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Introduction
The gut microbiome changes as a person ages, with significant influences coming from 

factors such as the mode of birth (whether natural or Cesarean), nutrition, environment 
and life experiences [1-3]. Among these factors, nutrition plays a crucial and variable role, 
although dietary choices can have profound effects on the variety and function of gut microbes 
[4-6]. A well-functioning microbiome generates bioactive metabolites, such as Short- Chain 
Fatty Acids (SCFAs), which attenuate inflammation and contribute to healthy aging [7,8]. On 
the other hand, dysbiosis or the imbalance in microbial populations, is linked to a variety of 
illnesses, including those related to metabolism, cardiovascular health, the nervous system 
and the immune system [9,10]. This leads to a fascinating question: do gut microorganisms 
have the ability to actively impact the aging process and longevity?

Diet-microbiome links across the lifespan

Emerging research connects dietary habits and the microbiome to both healthspan-
the duration of good health-and lifespan [11,12]. Nutrient-rich foods, such as those high in 
fiber, polyphenols and fermented products, can enhance microbial diversity and resilience, 
as well as metabolic and immune functions [13,14]. Conversely, diets that are high in sugar 
and unhealthy fats disrupt metabolism, promote inflammation and accelerate the aging 
process [15,16]. The microbiome influences digestion, immune response and brain function 
through its metabolites and communication between the gut and brain [17,18]. While we 
observe clearer correlations among these relationships, the precise molecular mechanisms 
underlying these associations remain unexplored. The cross-sectional study conducted in 
Japan, which spans the entire lifespan from infancy to extreme old age (1-100+ years), is 
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Abstract

Diet, environmental exposures and aging profoundly influence the gut microbiota from early life 
onward. Emerging evidence underscores the microbiota’s central role in regulating metabolism, immune 
function and inflammation-processes that are critical determinants of health and longevity. Gut bacteria 
generate Short-Chain Fatty Acids (SCFAs) that support intestinal barrier integrity, modulate immune 
responses and attenuate inflammation. Diets rich in fiber and polyphenols enhance SCFA production and 
promote microbial diversity, whereas low-fiber, high-fat diets disrupt microbial balance, contributing to 
metabolic dysfunction and age-related disease. Diet can potentially modulate the microbiota through 
epigenetic mechanisms, including DNA methylation and histone modifications, thereby influencing 
healthspan and lifespan. Nutritional interventions hold promise for mitigating age-associated microbial 
imbalances; however, disparities in socioeconomic status, dietary patterns and individual behaviours 
remain significant barriers to population-wide implementation. Further investigation into the complex 
interactions among diet, the microbiota and epigenetics is essential for developing personalized dietary 
strategies that foster healthy aging and extend longevity.
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crucial for understanding microbiome dynamics throughout life [3]. 
This research revealed that the diversity of gut microbes increases 
from infancy into early adulthood, remains stable during middle 
age and then declines after the age of 65, with more significant 
reductions observed after the age of 80. Beneficial microorganisms 
such as Christensenellaceae and Akkermansia flourish in the gut 
microbiome of those who live to be 100 or older, possibly playing 
a role in longevity [19,20]. At the same time, aging is characterized 
by higher ratios of potentially pathogenic or pro-inflammatory 
groups, i.e., Proteobacteria, Actinobacteria, Verrucomicrobia and 
Synergistetes-with Enterobacteriaceae, Alistipes and Ruminococcus 
gnavus becoming more abundant in frail individuals [21,22]. The 
results emphasize the significance of different dietary elements 
throughout various life stages and stress the necessity for age-
specific dietary plans aimed at promoting gut microbiota health for 
enhanced longevity.

Diet-microbiome-epigenetics nexus in aging

One of the emerging areas of research regarding the relationship 
between the microbiome and dietary factors involves epigenetic 
mechanisms that influence an individual’s aging process [23,24]. 
Epigenetic alterations, including DNA methylation, modifications 
to histones and the role of non-coding RNA, modulate gene 
expression without changing the underlying DNA sequence [25,26]. 
Certain environmental factors, especially dietary components, 
can mediate these molecular changes, which are essential for 
longevity and overall health in aging individuals [27,28]. Nutrients 
like polyphenols, vitamins and fiber contribute to DNA repair 
and inflammation reduction, fostering beneficial epigenetic 
modifications that aid cellular recovery [29,30]. In contrast, 
unhealthy dietary patterns, particularly those high in fat and sugar, 
can lead to deleterious epigenetic alterations that hasten the aging 
process and increase the likelihood of age-associated diseases 
[31,32]. Investigating the connections among diet, epigenetics and 
the microbiome reveals their collective impact on the aging process. 
This highlights the importance of promoting diets that nurture a 
healthy microbiome and encourage epigenetic changes associated 
with longevity [33,34].

Personalized nutrition for microbiome health and 
healthy aging

Dietary intervention is an increasingly recognized concept that 
has proven effective in promoting a healthy gut microbiome, though 
its acceptance varies based on cultural, personal and economic 
factors [5,35]. Various approaches, including probiotics, prebiotics, 
synbiotics and Fecal Microbiota Transplantation (FMT), have been 
researched for their potential to restore microbial equilibrium in 
adults, particularly among older individuals. Nonetheless, their 
significance continues to be debated to this day [36,37]. Thus, the 
ongoing challenge lies in understanding how nutrition impacts 
microbiome composition to create personalized dietary strategies 
that may be more beneficial than microbial supplements from 
a public health perspective. While significant progress has been 
made in microbiome research, there remain many unanswered 
questions, especially in identifying causal relationships between 
microbiome changes and age-related illnesses. Most of the new 

research is correlational, which limits its therapeutic application 
and highlights the pressing need for more studies on the relationship 
between diet, microbiome and longevity, as illustrated in this brief 
communication. Connecting microbiome research with dietary 
studies and aging science aids in formulating effective approaches 
to enhance health and well-being. Shifting our attention from 
merely addressing age-related diseases to tackling their biological 
causes will mark a crucial advancement in alleviating healthcare 
challenges for aging populations.

Against this backdrop, the article first outlines the fundamental 
mechanisms that link diet, the microbiome and longevity, providing 
the basis for understanding their interconnected roles. It then 
examines how dietary restriction shapes microbiota-epigenome 
interactions that influence aging trajectories. Building on this, 
the discussion turns to the potential of probiotics in modulating 
systemic processes associated with age-related decline. The 
article concludes by considering the connections between dietary 
patterns, microbial composition and cognitive health, emphasizing 
their broader implications for brain aging.

Diet, Microbiome and Longevity: The Key 
Mechanisms

Recent studies indicate that diet has an impact on the gut 
microbiome, which subsequently affects aging by enhancing gut 
diversity, strengthening immunity, regulating genes and facilitating 
communication between the gut and brain [3-5,17,18,23-25]. 
One significant finding is the importance of microbial diversity 
in influencing lifespan [19,20]. A varied gut microbiota boosts 
metabolic health and immune functionality, both of which are 
crucial for healthy aging. The diversity of gut microbes is a key 
element in sustaining beneficial bacteria that aid in food digestion, 
maintain gut barrier integrity and modulate immune responses [8-
10]. Additionally, a balanced microbiota helps hinder the growth 
of pathogens within the intestines as individuals age, thereby 
improving the symbiotic relationships among microorganisms [38-
40].

Nutrition significantly contributes to the preservation of gut 
microbial diversity. Components such as fiber, polyphenols and 
fermented foods are recognized for their role in supporting healthy 
populations of gut microbes [41]. The generation of SCFAs like 
butyrate and acetate, which are beneficial for overall health and 
longevity, plays a crucial role in promoting microbiome health. 
Gut bacteria break down fiber to create metabolites that enhance 
immune function by boosting regulatory T-cells (Tregs) and 
decreasing inflammation [42,43]. SCFAs, particularly butyrate, may 
help mitigate age-related cognitive decline and Neurodegenerative 
Diseases (NDs) by alleviating neuroinflammation [44,45]. 
Furthermore, SCFAs are vital for preserving the integrity of the gut 
barrier, keeping harmful substances from entering the bloodstream 
and triggering systemic inflammation, which is a significant 
concern linked to aging [46,47]. Elevated levels of tight junction 
proteins or fungal metabolites in the bloodstream may suggest 
gut permeability, inflammation, dementia and frailty in older 
individuals [48,49]. A reduction in bacteria that produce SCFAs is 
often linked to heightened intestinal permeability [46,47]. SCFAs, 
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particularly butyrate, provide energy to colon cells, enhance the gut 
barrier and may help alleviate inflammation as well as age-related 
illnesses [50,51].

A study showed that an eight-week Mediterranean diet boosts 
helpful gut bacteria such as Faecalibacterium prausnitzii, which 
generates SCFAs and promotes improved health [52,53]. This eating 
pattern also leads to a decrease in Ruminococcus gnavus, which is 
linked to gut inflammation [54]. Conversely, diets high in fat and 
sugar promote the growth of harmful bacteria like Ruminococcus 
gnavus and Proteobacteria, resulting in increased gut permeability 
and inflammation [55,56]. Chronic low-grade inflammation, often 
referred to as “inflammaging,” is associated with aging and various 
health issues, including Cardio Vascular Disease (CVD), diabetes and 
NDs [57,58]. Making dietary modifications is essential for resolving 
inflammation. Consuming foods abundant in fiber, polyphenols and 
omega-3 fatty acids supports the growth of beneficial bacteria that 
combat inflammation [59,60]. Certain probiotics and prebiotics 
found in items like yogurt, kefir and fiber-rich vegetables have been 
demonstrated to lower the levels of pro-inflammatory cytokines 
[61,62]. A reduction in bacteria that produce SCFAs can contribute 
to inflammation among older individuals, whereas Akkermansia 
and Christensenellaceae are beneficial for SCFA production and 
immune support [63,64]. Therefore, the microbiome can potentially 
postpone the emergence of age-related illnesses by managing the 
immune system and decreasing overall inflammation, which in turn 
leads to healthier aging.

Microbiota-epigenome crosstalk in caloric restriction: 
implications for longevity

Research into aging’s molecular pathways emphasizes the 
importance of Caloric Restriction (CR) in metabolic functioning 
and inflammation reduction [65,66]. CR mimetics or medicines 
that can extend lifespan while also improving health, continue to 
be an exciting topic of research in the realm of aging [67,68]. One 
of the emerging mechanisms by which CR exerts its beneficial 
effects is through modulation of the gut microbiome [69,70]. 
Aging is commonly associated with reduced microbial diversity, 
an expansion of pro-inflammatory taxa and a decline in beneficial 
commensals [71]. CR has been shown to reverse these age-
related alterations by promoting a more diverse and balanced gut 
microbial community. In rodent models, CR increases the relative 
abundance of health-associated bacteria such as Lactobacillus, 
Bifidobacterium and Akkermansia muciniphila-the latter being 
linked to improved intestinal barrier function and attenuation of 
metabolic inflammation [72,73]. Simultaneously, CR reduces the 
prevalence of pathobionts and microbial signatures associated 
with systemic low-grade inflammation (termed “inflammaging”) 
[74,75].

CR also enhances the microbial production of SCFAs, 
particularly butyrate and propionate [76]. These SCFAs are 
key microbial metabolites that influence host gene expression, 
modulate immune responses and support mitochondrial function 
[77]. Their beneficial effects are partly mediated through the 
inhibition of Histone Deacetylases (HDACs) and activation of 
G-Protein-Coupled Receptors (GPRs), such as GPR41 and GPR43 

[78,79]. These combined actions contribute to maintaining gut 
barrier integrity and reducing systemic inflammation. Moreover, 
studies on CR mimetics-including resveratrol, metformin and 
rapamycin-demonstrate their capacity to recapitulate many of the 
microbiome-modulating effects of CR [80,81]. Collectively, these 
findings underscore the central role of the diet-microbiome axis in 
regulating host metabolism, inflammation and longevity.

Importantly, these microbiota-driven effects of CR extend 
beyond immune and metabolic regulation to include modulation 
of the epigenome, a critical layer of gene expression control 
during aging [82,83]. Epigenetic mechanisms greatly influence 
the aging process, with microbiome metabolites influencing the 
epigenome via mediating SCFA-induced DNA methylation or 
histone modification, hence modulating gene expression [84,85]. 
Butyrate inhibits HDACs, activating genes linked to longevity like 
FOXO3 (Forkhead box O3) and SIRT1 (Sirtuin 1) [86,87]. The 
Mediterranean diet raises SCFAs and lowers inflammation-related 
DNA methylation. CR helps beneficial bacteria, increasing histone 
acetylation and reducing SIRT6 methylation [88,89].

The role of probiotics in systemic aging processes

Significantly, probiotics can also change gene methylation 
linked to immunity and oxidative stress, improving cognition and 
reducing cellular aging [90,91]. Emerging evidence suggests that 
probiotics can have beneficial actions not only by modulating 
intestinal microbial community but also through epigenetic 
remodeling of host gene expression, especially in pathways linked 
to immune function, oxidative stress and neurocognitive health 
[92-94]. Certain probiotic species, such as Lactobacillus and 
Bifidobacterium, modulate the action of epigenetic enzymes like 
DNA Methyltransferases (DNMTs) and HDACs, thus modifying 
patterns of DNA methylation and histone modification [95,96]. 
For example, supplementation with Lactobacillus plantarum has 
been found to restore normal methylation levels at the promoter 
region of IL-6, a primary pro-inflammatory cytokine, to promote 
decreased systemic inflammation in aging models [97,98]. 
Concurrently, probiotics augment SCFAs availability, notably 
butyrate, a well-known HDAC inhibitor. Microbial metabolites 
improve the expression of antioxidant defense genes like SOD2 
(Superoxide Dismutase 2) and GPX1 (Glutathione Peroxidase 1), 
effectively preventing oxidative stress, a key promoter of cellular 
senescence and neurodegeneration [99,100]. Redox homeostasis, 
immune tolerance and metabolic control are also maintained by 
SCFA-mediated epigenetic regulation. In addition, the Gut-Brain 
Axis (GBA) is a conduit through which probiotics exert their 
effects on brain health by epigenetically remolding [101,102]. 
Probiotic treatments have been associated with alterations in 
neuroprotective gene expression and methylation, such as BDNF 
(Brain-Derived Neurotrophic Factor), which is crucial for synaptic 
plasticity and cognition [103,104]. Studies in animals have 
shown that Bifidobacterium longum or Lactobacillus rhamnosus 
supplementation elevates hippocampal levels of BDNF, enhances 
memory performance and decreases anxiety-like behavior-effects 
that are very likely to be mediated at least in part through epigenetic 
mechanisms [105,106].
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Together, these findings suggest that probiotics possess the 
capacity to modulate host epigenetic landscapes, thereby influencing 
key biological processes such as immune regulation, oxidative 
stress response and neuroplasticity. This positions probiotics and 
other microbiome-targeted interventions as promising strategies 
for enhancing cognitive resilience and promoting healthy aging 
through the epigenetic modulation of aging-related molecular 
pathways. The evidence further supports the notion that gut-
directed dietary interventions may exert systemic effects on aging 
and longevity by reshaping the epigenome in a manner that favors 
cellular homeostasis and functional preservation.

Interlinking diet, microbiota and cognitive health in the 
aging brain

The GBA communication between the microbiota and the 
aging process is critical [107,108]. Gut microorganisms produce 
neurotransmitters like serotonin and Gamma-Amino Butyric Acid 
(GABA), which are essential for mood, cognitive function and 
neuroplasticity [109,110]. Dysbiosis, an imbalance of gut bacteria, 
has been linked to neurological diseases such as depression, anxiety 
and cognitive loss [111,112]. Research suggests that food choices 
have a direct impact on the microbiome’s ability to generate these 

neurotransmitters. A fiber-rich diet increases SCFA production, 
which benefits neuroinflammation and cognitive health [5-7].

The study found that a ketogenic diet boosts the amounts 
of Akkermansia muciniphila and Lactobacillus, which aid in 
mitochondrial function and neuroprotection [113,114]. The 
Mediterranean diet has been proven to promote the growth of 
Bifidobacterium and Lactobacillus, which therefore improves 
serotonin metabolism and memory [115,116]. Polyphenol-
rich foods, such as berries and green tea, also help to boost 
Bifidobacterium and prevent oxidative damage, which impairs 
cognitive performance [117,118]. Probiotics may assist in repairing 
neurotransmitter synthesis pathways, lessen stress levels and 
reverse cognitive decline [119,120]. Nonetheless, these findings 
have identified diet-microbiome-longevity integration as a key 
area for promoting healthy aging. Nutrition, the microbiome and 
longevity interact in complex ways, affecting microbial diversity, 
SCFAs, immunity, epigenetics and the GBA. A diet rich in microbial 
diversity and beneficial metabolites is essential for graceful aging. 
As shown in Figure 1, the flowchart maps the mechanistic pathway 
linking diet, microbial diversity and lifespan regulation Although 
more research is needed, current evidence shows that dietary 
choices play a major role in promoting longevity and well-being.

Figure 1: The Interplay Between Diet, Gut Microbiome and Longevity. This flowchart represents the mechanistic 
connection between diet, gut microbiome diversity and longevity. Dietary factors, such as fiber, polyphenols, 
fermented foods and omega-3 fatty acids, may affect both gut microbiome composition and functions. A well-

balanced microbiome boosts Short-Chain Fatty Acid (SCFA) production, mainly butyrate and acetate, which support 
gut homeostasis. They also help maintain the integrity of the gut mucosal barrier, reduce chronic, low-grade 

inflammatory responses (“inflammaging”), strengthen immunity responses and balance metabolism. SCFAs support 
immunity, reduce disease risk and influence gene activity by activating FOXO3 (Forkhead Box O3) and SIRT1 

(Sirtuin 1), which boost stress resistance and lower inflammation. Ultimately, the integration of these mechanisms 
enhances immune resilience, reduces disease susceptibility and extends healthspan, highlighting the critical role of 

gut microbiome modulation in aging.
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Taken together, while the concept of a singular “longevity diet” 
may be overly reductive, the evidence supporting a microbiome-
targeted, cognition-preserving dietary approach is increasingly 
robust. Promoting such dietary patterns across the lifespan may 
not only enhance systemic metabolic resilience but also protect the 
structural and functional integrity of the aging brain-positioning the 
gut microbiome as a central modifiable determinant in mitigating 
age-related cognitive decline.

Challenges & Future Directions
Dietary interventions aimed at the microbiome are difficult to 

implement since the microbiota composition changes during life. 
Indeed, diet, environment, medication and lifestyle appear to be 
constantly affecting the generally orderly pattern of microbiome 
development from infancy to old age. The microbiome during 
early life is critical for immune system development and maternal 
nutrition and breastfeeding are especially important [121,122]. 
Dietary patterns in general have a more particular effect on the 
microbiomes of adolescents and adults. In aged individuals, where 
increased inflammation and NDs are associated with dysbiosis, 
intervention efforts should be tailored to age-related changes in the 
microbiome to improve health at various phases of life.

Dietary interventions should vary in accordance with timing 
and microbiological needs throughout a person’s life. Pre-and 
probiotics, for example, may assist in increasing colonization by 
“good” bacteria in infants, while fiber-and polyphenol-rich diets 
may benefit adults by increasing gut microbiota diversity and 
thereby aiding in metabolic health. Restoring beneficial bacteria 
to the gut of older adults through fermented foods, resistant 
starches and synbiotics may reduce age-related gut imbalances and 
inflammation. A tailored strategy will thus necessitate the use of 
additional specific biomarkers to track changes in the microbiome 
as a result of dietary changes. Dietary approaches should be 
tailored to each life stage. For example, prebiotics and probiotics 
may help build beneficial bacteria in early life, while fiber-and 
polyphenol-rich foods support microbial diversity and metabolic 
health in adults. In older adults, fermented foods, resistant starches 
and specific synbiotics can help restore healthy microbes and 
reduce age-related gut imbalances and inflammation. For optimal 
outcomes, tailored nutrition programs require reliable biomarkers 
to accurately assess microbiota responses to dietary interventions.

A recent study examined how diet and microbiome interact 
by analyzing stool, focusing on dietary components and microbial 
metabolites [123,124]. Metabolomic analysis of stool and other 
samples helps us understand how the gut processes food and 
how diet affects microbial changes [125,126]. They most likely 
find a microbial profile that is important for longevity, metabolic 
health and/or disease resistance. Feeding analysis, microbiome 
sequencing and metabolomics appear to have the potential to lead 
to the development of tailored diets. To improve longevity, we need 
to combine microbiome research, nutrition and bioinformatics. 
Long-term studies on diet changes and their effects on gut 
microbiomes can help identify links to health outcomes. AI-based 
methods could create personalized dietary recommendations from 
stool microbiome analysis, aiming to enhance lifespan and health. 

Additionally, studying how climate change affects food quality and 
availability is important, as it may impact global microbiomes and 
health [127,128]. At the same time, it is important to recognize that 
a healthy and diverse gut microbiome typically promotes healthy 
aging; however, Gram-negative bacteria that may be present in 
probiotics or fecal microbiota may release Lipopolysaccharide 
(LPS), which is an endotoxin that activates TLR4-NF-κB signaling 
and inhibits expression and/or activity of sirtuin 1 (SIRT1) [129-
132]. LPS does not directly inhibit SIRT1 enzymatically, but rather 
LPS downregulates SIRT1 via pro-inflammatory pathways, thereby 
affecting epigenetic regulation and enhancing “inflammaging.” 
[133] Given SIRT1’s central role in promoting chromatin remodeling 
and gene expression associated with longevity, increased LPS 
levels when presented with dysbiotic or aged microbiota can 
downregulate important pathways for healthy aging [134,135]. 
This suggests that we need to reach a balance between microbial 
diversity and endotoxin burden when devising therapeutics with 
probiotics or fecal microbiota.

Building on this, correlating specific diets to healthy gut bacteria 
or isolating specific dietary components to build pharmacological 
compounds that can potentially expand longevity is a promising 
field of research. Globally, individuals adhere to specific diets due to 
diverse factors, including health conditions, economic constraints 
and cultural practices. That being said, a pharmacological approach 
dealing with specific dietary components may function as an 
option to improve gut health in the face of indifference in dietary 
food choices. This option will provide easier access to critical 
bioactive components that are not available through certain diets. 
These approaches, if developed, will be critical to making the 
microbiome’s benefits more widely available to the general public. 
Dietary changes that target the microbiome, combined with non-
invasive tests on stool sample material and modern pharmaceutical 
methodologies, could lead to new approaches for promoting gut 
health and mitigating age-related diseases, thereby improving 
quality of life in various age groups.

Conclusion
The gut microbiota influences nutrition, metabolism, immune 

function and epigenetic regulation, all of which contribute 
to longevity and aging. A healthy and diverse microbiota can 
enhance the nutritional benefits of fiber-and polyphenol-rich 
diets by generating bioactive metabolites such as SCFAs. These 
metabolites play a critical role in strengthening the intestinal 
barrier and reducing inflammation-both key determinants of aging. 
Conversely, dysbiosis resulting from diets high in processed foods 
may accelerate aging and increase susceptibility to age-related 
diseases. While probiotics and fecal microbiota transplantation 
hold therapeutic potential, dietary intervention remains the most 
practical and sustainable strategy to support healthy aging. Future 
research should prioritize elucidating causative mechanisms 
and advancing personalized dietary approaches to optimize the 
microbiome’s impact on healthspan and quality of life.
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