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Introduction
The human microbiome-comprising trillions of bacteria, archaea, fungi and viruses-

functions as a dynamic, adaptive interface between the host and its environment [1-3]. Beyond 
its well-established role in digestion, this vast microbial ecosystem contributes to immune 
modulation, metabolic homeostasis and neuroendocrine communication, shaping health 
trajectories from early development through late life [4-6]. Advances in high-resolution Next-
Generation Sequencing (NGS) and spatial microbiomics reveal that dysbiosis-an imbalance in 
microbial composition-may not merely result from chronic disease but can act as an upstream 
driver, altering immune tone, metabolic flux and epithelial barrier integrity long before 
clinical disease onset [7-11].

 Large-scale initiatives such as the Human Microbiome Project (HMP) and the 
International Human Microbiome Consortium (IHMC) have generated critical insights into 
disease-associated microbial signatures across diverse body sites [12]. However, emerging 
evidence indicates that understanding where microbes reside (spatial niches) and how they 
function (functional states) is as important as identifying which microbes are present [13,14]. 
Increasingly, the microbiome is conceptualized as an integrated, multi-organ network node, 
linked by bidirectional “axes” connecting the gut with the brain, lung and heart, as well as with 
the skin, musculoskeletal system, endocrine glands and even the tumor microenvironment 
[15-20].
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Abstract
The human microbiome is emerging as a central player in chronic disease management. Breakthroughs in 
microbiome profiling-particularly spatial microbiomics and Artificial Intelligence (AI)-driven analytics-are 
reshaping how diseases are diagnosed, monitored and treated. This review examines the transformative 
potential of microbiome profiling in managing conditions such as type 2 diabetes, cardiovascular 
disease, autoimmune disorders and neurodegenerative diseases. It highlights the convergence of spatial 
diagnostics, AI and microbiome-based biomarkers as the foundation of next-generation precision 
medicine. High-resolution microbiome mapping enables earlier detection, more accurate diagnostics and 
tailored therapeutic strategies. AI algorithms unravel complex microbiome datasets, revealing disease-
relevant patterns, while microbial biomarkers provide actionable therapeutic targets. Case studies 
in Crohn’s disease and colorectal cancer illustrate how microbiome profiling can inform personalized 
interventions, including probiotics and dietary modulation. Collectively, these innovations are driving 
a shift toward precision healthcare grounded in individual microbial architectures-promising improved 
patient outcomes and heralding a new era of personalized care.
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Technological advances, including Polymerase Chain Reaction 
(PCR) and 16S rRNA sequencing, have revolutionized microbial 
analysis and accelerated the pace of microbiome research [4,21]. 
Currently, more than 20,000 publicly available metagenomic 
datasets and over 130,000 complete bacterial genomes constitute 
an unprecedented resource, underscoring the need for integrative 
approaches to elucidate microbiome-mediated regulation of 
chronic disease [22,23]. Artificial intelligence (AI), particularly 
Machine Learning (ML), is advancing microbiome profiling by 
identifying microbial biomarkers that enhance disease prediction 
and support personalized treatment strategies [24,25]. Spatial 
diagnostic platforms-such as spatial transcriptomics and spatial 
microbiomics-enable in situ mapping of microbes within their native 
tissue environments, revealing microbe–host cell interactions and 
informing precision medicine [26-28].

These conceptual and technological advances are converging: 
third-generation sequencing [29,30], AI-driven biomarker 
discovery [24,25] and spatial diagnostics [26-28] now allow tissue-
level mapping of microbial-host interactions, real-time profiling 
in clinical contexts and prediction of therapeutic responses. This 
integration lays the foundation for microbiome-informed precision 
medicine, in which diagnosis, prognosis and therapy are guided by 
an individual’s dynamic microbial architecture-monitored not as a 
single snapshot, but longitudinally. The present review examines 
these advances, emphasizing how emerging technologies, AI and 
biomarker-driven interventions can translate microbiome science 
into proactive chronic disease management.

Technological Advances in Microbiome Profiling
Distinguishing the role of the microbiome in diseases requires 

microbiome profiling from different sites in the human body. In 
such cases, the gut microbiome is typically assessed through stool 
samples; oral samples from the microbiome can be extracted from 
saliva or with dental swabs; skin samples from the skin microbiome 
can be taken from skin swabs; and the respiratory microbiome 
samples can be collected using nasal or throat swabs [31-33]. 
Researchers transfer these samples under sterile conditions, 
preserve them properly and analyze them using molecular 
techniques to ensure reliability. Researchers use advanced 
sequencing methods, like 16S rRNA and shotgun metagenomic 
sequencing, to analyze microbial DNA or RNA and study its link to 
disease.

Traditional culturing techniques are increasingly being replaced 
by molecular methods. For example, 16S rRNA gene sequencing 
identifies and quantifies bacterial species by targeting specific 
regions of the 16S gene [3-5]. In contrast, shotgun metagenomic 
sequencing analyzes the entire microbial DNA, enabling the 
detection of a wider range of microorganisms, including those 
previously unculturable [34]. Researchers primarily use Next-
Generation Sequencing (NGS) to profile the microbiome by 
analyzing hypervariable sub-regions of the 16S rRNA gene [35]. 
This high-throughput sequencing technique amplifies specific 
gene regions, allowing simultaneous sequencing of short DNA 
fragments (150-250 base pairs). Researchers typically target the 

V4 or V3-V4 hypervariable regions to classify bacteria at the genus 
level. However, this method has limitations, including unreliable 
species-level classification due to sequence homology, biases from 
sequencing platforms and inconsistencies in data processing across 
different software [36,37]. Lastly, sequencing of the very small, 
highly variable parts among these total 1542 nucleotides of the 16S 
rRNA gene precludes identification of important genetic variation 
necessary to separate closely related bacterial species [38].

Figure 1: Microbiome profiling workflow. The flowchart 
outlines the process of microbiome profiling, beginning 
with sample collection from the gut, oral cavity, skin, 
and respiratory sites. Samples are collected using sterile 
techniques, preserved and preferably maintained at 
low temperature, depending on the sample type, prior 
to molecular analyses. Sequencing approaches such as 
16S rRNA gene sequencing and shotgun metagenomics 
are employed to identify microbial communities within 
samples. Methodological advances, including full-length 
16S rRNA sequencing, Whole-Genome Sequencing 
(WGS) and nanopore sequencing, have further enhanced 
the resolution and accuracy of microbiome profiling. 
Ultimately, spatial diagnostic approaches provide deeper 

insights into host-microbiome interactions.

To overcome these challenges, researchers are refining full-
length 16S rRNA gene sequencing and Whole-Genome Sequencing 
(WGS) with shotgun metagenomics [39]. These methods became 
feasible with the advent of the third-generation sequencing 
technologies that allow for more accurate characterization of 
microbes by capturing the complete genetic landscape of microbial 
communities. The improved sequencing technologies, especially 
nanopore sequencing, have changed the very nature of microbiome 
profiling by enabling real-time and portable sequencing fit for 
almost point-of-care diagnostics [40]. In addition, emerging 
spatial diagnostics allow the intratissue investigation of microbial 
communities [41]. Figure 1 describes the microbiome profiling 
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workflow, outlining steps from sample collection to advanced 
sequencing and spatial diagnostics for studying host-microbiome 
interaction.

Spatial diagnostics for chronic disease management

Spatial transcriptomics and microbiomics track gene expression 
and microbial activity in tissues, revealing how microbes interact 
with host cells [26,41,42]. This spatial perspective sheds light 
on the contribution of these microbial communities to disease 
progression, enhancing accurate diagnostics and tailored treatment. 
Microorganisms rarely exist alone; they form complex communities 
that interact with each other and their hosts. These interactions 
can be cooperative (mutualistic or symbiotic) or antagonistic 
(competitive or inhibitory), both of which help maintain ecosystem 
stability in plants, animals and humans [43,44]. The spatial 
arrangement of microbial communities plays a crucial role in their 
ability to colonize a host and influence health or disease. Studies 
show that host-associated microbes form distinct patterns, with 
some species clustering together while others remain separate 
[45,46]. This arrangement influences competition among microbes, 
sharing resources and interaction with the immune system of 
the host. This makes it all the more important to understand the 
complex host-microbiome-microbiome interactome: the web of 
interactions among microorganisms in the host and their collective 
effects on the physiology of the host [47,48].

The spatial arrangement of microbes is important for 
diagnosing and managing chronic diseases like Inflammatory 
Bowel Disease (IBD), T2D, neurodegenerative diseases 
(Alzheimer’s and Parkinson’s) and autoimmune disorders [49-
51]. Unlike acute infections caused by a single pathogen, these 
chronic diseases result from microbial imbalances (dysbiosis). 
Understanding microbial spatial patterns can help identify disease-
related changes and guide targeted treatments. For example, in 
IBD, pathogenic bacteria can frequently form biofilm in inflamed 
areas of the gut, while beneficial microbes may be diminished or 
displaced [52,53]. Therefore, spatial microbiomics could alert us to 
some of these changes earlier, allowing for more precise detection 
and classification of disease. In Colorectal Cancer (CRC), certain 
microbes selectively colonize tumor sites. Using imaging and spatial 
transcriptomics, scientists can map these microbes to improve 
early detection and risk assessment [54,55]. Such knowledge can 
generate strategies for personalized treatment beyond diagnosis. If 
specific microbial interactions cause disease, spatial diagnosis can 
help develop targeted probiotics or microbiome-based therapies 
[56,57]. For example, in metabolic disorders, bringing back the 
beneficial microbial communities into their correct spatial niches 
would rebalance the host metabolism. Moreover, it would improve 
drug delivery, allowing probiotics or small-molecule therapies to 
target disease sites more effectively with fewer side effects [58,59]. 
Another important issue is the monitoring of microbial events over 
time to assess disease progression, especially in chronic diseases 
that develop over years or even decades. Mapping host-microbiome 
interactions at the cellular level can provide insight into how 
microbial dysbiosis triggers or exacerbates immune defects, thus 

opening our understanding to new and promising routes for 
therapies in inflammatory and autoimmune diseases [60,61].

Emerging technologies like in situ sequencing, single-cell RNA 
sequencing, and spatial transcriptomics are rapidly advancing 
toward clinical use in spatial microbiomics. More specifically, at 
the level of resolution attained with these modalities, we have 
discovered a new and powerful means to determine diseases, 
track them over time and treat non-infectious chronic diseases by 
high-resolution maps of microbial communities present within 
tissues. These communities exist not only within the host but 
also in a structured manner when recognized. This could lead to 
sophisticated strategies for disease prevention and management, 
heralding a new age of ‘microbiome-informed’ precision medicine 
[62-64].

In summary, advanced microbiome profiling, like 16S rRNA 
sequencing and spatial microbiomics, is transforming disease 
diagnosis and treatment. This technology champions high-fidelity 
microbial characterization and real-time diagnosis of chronic 
disease. Spatial diagnostics then personalize therapies towards 
better, more effective, targeted and precision medicine. The future 
of microbiome science is indeed bright, with breakthroughs paving 
the way for tailored, microbially based treatments that could 
revolutionize clinical practice and improve patients’ lives.

Integration of Artificial Intelligence in Microbiome 
Analysis

It has been very challenging to understand a vast amount 
of biological data concerned with microorganisms and their 
prevalence. But due to advancements in massive sequencing, ML, 
which is a subsection of AI, can be applied to process enormous 
amounts of data concerning microbes and arrive at diagnoses for 
a range of diseases [24,25]. Extracting useful information from 
vast and complex microbiome data requires powerful computing 
resources. In such scenarios, AI and ML, in particular, have proven 
essential. Large data sets of the microbiome may be examined 
through AI algorithms that can identify associations that standard 
statistical techniques may be unable to identify [65,66]. AI can 
provide a deep understanding of the role of the microbiome 
in health and disease by integrating data from genomes, 
transcriptomics and metabolomics. For identification of microbial 
biomarkers associated with chronic disease, the microbiome 
data can be leveraged to perform training of ML algorithms, for 
instance, random forest, Support Vector Machine (SVM), and 
clustering algorithms [67,68]. AI-driven methods use microbial 
profiles to uncover hidden disease subgroups, improving diagnosis 
and enabling personalized treatments. By integrating clinical data 
with microbiome data, AI can predict disease trajectories. Such AI 
algorithms, for instance, can also track the change in microbiome 
composition with respect to time to predict the future course of 
diseases such as T2D [69,70]. AI can also predict which patients 
will be most likely to benefit from microbiome-based therapies, 
such as Fecal Microbiota Transplantation (FMT) or probiotics, thus 
providing more customized and effective medical care [71,72].
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Figure 2: Artificial Intelligence (AI) and Machine Learning 
(ML) in Microbiome Research: From Data Processing to 
Disease Prediction. This flowchart illustrates the role 
of AI and ML in microbiome research, spanning data 
processing to disease prediction. AI algorithms are 
applied to large-scale microbiome datasets to uncover 
previously unrecognized associations between microbial 
patterns and disease states. ML models, including 
Random Forest (RF) and Support Vector Machine 
(SVM), are utilized to identify microbial biomarkers 
and predict disease trajectories, thereby supporting 
the development of personalized therapeutic strategies. 
Convolutional Neural Networks (CNNs) further enhance 
pattern recognition within high-dimensional sequencing 
data, improving diagnostic accuracy, risk stratification 
and targeted interventions. By integrating microbiome 
profiles with clinical data, AI-driven approaches advance 
precision medicine and facilitate microbiome-based 

therapeutic applications.

 Moreover, Convolutional Neural Networks (CNNs) are highly 
useful for analyzing complex microbiome data, especially high-
dimensional sequencing reads [73,74]. CNNs learn to identify 
unique patterns that distinguish microbial populations from one 
another so that they can be classified into distinct groups such as 
healthy and ill. CNNs would probably improve the discovery of 
microbial signatures that are associated with particular diseases 
because they learn the hierarchical relationships between taxa. 
In metagenomics, CNNs analyze large sequencing data to link 
microbial patterns with clinical outcomes, improving disease risk 
assessment [75,76]. Automated selection of key microbes and 
identification of disease-related traits will enhance diagnostic and 
treatment accuracy. CNNs and ML together help study microbes and 

their effects on health [77,78]. Figure 2 illustrates, in a flowchart 
format, the role of AI and ML in microbiome research, from data 
processing to disease prediction.

Microbiome-Based Biomarkers in Chronic Disease 
Management

The human microbiome interacts with neurobiology, immunity 
and metabolism, playing a crucial role in both health and disease 
[79,80]. Microbiome-derived biomarkers offer insights into host-
microbe interactions and help in diagnosing, predicting and 
treating diseases [81,82]. Taxa-specific biomarkers highlight 
microbial shifts in diseases, such as more Fusobacterium nucleatum 
in colorectal cancer, an altered Firmicutes/Bacteroidetes ratio 
in obesity, and less Faecalibacterium prausnitzii in IBD [83,84]. 
Functional biomarkers link microbial genes and metabolism to 
diseases, such as reduced butyrate synthesis weakening the gut 
barrier in IBD, TMAO-producing bacteria contributing to heart 
disease and tryptophan imbalances affecting neurodegenerative 
conditions [85,86]. Metabolite biomarkers, which include SCFAs, 
TMAO, and tryptophan derivatives, are responsible for both 
immunomodulatory effects and the regulation of metabolic 
homeostasis and neurotransmission [87,88]. Immune-related 
biomarkers, such as cytokine changes and microbial patterns, show 
immune disruptions in Inflammatory Bowel Disease (IBD), obesity 
and autoimmune disorders [89,90]. Microbiota profiling combined 
with immune cell analysis helps reveal disease mechanisms, 
improving diagnosis and treatment [90,91].

Microbiome Profiling in Chronic Disease 
Management: Case Studies

The human microbiome contributes to general health and 
is increasingly recognized as a contributor to the pathogenesis 
of a multitude of chronic diseases [7-11]. Recent advances in 
microbiome profiling reveal microbiota in chronic disease patients 
and enable targeted interventions [4-6,23-28]. This section explores 
microbiome profiling as a diagnostic and therapeutic approach, 
using Crohn’s Disease (CD) and CRC as specific case studies due 
to the focused nature of this article. CD, a type of IBD, is linked 
to microbial imbalances that may trigger its onset and severity 
[92-94]. Research has identified Mycobacteria spp. and various 
viral infections as key factors in CD development and progression 
[95,96]. Additionally, CD patients have a disrupted gut microbiome, 
with higher levels of Bacteroidetes and Escherichia coli but lower 
levels of Firmicutes spp. and Faecalibacterium prausnitzii, a crucial 
anti-inflammatory bacterium [97,98]. One of the primary traits of 
the CD-associated microbiota is the formation of biofilms on the 
intestinal epithelium [99]. The bacteria growing in individuals 
diagnosed with CD and Ulcerative Colitis (UC) invade intestinal 
epithelial cells and stimulate the body’s defense mechanism to 
produce pro-inflammatory cytokines. Notably, Adherent-Invasive 
Escherichia Coli (AIEC) is a well-recognized cause of the disease 
that starts and perpetuates the disease [100,101]. Understanding 
the microbial compositions of CD facilitates the identification of the 
ways that inform therapeutic agents such as probiotics, prebiotics 
and synbiotics, which may be given to patients in order to restore 
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eubiosis and reduce inflammation.

CRC is the third most common cancer in the world today, 
with an estimated 1.8 million new cases diagnosed in 2018 [102]. 
Recent microbiome studies have found specific bacterial species 
that are responsible for the development of CRC. Bacteria linked 
to CRC include Fusobacterium nucleatum, Enterococcus faecalis, 
Bacteroides fragilis, Streptococcus gallolyticus and Porphyromonas 
[103]. It is possible that these bacteria are involved in tumorigenesis 
through actions such as inducing inflammation, hindering the 
gut barrier or producing carcinogenic metabolites. Microbiome 
profiling can help detect microbial biomarkers for CRC, leading to 
better screening and early detection. This may enable interventions 
like dietary changes and probiotic therapy [104,105].

Hence, the application of microbiome profiling in the 
management of chronic diseases has significant promise for 
personalized medicine strategies. Through the identification of the 
community structures of the microorganisms unique to each disease 
stage, healthcare professionals can design targeted interventions 
that will help the reestablishment of the microbial balance. For 
CD, possible treatments include probiotic strains, dietary fiber to 
support their growth or combined symbiotic therapies [106,107]. 
In CRC, microbiome profiling can guide dietary interventions 
and predict microbial imbalances linked to cancer risk. Using 
microbiome profiling throughout disease progression can improve 
chronic disease management by enabling more accurate diagnosis 
and personalized treatments [108,109].

Challenges & Limitations
Microbiome profiling has advanced a lot over the years, yet a 

collection of both technical and biological challenges still remains. 
Factors such as individual variation, exposome, dietary habits 
and antibiotic usage are the keys that lead to the complexity of 
microbiome analyses [110,111]. They add another layer to the 
challenge, as the microbiome is a dynamic entity that changes over 
time because of internal and external factors. Hence, linking disease 
development to microbial profiles requires regular or periodic 
sample collection, not just a single test. Moreover, contamination of 
samples, together with the use of inconsistent methodologies and 
the lack of uniform protocols across all clinical laboratories, make 
it very challenging to ensure reproducibility and the homogeneity 
of the results. These factors make it difficult to establish a causal 
link between microbial communities and health outcomes [112]. It 
is essential to optimize methods while considering these variables 
to support the field and obtain more accurate, useful information 
from microbiome studies.

Furthermore, the microbiome is highly diverse, so it complicates 
interpreting data obtained from microbiome profiling studies. This 
occurs because of the collection of techniques, the methods of 
data analysis, and the reference databases, which are not constant 
across all analyses [113,114]. As a result, the findings are not 
uniform. One way of improving the reliability and reproducibility 
of microbiome research, especially in clinical settings, is by 
optimizing the protocols for sample collection, processing and data 

analysis. Also, due to the limited resources of a budget in a clinical 
setting, this specific article limits its focus to only sequencing-based 
metagenomics studies. However, this approach fails to account for 
intricate gene pathways, proteins, and metabolic processes that 
may drive disease. In the future, the integration of multi-omics 
approaches, for instance, gene transcript analysis, protein products, 
and small molecules of microbial or host metabolism, will provide 
a more comprehensive insight into the microbiome [115,116]. This 
comprehensive analysis will aid in identifying etiopathogenetic 
connections of microbiota and host chronic disease conditions, 
which will allow the microbiome’s functional dynamics and its 
potential health/disease effects to be better exemplified [117].

Microbiota data in clinical settings raises critical concerns 
about privacy, consent and data sharing [118]. Given its potential 
to reveal valuable health and lifestyle insights, strict guidelines for 
data storage and use are essential. The risk of privacy breaches 
from microbial profiles may necessitate new genetic privacy 
laws, imposing stricter scrutiny on microbiome profiling studies. 
Furthermore, limited access to microbiome diagnostics and 
therapeutics remains a major barrier to effectively diagnosing and 
treating healthcare disparities [119]. Microbiota biobanks also have 
to overcome ethical dilemmas such as sample ownership, the use of 
specimens for further scientific purposes, and the sharing of future 
benefits [120,121]. Participants achieve this by fully disclosing 
their data and knowing who will use it and how. Also, stringent laws 
that secure the privacy of the participants and advance microbiome 
research will be ethically sound. By ensuring both the privacy of 
individuals and the transparency of microbial profiling, we can 
establish an ethical, inclusive, and forward-thinking approach that 
benefits all of humanity. Finally, the challenges in applying AI/ML 
to microbiome data arise from limitations in study design (e.g., 
causality, population selection, eligibility criteria, and host-related 
confounders) and from technical variability (e.g., sample collection, 
storage, DNA extraction, sequencing and data processing). Such 
factors can introduce bias and ultimately hinder clinical translation 
[122].

Significance of the Study
This review integrates advances in third-generation sequencing, 

spatial microbiomics, AI-driven analytics, and biomarker-based 
therapeutics into a unified framework for microbiome-guided 
precision medicine. By moving beyond taxonomic cataloguing to 
emphasize spatially resolved, functionally relevant host-microbe-
microbe interactions, it demonstrates how emerging technologies 
can shift chronic disease care from reactive symptom management 
to proactive ecological stewardship of health. Grounded in real-
world case studies and anchored by the forward-looking concept of 
“microbiome passports,” it bridges foundational microbiome science 
with clinical practice to outline a pathway for reproducible, ethical 
and equitable implementation. This synthesis not only consolidates 
the current state of the field but also charts a transformative 
trajectory toward anticipatory, personalized interventions.

Conclusion
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Microbiome research is entering a phase where the focus 
is shifting from merely cataloguing associations to developing 
actionable, mechanistically informed interventions. The 
convergence of next-generation microbiome diagnostics, 
spatial microbiomics, AI-driven analytics, and biomarker-based 
therapeutics is enabling a new class of precision healthcare 
tools capable of assessing disease risk, tracking progression, and 
guiding personalized interventions. In this emerging paradigm, 
microbial signatures will not only stratify patients by disease 
subtype but also predict therapeutic responsiveness, allowing 
optimization of treatment strategies before clinical symptoms 
manifest. The next frontier lies in developing dynamic, context-
specific microbiome management strategies. This entails 
longitudinal spatial profiling to track microbial evolution within 
defined body niches over time, coupled with real-time monitoring 
via ingestible or wearable biosensors that detect microbiome-
derived metabolites. It also includes engineering patient-specific 
microbial consortia to restore or enhance functional capacity and 
integrating microbiome-aware clinical decision-support systems 
that combine genomic, exosmic and lifestyle data to generate 
actionable insights. However, ethical and infrastructural challenges 
persist-particularly in standardization, equitable access and data 
privacy-but are addressable through coordinated, interdisciplinary 
frameworks. Over the next decade, “microbiome passports” could 
become as routine as blood typing, guiding not only disease 
management but also drug dosing, dietary planning and preventive 
health interventions. Finally, integrating microbial ecology into 
conventional medical practice has the potential to shift chronic 
disease care from reactive to anticipatory-enabling interventions 
at the earliest, most reversible stages and establishing microbial 
stewardship as a cornerstone of human health.
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