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Abstract

Diet, environmental exposures and aging profoundly influence the gut microbiota from early life
onward. Emerging evidence underscores the microbiota’s central role in regulating metabolism, immune
function and inflammation-processes that are critical determinants of health and longevity. Gut bacteria
generate Short-Chain Fatty Acids (SCFAs) that support intestinal barrier integrity, modulate immune
responses and attenuate inflammation. Diets rich in fiber and polyphenols enhance SCFA production and
promote microbial diversity, whereas low-fiber, high-fat diets disrupt microbial balance, contributing to
metabolic dysfunction and age-related disease. Diet can potentially modulate the microbiota through
epigenetic mechanisms, including DNA methylation and histone modifications, thereby influencing
healthspan and lifespan. Nutritional interventions hold promise for mitigating age-associated microbial
imbalances; however, disparities in socioeconomic status, dietary patterns and individual behaviours
remain significant barriers to population-wide implementation. Further investigation into the complex
interactions among diet, the microbiota and epigenetics is essential for developing personalized dietary
strategies that foster healthy aging and extend longevity.
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Introduction

The gut microbiome changes as a person ages, with significant influences coming from
factors such as the mode of birth (whether natural or Cesarean), nutrition, environment
and life experiences [1-3]. Among these factors, nutrition plays a crucial and variable role,
although dietary choices can have profound effects on the variety and function of gut microbes
[4-6]. A well-functioning microbiome generates bioactive metabolites, such as Short- Chain
Fatty Acids (SCFAs), which attenuate inflammation and contribute to healthy aging [7,8]. On
the other hand, dysbiosis or the imbalance in microbial populations, is linked to a variety of
illnesses, including those related to metabolism, cardiovascular health, the nervous system
and the immune system [9,10]. This leads to a fascinating question: do gut microorganisms
have the ability to actively impact the aging process and longevity?

Diet-microbiome links across the lifespan

Emerging research connects dietary habits and the microbiome to both healthspan-
the duration of good health-and lifespan [11,12]. Nutrient-rich foods, such as those high in
fiber, polyphenols and fermented products, can enhance microbial diversity and resilience,
as well as metabolic and immune functions [13,14]. Conversely, diets that are high in sugar
and unhealthy fats disrupt metabolism, promote inflammation and accelerate the aging
process [15,16]. The microbiome influences digestion, immune response and brain function
through its metabolites and communication between the gut and brain [17,18]. While we
observe clearer correlations among these relationships, the precise molecular mechanisms
underlying these associations remain unexplored. The cross-sectional study conducted in
Japan, which spans the entire lifespan from infancy to extreme old age (1-100+ years), is
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crucial for understanding microbiome dynamics throughout life [3].
This research revealed that the diversity of gut microbes increases
from infancy into early adulthood, remains stable during middle
age and then declines after the age of 65, with more significant
reductions observed after the age of 80. Beneficial microorganisms
such as Christensenellaceae and Akkermansia flourish in the gut
microbiome of those who live to be 100 or older, possibly playing
arole in longevity [19,20]. At the same time, aging is characterized
by higher ratios of potentially pathogenic or pro-inflammatory
groups, i.e., Proteobacteria, Actinobacteria, Verrucomicrobia and
Synergistetes-with Enterobacteriaceae, Alistipes and Ruminococcus
gnavus becoming more abundant in frail individuals [21,22]. The
results emphasize the significance of different dietary elements
throughout various life stages and stress the necessity for age-
specific dietary plans aimed at promoting gut microbiota health for
enhanced longevity.

Diet-microbiome-epigenetics nexus in aging

One of the emerging areas of research regarding the relationship
between the microbiome and dietary factors involves epigenetic
mechanisms that influence an individual's aging process [23,24].
Epigenetic alterations, including DNA methylation, modifications
to histones and the role of non-coding RNA, modulate gene
expression without changing the underlying DNA sequence [25,26].
Certain environmental factors, especially dietary components,
can mediate these molecular changes, which are essential for
longevity and overall health in aging individuals [27,28]. Nutrients
like polyphenols, vitamins and fiber contribute to DNA repair
and inflammation reduction, fostering beneficial epigenetic
modifications that aid cellular recovery [29,30]. In contrast,
unhealthy dietary patterns, particularly those high in fat and sugar,
can lead to deleterious epigenetic alterations that hasten the aging
process and increase the likelihood of age-associated diseases
[31,32]. Investigating the connections among diet, epigenetics and
the microbiome reveals their collective impact on the aging process.
This highlights the importance of promoting diets that nurture a
healthy microbiome and encourage epigenetic changes associated
with longevity [33,34].

Personalized nutrition for microbiome health and
healthy aging

Dietary intervention is an increasingly recognized concept that
has proven effective in promoting a healthy gut microbiome, though
its acceptance varies based on cultural, personal and economic
factors [5,35]. Various approaches, including probiotics, prebiotics,
synbiotics and Fecal Microbiota Transplantation (FMT), have been
researched for their potential to restore microbial equilibrium in
adults, particularly among older individuals. Nonetheless, their
significance continues to be debated to this day [36,37]. Thus, the
ongoing challenge lies in understanding how nutrition impacts
microbiome composition to create personalized dietary strategies
that may be more beneficial than microbial supplements from
a public health perspective. While significant progress has been
made in microbiome research, there remain many unanswered
questions, especially in identifying causal relationships between
microbiome changes and age-related illnesses. Most of the new

research is correlational, which limits its therapeutic application
and highlights the pressing need for more studies on the relationship
between diet, microbiome and longevity, as illustrated in this brief
communication. Connecting microbiome research with dietary
studies and aging science aids in formulating effective approaches
to enhance health and well-being. Shifting our attention from
merely addressing age-related diseases to tackling their biological
causes will mark a crucial advancement in alleviating healthcare
challenges for aging populations.

Against this backdrop, the article first outlines the fundamental
mechanisms that link diet, the microbiome and longevity, providing
the basis for understanding their interconnected roles. It then
examines how dietary restriction shapes microbiota-epigenome
interactions that influence aging trajectories. Building on this,
the discussion turns to the potential of probiotics in modulating
systemic processes associated with age-related decline. The
article concludes by considering the connections between dietary
patterns, microbial composition and cognitive health, emphasizing
their broader implications for brain aging.

Diet, Microbiome
Mechanisms

and Longevity: The Key

Recent studies indicate that diet has an impact on the gut
microbiome, which subsequently affects aging by enhancing gut
diversity, strengthening immunity, regulating genes and facilitating
communication between the gut and brain [3-5,17,18,23-25].
One significant finding is the importance of microbial diversity
in influencing lifespan [19,20]. A varied gut microbiota boosts
metabolic health and immune functionality, both of which are
crucial for healthy aging. The diversity of gut microbes is a key
element in sustaining beneficial bacteria that aid in food digestion,
maintain gut barrier integrity and modulate immune responses [8-
10]. Additionally, a balanced microbiota helps hinder the growth
of pathogens within the intestines as individuals age, thereby
improving the symbiotic relationships among microorganisms [38-
40].

Nutrition significantly contributes to the preservation of gut
microbial diversity. Components such as fiber, polyphenols and
fermented foods are recognized for their role in supporting healthy
populations of gut microbes [41]. The generation of SCFAs like
butyrate and acetate, which are beneficial for overall health and
longevity, plays a crucial role in promoting microbiome health.
Gut bacteria break down fiber to create metabolites that enhance
immune function by boosting regulatory T-cells (Tregs) and
decreasing inflammation [42,43]. SCFAs, particularly butyrate, may
help mitigate age-related cognitive decline and Neurodegenerative
[44,45].
Furthermore, SCFAs are vital for preserving the integrity of the gut
barrier, keeping harmful substances from entering the bloodstream
and triggering systemic inflammation, which is a significant
concern linked to aging [46,47]. Elevated levels of tight junction
proteins or fungal metabolites in the bloodstream may suggest
gut permeability, inflammation, dementia and frailty in older
individuals [48,49]. A reduction in bacteria that produce SCFAs is
often linked to heightened intestinal permeability [46,47]. SCFAs,

Diseases (NDs) by alleviating neuroinflammation
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particularly butyrate, provide energy to colon cells, enhance the gut
barrier and may help alleviate inflammation as well as age-related
illnesses [50,51].

A study showed that an eight-week Mediterranean diet boosts
helpful gut bacteria such as Faecalibacterium prausnitzii, which
generates SCFAs and promotes improved health [52,53]. This eating
pattern also leads to a decrease in Ruminococcus gnavus, which is
linked to gut inflammation [54]. Conversely, diets high in fat and
sugar promote the growth of harmful bacteria like Ruminococcus
gnavus and Proteobacteria, resulting in increased gut permeability
and inflammation [55,56]. Chronic low-grade inflammation, often
referred to as “inflammaging,” is associated with aging and various
healthissues, including Cardio Vascular Disease (CVD), diabetes and
NDs [57,58]. Making dietary modifications is essential for resolving
inflammation. Consuming foods abundant in fiber, polyphenols and
omega-3 fatty acids supports the growth of beneficial bacteria that
combat inflammation [59,60]. Certain probiotics and prebiotics
found in items like yogurt, kefir and fiber-rich vegetables have been
demonstrated to lower the levels of pro-inflammatory cytokines
[61,62]. A reduction in bacteria that produce SCFAs can contribute
to inflammation among older individuals, whereas Akkermansia
and Christensenellaceae are beneficial for SCFA production and
immune support [63,64]. Therefore, the microbiome can potentially
postpone the emergence of age-related illnesses by managing the
immune system and decreasing overall inflammation, which in turn
leads to healthier aging.

Microbiota-epigenome crosstalk in caloric restriction:
implications for longevity

Research into aging’s molecular pathways emphasizes the
importance of Caloric Restriction (CR) in metabolic functioning
and inflammation reduction [65,66]. CR mimetics or medicines
that can extend lifespan while also improving health, continue to
be an exciting topic of research in the realm of aging [67,68]. One
of the emerging mechanisms by which CR exerts its beneficial
effects is through modulation of the gut microbiome [69,70].
Aging is commonly associated with reduced microbial diversity,
an expansion of pro-inflammatory taxa and a decline in beneficial
commensals [71]. CR has been shown to reverse these age-
related alterations by promoting a more diverse and balanced gut
microbial community. In rodent models, CR increases the relative
abundance of health-associated bacteria such as Lactobacillus,
Bifidobacterium and Akkermansia muciniphila-the latter being
linked to improved intestinal barrier function and attenuation of
metabolic inflammation [72,73]. Simultaneously, CR reduces the
prevalence of pathobionts and microbial signatures associated
with systemic low-grade inflammation (termed “inflammaging”)
[74,75].

CR also enhances the microbial production of SCFAs,
particularly butyrate and propionate [76]. These SCFAs are
key microbial metabolites that influence host gene expression,
modulate immune responses and support mitochondrial function
[77]. Their beneficial effects are partly mediated through the
inhibition of Histone Deacetylases (HDACs) and activation of
G-Protein-Coupled Receptors (GPRs), such as GPR41 and GPR43

[78,79]. These combined actions contribute to maintaining gut
barrier integrity and reducing systemic inflammation. Moreover,
studies on CR mimetics-including resveratrol, metformin and
rapamycin-demonstrate their capacity to recapitulate many of the
microbiome-modulating effects of CR [80,81]. Collectively, these
findings underscore the central role of the diet-microbiome axis in
regulating host metabolism, inflammation and longevity.

Importantly, these microbiota-driven effects of CR extend
beyond immune and metabolic regulation to include modulation
of the epigenome, a critical layer of gene expression control
during aging [82,83]. Epigenetic mechanisms greatly influence
the aging process, with microbiome metabolites influencing the
epigenome via mediating SCFA-induced DNA methylation or
histone modification, hence modulating gene expression [84,85].
Butyrate inhibits HDACs, activating genes linked to longevity like
FOX03 (Forkhead box 03) and SIRT1 (Sirtuin 1) [86,87]. The
Mediterranean diet raises SCFAs and lowers inflammation-related
DNA methylation. CR helps beneficial bacteria, increasing histone
acetylation and reducing SIRT6 methylation [88,89].

The role of probiotics in systemic aging processes

Significantly, probiotics can also change gene methylation
linked to immunity and oxidative stress, improving cognition and
reducing cellular aging [90,91]. Emerging evidence suggests that
probiotics can have beneficial actions not only by modulating
intestinal microbial community but also through epigenetic
remodeling of host gene expression, especially in pathways linked
to immune function, oxidative stress and neurocognitive health
[92-94]. Certain probiotic species, such as Lactobacillus and
Bifidobacterium, modulate the action of epigenetic enzymes like
DNA Methyltransferases (DNMTs) and HDACs, thus modifying
patterns of DNA methylation and histone modification [95,96].
For example, supplementation with Lactobacillus plantarum has
been found to restore normal methylation levels at the promoter
region of IL-6, a primary pro-inflammatory cytokine, to promote
decreased systemic inflammation in aging models [97,98].
Concurrently, probiotics augment SCFAs availability, notably
butyrate, a well-known HDAC inhibitor. Microbial metabolites
improve the expression of antioxidant defense genes like SOD2
(Superoxide Dismutase 2) and GPX1 (Glutathione Peroxidase 1),
effectively preventing oxidative stress, a key promoter of cellular
senescence and neurodegeneration [99,100]. Redox homeostasis,
immune tolerance and metabolic control are also maintained by
SCFA-mediated epigenetic regulation. In addition, the Gut-Brain
Axis (GBA) is a conduit through which probiotics exert their
effects on brain health by epigenetically remolding [101,102].
Probiotic treatments have been associated with alterations in
neuroprotective gene expression and methylation, such as BDNF
(Brain-Derived Neurotrophic Factor), which is crucial for synaptic
plasticity and cognition [103,104]. Studies in animals have
shown that Bifidobacterium longum or Lactobacillus rhamnosus
supplementation elevates hippocampal levels of BDNF, enhances
memory performance and decreases anxiety-like behavior-effects
that are very likely to be mediated atleast in part through epigenetic
mechanisms [105,106].
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Together, these findings suggest that probiotics possess the
capacitytomodulate hostepigeneticlandscapes, therebyinfluencing
key biological processes such as immune regulation, oxidative
stress response and neuroplasticity. This positions probiotics and
other microbiome-targeted interventions as promising strategies
for enhancing cognitive resilience and promoting healthy aging
through the epigenetic modulation of aging-related molecular
pathways. The evidence further supports the notion that gut-
directed dietary interventions may exert systemic effects on aging
and longevity by reshaping the epigenome in a manner that favors
cellular homeostasis and functional preservation.

Interlinking diet, microbiota and cognitive health in the
aging brain

The GBA communication between the microbiota and the
aging process is critical [107,108]. Gut microorganisms produce
neurotransmitters like serotonin and Gamma-Amino Butyric Acid
(GABA), which are essential for mood, cognitive function and
neuroplasticity [109,110]. Dysbiosis, an imbalance of gut bacteria,
has been linked to neurological diseases such as depression, anxiety
and cognitive loss [111,112]. Research suggests that food choices
have a direct impact on the microbiome’s ability to generate these

neurotransmitters. A fiber-rich diet increases SCFA production,
which benefits neuroinflammation and cognitive health [5-7].

The study found that a ketogenic diet boosts the amounts
of Akkermansia muciniphila and Lactobacillus, which aid in
mitochondrial function and neuroprotection [113,114]. The
Mediterranean diet has been proven to promote the growth of
Bifidobacterium and Lactobacillus, which therefore improves
serotonin metabolism and memory [115,116]. Polyphenol-
rich foods, such as berries and green tea, also help to boost
Bifidobacterium and prevent oxidative damage, which impairs
cognitive performance [117,118]. Probiotics may assist in repairing
neurotransmitter synthesis pathways, lessen stress levels and
reverse cognitive decline [119,120]. Nonetheless, these findings
have identified diet-microbiome-longevity integration as a key
area for promoting healthy aging. Nutrition, the microbiome and
longevity interact in complex ways, affecting microbial diversity,
SCFAs, immunity, epigenetics and the GBA. A diet rich in microbial
diversity and beneficial metabolites is essential for graceful aging.
As shown in Figure 1, the flowchart maps the mechanistic pathway
linking diet, microbial diversity and lifespan regulation Although
more research is needed, current evidence shows that dietary
choices play a major role in promoting longevity and well-being.

Diet
(Fiber, Polyphenols, Fermented Foods, Omega-3)

Gut Microbiome Deversity & SCFA Production
(Butyrate, Acetate)

—— Strengthened Gut Barrier
— Reduced Inflammaging

— Enhanced Immune Function
—  Metabolic Balance

Epigenetic Regulation
(FOXO3, SIRT1 Activation)

Improved Healthspan & Longevity

Figure 1: The Interplay Between Diet, Gut Microbiome and Longevity. This flowchart represents the mechanistic
connection between diet, gut microbiome diversity and longevity. Dietary factors, such as fiber, polyphenols,
fermented foods and omega-3 fatty acids, may affect both gut microbiome composition and functions. A well-

balanced microbiome boosts Short-Chain Fatty Acid (SCFA) production, mainly butyrate and acetate, which support
gut homeostasis. They also help maintain the integrity of the gut mucosal barrier, reduce chronic, low-grade
inflammatory responses (“inflammaging”), strengthen immunity responses and balance metabolism. SCFAs support
immunity, reduce disease risk and influence gene activity by activating FOXO3 (Forkhead Box O3) and SIRT1
(Sirtuin 1), which boost stress resistance and lower inflammation. Ultimately, the integration of these mechanisms
enhances immune resilience, reduces disease susceptibility and extends healthspan, highlighting the critical role of
gut microbiome modulation in aging.
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Taken together, while the concept of a singular “longevity diet”
may be overly reductive, the evidence supporting a microbiome-
targeted, cognition-preserving dietary approach is increasingly
robust. Promoting such dietary patterns across the lifespan may
not only enhance systemic metabolic resilience but also protect the
structural and functional integrity of the aging brain-positioning the
gut microbiome as a central modifiable determinant in mitigating
age-related cognitive decline.

Challenges & Future Directions

Dietary interventions aimed at the microbiome are difficult to
implement since the microbiota composition changes during life.
Indeed, diet, environment, medication and lifestyle appear to be
constantly affecting the generally orderly pattern of microbiome
development from infancy to old age. The microbiome during
early life is critical for immune system development and maternal
nutrition and breastfeeding are especially important [121,122].
Dietary patterns in general have a more particular effect on the
microbiomes of adolescents and adults. In aged individuals, where
increased inflammation and NDs are associated with dysbiosis,
intervention efforts should be tailored to age-related changes in the
microbiome to improve health at various phases of life.

Dietary interventions should vary in accordance with timing
and microbiological needs throughout a person’s life. Pre-and
probiotics, for example, may assist in increasing colonization by
“good” bacteria in infants, while fiber-and polyphenol-rich diets
may benefit adults by increasing gut microbiota diversity and
thereby aiding in metabolic health. Restoring beneficial bacteria
to the gut of older adults through fermented foods, resistant
starches and synbiotics may reduce age-related gut imbalances and
inflammation. A tailored strategy will thus necessitate the use of
additional specific biomarkers to track changes in the microbiome
as a result of dietary changes. Dietary approaches should be
tailored to each life stage. For example, prebiotics and probiotics
may help build beneficial bacteria in early life, while fiber-and
polyphenol-rich foods support microbial diversity and metabolic
health in adults. In older adults, fermented foods, resistant starches
and specific synbiotics can help restore healthy microbes and
reduce age-related gut imbalances and inflammation. For optimal
outcomes, tailored nutrition programs require reliable biomarkers
to accurately assess microbiota responses to dietary interventions.

A recent study examined how diet and microbiome interact
by analyzing stool, focusing on dietary components and microbial
metabolites [123,124]. Metabolomic analysis of stool and other
samples helps us understand how the gut processes food and
how diet affects microbial changes [125,126]. They most likely
find a microbial profile that is important for longevity, metabolic
health and/or disease resistance. Feeding analysis, microbiome
sequencing and metabolomics appear to have the potential to lead
to the development of tailored diets. To improve longevity, we need
to combine microbiome research, nutrition and bioinformatics.
Long-term studies on diet changes and their effects on gut
microbiomes can help identify links to health outcomes. Al-based
methods could create personalized dietary recommendations from
stool microbiome analysis, aiming to enhance lifespan and health.

Additionally, studying how climate change affects food quality and
availability is important, as it may impact global microbiomes and
health [127,128]. At the same time, it is important to recognize that
a healthy and diverse gut microbiome typically promotes healthy
aging; however, Gram-negative bacteria that may be present in
probiotics or fecal microbiota may release Lipopolysaccharide
(LPS), which is an endotoxin that activates TLR4-NF-kB signaling
and inhibits expression and/or activity of sirtuin 1 (SIRT1) [129-
132]. LPS does not directly inhibit SIRT1 enzymatically, but rather
LPS downregulates SIRT1 via pro-inflammatory pathways, thereby
affecting epigenetic regulation and enhancing “inflammaging.”
[133] Given SIRT1’s central role in promoting chromatin remodeling
and gene expression associated with longevity, increased LPS
levels when presented with dysbiotic or aged microbiota can
downregulate important pathways for healthy aging [134,135].
This suggests that we need to reach a balance between microbial
diversity and endotoxin burden when devising therapeutics with
probiotics or fecal microbiota.

Building on this, correlating specific diets to healthy gut bacteria
or isolating specific dietary components to build pharmacological
compounds that can potentially expand longevity is a promising
field of research. Globally, individuals adhere to specific diets due to
diverse factors, including health conditions, economic constraints
and cultural practices. That being said, a pharmacological approach
dealing with specific dietary components may function as an
option to improve gut health in the face of indifference in dietary
food choices. This option will provide easier access to critical
bioactive components that are not available through certain diets.
These approaches, if developed, will be critical to making the
microbiome’s benefits more widely available to the general public.
Dietary changes that target the microbiome, combined with non-
invasive tests on stool sample material and modern pharmaceutical
methodologies, could lead to new approaches for promoting gut
health and mitigating age-related diseases, thereby improving
quality of life in various age groups.

Conclusion

The gut microbiota influences nutrition, metabolism, immune
function and epigenetic regulation, all of which contribute
to longevity and aging. A healthy and diverse microbiota can
enhance the nutritional benefits of fiber-and polyphenol-rich
diets by generating bioactive metabolites such as SCFAs. These
metabolites play a critical role in strengthening the intestinal
barrier and reducing inflammation-both key determinants of aging.
Conversely, dysbiosis resulting from diets high in processed foods
may accelerate aging and increase susceptibility to age-related
diseases. While probiotics and fecal microbiota transplantation
hold therapeutic potential, dietary intervention remains the most
practical and sustainable strategy to support healthy aging. Future
research should prioritize elucidating causative mechanisms
and advancing personalized dietary approaches to optimize the
microbiome’s impact on healthspan and quality of life.
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