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Introduction
SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) was recognized 

in Wuhan (China) for the first time and spread all over the globe. This became one of the 
most challenging epidemics of the current century [1]. Coronavirus belongs to the beta-
corona family of viruses and its large (+) sense ssRNA codes 29 proteins [1,2]. The genome 
of coronavirus RNA has a 5 polyadenylated tail and a 5́ methylated cap that enables it to 
function similar to the messenger RNA and be translated by the host cell ribosomes, directly. 
The Open-Reading Frames ORF1a and ORF1b of the overlapping virus genome are translated 
by the host ribosomes into two large overlapping polypeptides, pp1a and pp1ab [3]. These 
Polyproteins have specific proteases including Mpro (chymotrypsin-like main protease) and 
PLpro (Papain-Like protease) that break down polyproteins at specific sites [4]. Processing 
of the polyproteins by these two kinds of Mpro and PLpro cysteine proteases is important for 
the virus proliferation cycle. PLpro is very conservative and normally has two copies (PL1pro 
and PL2pro) in all coronaviruses [5,6]. In MERS-CoVs and SARS-CoVs it has deubiquiting 
and deISG15ylating activities. Both of these proteins (ubiquitin and ISG15) have a motif for 
recognition PLpro at their c-terminal [7-9]. Eliminate these modifications intrude with host 
cells respond to viral infection and facilitate viral proliferation and replication [8,10,11].

Furthermore, PLpro put TBK1 out of function, prevents signalling of NF-kappaB, impedes 
IRF3 translocation to the nucleus, blocks TLR7 signalling, and causes EGr-1-dependent to 
upregulate TGF-β1 [12,13]. Due to the essential and multiple functions and requisite roles 
of PLpro in viral pathogenesis it can be considered a great therapeutic targeting. Pairwise 
sequence alignments in Figure 1 are shown that the SARS-CoV-2 PLpro sequence is 90.2% 
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similar and 83% identical to SARS-CoV PLpro. Also, crystal 
structure comparison denotes strong structure conservation with 
a quantitative comparison that is provided in the form of a Root-
Mean-Square Deviation (RMSD) in the atomic positions for the 
CoV-2 PLpro and CoV PLpro (Figure 2). There is no significant 
difference in the conservation of geometrical core or surface 
residues in both CoV-2 PLpro and CoV PLpro crystal structures. 
Since, the sequence, structure, and functional conservations of CoV 
PLpro with CoV-2 PLpro suggest that therapeutics SARS-CoV PLpro 
possibly could be effectively targeting against SARS-CoV-2 virus by 
PLpro. The previous studies with CoV PLpro have resulted in the 
development of several inhibitors that were effective for SARS-CoV 
PLpro. Currently, there is no significant number of compounds to 
inhibit the SARS-CoV-2 PLpro. In this scenario, it seems that the 
screening of SARS CoV PLpro inhibitors may be culminated in 

potential inhibitors of the SARS-CoV-2 PLpro enzyme by saving the 
costs and the drug development timeline. Therefore, we believe 
that using SARS-CoV PLpro inhibitors will be an excellent starting 
point for designing putative inhibitors against SARS-CoV-2 by 
Quantitative Structure-Activity Relationship (QSAR) studies. QSAR 
as a mathematical method intends to make relationships between 
biological activities and structure [14]. The QSAR modeling serves 
as the most robust approach in computer-aided drug design and 
will be utilized to introduce new effective inhibitors. In this work, 
we developed a deep model platform of a committee machine for 
QSAR studies and strategies to discover highly potent SARS-CoV-2 
inhibitors. The developed hybrid approach called committee 
machine to provide critical insights for further ligand-based drug 
design efforts against SARS-CoV-2 PLpro to enable the design of 
higher effective inhibitors and, finally, Covid-19 treatments.

Figure 1: Pairwise global sequence alignment between SARS-CoV-2 PLpro and SARS-CoV PLpro using EMBOSS 
Needle Program. Alignment was performed by EMBOSS default as; Matrix: BLOSUM62,

Gap penalty: 10.0, Extend penalty: 0.5. Pairwise sequence similarities between SARS-CoV-2 PLpro and SARS-CoV 
PLpro were achieved 90.2%.

Figure 2: 3D structures of SARS-CoV-2 PLpro (PDB: 7CJM) and SARS-CoV PLpro (PDB: 4OW0). Comparison 
structure of SARS-CoV-2 PLpro (in red color), the SARS-CoV crystal structure (in grey color). RMSD between 277 

pruned atom pairs (including active site) is 0.761 Å; (across all 312 pairs: 1.324 Å). The main conformational 
changes are related to C-terminal section of enzymes. Figures were generated with UCSF Chimera 1.11.2.
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Material and Methods
Dataset and methodology

A set of 91 SARS-CoV PLpro diverse inhibitors was taken as a 
reference [15]. All of the SMILES (Simplified Molecular Input Line 
Entry System) notation of compounds with their pIC50 values were 
provided in the supplemental link (https://www.researchgate.net/
publication/353957843_Entry_1). The QSAR methodology adopted 
in this study comprises four major steps as follows;

a) the conformational optimization of different 91 compounds 
as input dataset for calculation of molecular descriptors (1558 
descriptors).

b) stepwise regression analysis to reduce the dimensionality of 
the problem and select the appropriate inputs for intelligent mode 
construction.

c) different initial models developing for predicting pIC50 (-log 
[IC50]) of PLpro inhibitors using intelligent ensembles including 
neural networks, fuzzy inference systems, and hybrid neuro-fuzzy 
systems.

d) finally, developing and establishing a Committee Machine 
with Intelligent Ensembles (CMIE) as an improved model for 
estimating pIC50 values of PLpro inhibitors by using genetic 
algorithms. The inputs of the CMIE are the outputs of individual 
intelligent ensembles. 

Molecular structure optimization

All of the initial 3D structures of 91 compounds were achieved 
by using the SMILES-3D converting web-based software available 
at https://cactus.nci.nih.gov/translate/. Afterwards, we used 
Hyperchem 8.0 software for optimizing all of 91 compounds 3D 
structure geometries. Molecular Mechanics (MM+) and semi-
empirical (AM1) methods were employed for the pre-optimization 
and optimization of the structures, respectively. Geometry 
optimization was performed by using the Polak-Ribiere algorithm 
based on the conjugate gradient approach. The least Root-Mean-
Square (RMS) gradient convergence values were below 0.001 and 
0.01kcal/mol for applied molecular mechanics and semi-empirical 
methods [16,17].

Descriptors calculation

The molecular descriptors are applied to assess molecular 

structure-activity and/or structure-property relations together 
with an analysis of similarity in molecule databases. A total of 
1558 molecular descriptors were calculated in 22 logical blocks 
by applying Dragon 5.5 software package as represented in 
Table 1. These blocks we clustered according to the descriptor 
dimensionality of 0D, 1D, 2D, 3D, and others. The descriptor 
dimensionality of 0D represents atom- and bond-type counts, 
1D refers to fragment counts, 2D to topological and related 
descriptors, and 3D to all the descriptors, which are dependent on 
the geometrical coordinates of the molecule atoms.

Table 1: Summary of machine learning method’s 
performance for PIC50 estimation.

Method MSE R2

Stepwise regression analysis 0.028 0.649

Neural network 0.015 0.843

Fuzzy logic 0.031 0.546

Neuro-fuzzy 0.031 0.546

CMSA (simple averaging) 0.019 0.756

CMWA (weighted averaging) 0.014 0.856

Stepwise regression analysis

Stepwise regression analysis was performed on 1558 
descriptors to choose the optimal ones for estimating the pIC50 of 
PLpro inhibitors. We have divided the input dataset into 15 groups 
each one containing 100 descriptors, except the last group which 
includes 159 datasets of descriptors. A stepwise regression model 
was built within each group to choose the optimal descriptors. 
Due to the large volume of descriptors and memory limitation 
in running the regression model in MATLAB, the whole 1558 
descriptors were divided into 15 sets comprising 1400 descriptors 
in sets 1 through 14 (100 descriptors each) and 158 descriptors 
in the 15th set. In this regard, fifteen regression models were used 
to choose the optimum descriptors for the estimation of pIC50 of 
PLpro inhibitors. The results of all fifteen individual regression 
models were led to identify a total of 14 descriptors. Cross plots 
representing the relations between pIC50 and the identified 14 
descriptors out of 1558 ones are illustrated in Figure 3. To choose 
the final important descriptors, an additional stepwise regression 
was established between the identified 14 descriptors and pIC50 
values. Accordingly, a total of six inputs including RDF035u, 
RDF050u, Mor23u, E2e, R4p, and B04[N-N] were achieved as the 
final descriptor for estimating the pIC50 of PLpro inhibitors.

https://www.researchgate.net/publication/353957843_Entry_1
https://www.researchgate.net/publication/353957843_Entry_1
https://cactus.nci.nih.gov/translate/
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Figure 3: Crossplots showing the relations between pIC50 and final descriptors. As is seen, out of 14 descriptors, six 
ones including RDF035u, RDF050u, Mor23u, E2e, R4p and B04[N-N] show the strongest relations with pIC50 of 

PLpro inhibitors.

Designing Committee Machine with Intelligent 
Ensembles (CMIE)

A committee machine that merges the outputs of the individual 
machine learning method with some extra calculations. The 
performance of CM (Committee Machine) is better than individual 
machine learning techniques [18]. The general architecture of a 
CMIE used in this research for pIC50 estimation is shown in Figure 4. 

The committee machine can be built by using simple and weighted 
averaging approaches. In the simple averaging approach, each 
of the individual experts has an equal contribution to the overall 
prediction, while in the weighted averaging committee machine an 
optimization algorithm such as a genetic algorithm is employed to 
assign the appropriate weights to each expert [19]. The previous 
applications of committee machines in different problems solving 
can be mentioned [20-26].
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Figure 4: The schematic diagram of the workflow adopted in this study for estimating pIC50 of PLpro inhibitors

pIC50 estimation by machine learning methods

In this study, machine learning methods including artificial 
neural networks, hybrid neural network-fuzzy systems (neuro-
fuzzy), and fuzzy inference system models were employed to 
estimate pIC50 from a set of predefined descriptors. For this 
purpose, a total of 91 inhibitors and their corresponding measured 
pIC50 values were chosen as targets to be estimated by machine 
learning methods. The whole dataset was divided into 72 training 
input-output datasets to establish expert systems and 19 testing 
samples to assess their accuracy. Training samples that form the 
majority of data (79%) are used for feature extraction and making 
relationships between input and output data, while a small fraction 
of whole data (21%) were chosen by random to evaluate the 
reliability of the established machine learning models.

Fuzzy Inference System
In order tore generate a fuzzy model first, the input/output space 

was divided into a set of clusters by using subtractive clustering 
[27,28]. The most important parameter in subtractive clustering 

is setting an optimal value for clustering radius (r) in the range of 
[01] [29,30]. A small clustering radius (such as 0.1) yields too many 
clusters resulting in too many fuzzy rules. A larger clustering radius 
(such as 0.9) generates a few clusters of fuzzy rules. To optimize the 
clustering radius a total of 199 fuzzy models were generated based 
on clustering radii ranging from 0.005 to 1 with 0.005 incremental 
intervals. The clustering radius corresponding to minimum MSE 
(Mean Squared Error) was considered the optimal r value. The plot 
showing the MSE and R (correlation coefficient) in pIC50 estimation 
versus clustering radius in testing data is displayed in Figure 5a & 
5b. As is seen, setting the clustering radius of 0.195 is associated 
with the minimum MSE in testing samples. This has generated 
67 Gaussian membership functions for each input/output space. 
Accordingly, 67 fuzzy if-then rules were established to formulate 
the descriptors to pIC50. The Gaussian membership function uses 
the mean (µ ) and standard deviation (σ ) of data fallen within 
each cluster as follows [31,32].

( )
20.5( ) 2

2

x

ef x
µ σ

σ π

− −

=        Equation 1
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Figure 5a: Plot showing the mean squared error in pIC50 estimation versus clustering radius. The clustering radius 
of 0.195 is associated with the minimum MSE in testing samples. This has generated 67 Gaussian membership 

functions for each input/output space.

Figure 5b: Plot showing the correlation coefficient in pIC50 estimation versus clustering radius. Choosing the 
clustering radius of 0.195 is associated with the highest correlation coefficient of 0.6055 in training data.

Neural Network
A neural network comprising three layers with an error back-

propagation algorithm was established to predict pIC50 with the 
same cluster of 6 descriptors, explained in section 2.4, used in the 
fuzzy model. The model data were classified into training (70%), 
validation (15%), and testing (15%) groups. It is worth mentioning 
that this classification is used only for neural network models on 72 
data samples already chosen for all methods as model data. As with 
the other machine learning models, the same 19 testing samples were 
used for the final validity evaluation of the neural network model. 
Training data were applied to learn the input/output relationships 
and extract the optimal weight and bias values. Validation data 
were employed to avoid overtraining or overfitting. It means that in 
the absence of validation data, the neural network memorizes the 

training examples so that it performs well in the training dataset 
but fails in unseen data or testing datasets. Testing data aimed at 
measuring the accuracy of the designed neural network model. Six 
neurons were considered in the inputs layer corresponding to six 
descriptors. The number of neurons optimized in the middle layer 
was set to 8 and the output layer includes one neuron for the pIC50 
values. The Levenberg-Marquardt Training Algorithm (LMTA) 
and MSE functions were applied for optimization of the weights 
and measuring the accuracy of the model, respectively. The used 
transfer functions from the input to hidden and hidden to the output 
layers were Tansig and Purelin, respectively. The training goal was 
considered as 0 and the maximum number of training epochs 
was set to 1000. Performance graphs illustrating the correlation 
coefficient between the estimated and measured pIC50 in training, 
validation, testing, and all data sets are shown in Figure 6.
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Figure 6: Performance plots showing the correlation coefficient between measured and estimated pIC50 in training, 
validation, testing and all data set.

Hybrid Neuro-Fuzzy Model
In this section, a hybrid neuro-fuzzy model was established 

to predict pIC50 from the same six descriptor sets used in the 
neural network and fuzzy models. Neuro-fuzzy models reap the 
advantages of both errors back-propagation neural nets and fuzzy 

systems. Neuro-fuzzy model is a fuzzy model in which a back-
propagation algorithm was used to optimize the membership 
function parameters. Several training epochs were set to 1000 
and subtractive clustering was applied for the generation of fuzzy 
rules. The general architecture of the adaptive neuro-fuzzy model 
developed in this study for pIC50 estimation is shown in Figure 7.

Figure 7: A general architecture of the adaptive neuro-fuzzy model developed in this study for pIC50 estimation.
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Result and Discussion
The World Health Organization has described COVID-19 disease 

caused by SARS-CoV-2 as a global pandemic. For a rapid response, 
the QSAR method based on inhibitors that were previously designed 
against various targets of previous human coronavirus infections 
will be a key starting point for designing anti-SARS-CoV-2 inhibitors. 
In this research, our approach integrates different ligand-based 
drug design QSAR strategies for PLpro chemical inhibitors [33]. 

Input descriptors selection

To select the optimal input data for pIC50 estimation of PLpro 
inhibitors, the Stepwise Regression Analysis (SRA) recommended 

the input descriptors including RDF035u, RDF050u, Mor23u, E2e, 
R4p, and B04[N-N]. The following equation was derived by using the 
SRA for pIC50 estimation from the above-mentioned descriptors:

50 0.3627 - (0.013355* 035 ) (0.012418* 050 ) -
                   (0.32147* 23 ) - (0.78053* 2 )
                    (0.95549* 4 ) - (0.19688* 04[ - ])

SRApIC RDF u RDF u
Mor u E e
R p B N N

= +
+   Equation 2 

Graphs representing the correlation coefficient and graphical 
comparison between the estimated and measured pIC50 of PLpro 
inhibitors in test data are illustrated in Figure 8a & 8b, respectively. 
The R2 value to estimate pIC50 by using stepwise regression is equal 
to 0.64 corresponding to a mean squared error of 0.028.

Figure 8: Plots showing the correlation coefficient
(a) and graphical comparison

(b) between measured and estimated pIC50 of PLpro inhibitors by using stepwise regression analysis in test data.

Applying individual machine learning models

The output of running machine learning algorithms including 
fuzzy inference system, neural network, and neuro-fuzzy model 
in testing data to estimate pIC50 of PLpro inhibitors are shown in 
Figure 9a & Figure 9b and Figure 10a & Figure 10b through Figure 

11a & Figure 11b, respectively. As is seen, among the machine 
learning methods applied, the neural network model with the 
correlation coefficient and MSE of 0.843 and 0.015 outperforms 
neuro-fuzzy and fuzzy logic models. There is a good correlation 
between the experimentally calculated and neural network 
estimated pIC50 of PLpro inhibitors.
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Figure 9: Plots showing the correlation coefficient
(a) and graphical comparison

(b) between measured and estimated pIC50 of PLpro inhibitors by using fuzzy inference system in test data.

Figure 10: Plots showing the correlation coefficient
(a) and graphical comparison

(b) between measured and estimated pIC50 of PLpro inhibitors by using neural network in test data.
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Figure 11: Plots showing the correlation coefficient
(a) and graphical comparison

(b) between measured and estimated pIC50 of PLpro inhibitors by using neuro-fuzzy inference system in test data.

Applying committee machine models

In the next step, a Simple Averaging Committee Machine 
(CMSA) was designed by employing a simple averaging approach. 
In this method, each of the individual machine learning methods 
and SRA model has an equal contribution to constructing CMSA. 
That is every four models used to estimate pIC50 has a weight value 
of 0.25. Thus, the pIC50 was estimated from CMSA through the 
following equation.

    50 0.25* 50 0.25* 50 +0.25*pIC50 +0.25*pIC50CMSA from FIS from NN from NF from MRApIC pIC pIC= +

Equation 3

Applying Equation 3 results in the mean squared error of 0.019 
and R2 of 0.756 in estimating pIC50. Plots showing the correlation 
coefficient and graphical comparison between measured and 
estimated pIC50 of PLpro inhibitors by using CMSA in test data 
are illustrated in Figure 12a & Figure 12b. Finally, a Weighted 
Averaging Committee Machine (CMWA) was constructed by using 
GA (Genetic Algorithm) to derive the optimum weight contribution 
of the individual experts of the committee machine model. The cost 
function for GA to be minimized was defined as below:

2
1 1 2 2 3 3 4 4

1
1 ( )

n

CMIE i i i i i
i

MSE n w o w o w o w o T
=

= + + + −∑      Equation 4
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Figure 12: Plots showing the correlation coefficient
(a) and graphical comparison

(b) between measured and estimated pIC50 of PLpro inhibitors by using simple averaging committee machine (CMSA) 
in test data.

where 1w  through
4w  are the weight factors relevant to fuzzy 

inference system ( 1io ), neural net model (
2o i

), neural fuzzy (
3o i

), 
and MRA ( 4o i ) predictions, respectively. 

iT is the measured pIC50 
data and is the total number of samples in the training data (72 
data points). Using the optimized weights derived from GA, the 
final equation for estimating pIC50 of PLpro inhibitors is expressed 
as follows:

    50 0.121* 50 0.771* 50 0.027* 50 0.081* 50CMSA from FIS from NN from NF from MRAPIC pIC pIC pIC pIC= + + +
 Equation 5

Equation 5 which represents the mathematical form of the 
weighted averaging committee machine was applied to the input 

descriptors of the test samples to estimate their corresponding 
pIC50 values. The obtained mean squared error and correlation 
coefficient in test samples are 0.014 and 0.856, respectively. 
Graphs representing the R2 and graphical comparison between the 
measured and estimated pIC50 of PLpro inhibitors by using CMWA 
in test data are illustrated in Figure 13a & Figure 13b. A summary 
of the machine learning method’s performance for pIC50 estimation 
is listed in Table 1. As is seen, CMWA has improved the correlation 
coefficient between measured and estimated pIC50 to 0.856. This 
has led to a decrease in mean squared error to 0.014. A very good 
agreement exists between the experimentally calculated and 
CMWA-predicted pIC50 of Papain-like protease inhibitors.
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Figure 13: Plots showing the correlation coefficient
(a) and graphical comparison

(b) between measured and estimated pIC50 of PLpro inhibitors by using weighted averaging committee machine 
(CMWA) in test data.

Conclusion
In this study, individual and hybrid machine learning methods 

including fuzzy logic, neural network, and neuro-fuzzy were used 
to estimate the pIC50 of Papain-like protease inhibitors from a set 
of predefined descriptors by using stepwise regression analysis. Six 
descriptors out of 1558 including RDF035u (Radial Distribution 
Function-035), RDF050u (Radial Distribution Function-050), 
Mor23u (signal23 unweighted 3D-MoRSE descriptors), E2e 
(2nd component accessibility directional WHIM index/weighted 
by Sanderson electronegativity WHIM descriptors), R4p (R 
autocorrelation of lag 4/weighted by polarizability GETAWAY 
descriptors) and B04[N-N] (Presence/absence of N-N at topological 
distance 4 2D Atom Pairs) were extracted as the optimal inputs for 
estimating pIC50. Among the individual machine learning methods 
applied, a neural network with a correlation coefficient and MSE of 
0.843 and 0.015 outperforms neuro-fuzzy and fuzzy logic models. 

Applying the CMWA has improved the correlation coefficient 
between estimated and measured pIC50 to 0.856. This has led 
to a decrease in mean squared error to less than 0.014. There is 
a satisfactory match between the experimentally calculated and 
CMWA estimated the pIC50 of Papain-like protease inhibitors. It 
is expected that using an integrated intelligent model with little 
additional computation will improve the performance of QSAR-
artificial intelligence models. The applied integrated intelligent 
models can successfully be used in drug discovery and design.
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