑  subject to the equations 
governing the model. This led to a value of zero (the Utopia point). 
The MNLMPC values of the control variables, 1, 2,β β  were 0.505, 
0.00578. The MNLMPC profiles are shown in Figure 2a-2d. The 
control profiles of 1, 2,β β  were exhibited noise (Figure 2c) and this 
was remedied using the Savitzky-Golay filter to produce the smooth 
profiles 1 , 2sg sgβ β (Figure 2d). 

Figure 2a: MNLMPC pv, sv profiles for the combined 

minimization of 0 0

( ), ( )
i f i f

i i

t t t t

i i
t t

pv t sv t
= =

= =

∑ ∑

Figure 2b: MNLMPC av profile for the combined 

minimization of 0 0

( ), ( )
i f i f

i i

t t t t

i i
t t

pv t sv t
= =

= =

∑ ∑

Figure 2c: MNLMPC noisy control profiles for 1, 2β β  
before filtering.
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Figure 2d: MNLMPC 1 , 2sg sgβ β  which are filtered noisy 
profiles of 1, 2β β .

The presence of the branch point causes the MNLMPC 
calculations to attain the Utopia solution, validating the analysis of 
Sridhar [33].

Conclusion
It is of utmost importance to understand the dynamics of 

asthma transmission in order to control it effectively. This study 
demonstrates the application of integrated bifurcation analysis 
and MNLMPC to an asthma transmission model, revealing that this 
integrated approach enables us to understand the nonlinearity 
and obtain the most control profiles. The proposed link between 
branch points and optimal control convergence is the main 
contribution demonstrating a link between applied mathematics, 
systems biology, and control engineering. The bifurcation analysis 
revealed the existence of branch points. The branch points (which 
cause multiple steady-state solutions from a singular point) are 
very beneficial because they enable the Multiobjective nonlinear 
model predictive control calculations to converge to the Utopia 
point (the best possible solution) in the models. A combination of 
bifurcation analysis and Multiobjective Nonlinear Model Predictive 
Control (MNLMPC) on an asthma transmission model is the main 
contribution of this paper.
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