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A Wide Range of Factors Determine the Stability and Safety of an 
Endemic State 

Despite strategic public health measures, such as the global development of COVID-19 
vaccines, since the start of the pandemic in late 2019, it is still possible that the current 
pandemic will not turn into a true global endemic event in the near future. Therefore, COVID-
19’s negative impacts will be felt by everyone in the world, at least throughout the transition 
from pandemic to endemic. The near-zero-COVID-19 goal must be achieved, and immediate 
action must be taken to define the necessities and develop practical approaches. 

 By definition, endemic disease means that a sizable portion of the population develops 
immune protection, either through vaccination or accidental natural infection, such that 
there will be less community transmission, along with much lower disease severity and 
mortality rate, even as the virus persists. This is in contrast to pandemic disease, which 
results in exponential increase in the number of cases encompassing a larger area due to 
widespread speedy transmission of the infectious disease [1,2]. The length of time it takes to 
reach an endemic condition thus depends on a number of factors, including the effectiveness 
and duration of immune protection in individuals, the effectiveness of vaccines, patterns of 
human contact, adherence to non-pharmaceutical public health measures, the rate of virus 
transmissibility, and the frequency of emergence of new variants [3-5]. Nevertheless, an 
endemic disease may potentially be dangerous. For example, malaria killed more than 600,000 
people in 20205, tuberculosis resulted 1.5 million deaths in the same year, worldwide6, and 
endemic infection during measles outbreak in the U.S. in 2019 killed many people [6,7]. 

 Thus, the progression from pandemic to endemic is therefore a crucial learning process, 
to better understand the efficacy of disease-specific interventional measures, such as range of 
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Abstract
Since the current COVID-19 pandemic started in early 2020, despite strategic public health measures 
and the subsequent global development of COVID-19 vaccines, it can still be difficult to predict whether 
the current pandemic will turn into an endemic event. Variation in the pandemic measures could result 
in emergence of new SARS-CoV-2 variants, which may follow distinct evolutionary pathway compared 
to previous variants. Achieving herd-immunity threshold against SARS-CoV-2 infections can be difficult 
due to factors like vaccine hesitancy, vaccine inequity, etc. The current COVID-19 vaccines are primarily 
effective in preventing the disease symptoms in patients, and prevent hospitalizations and deaths, 
but strong evidence in favor of their ability to prevent new infections is weak, till date. Therefore, it 
is crucial to continuously develop efficient antiviral medications that can be taken at home. This will 
reduce the need for hospitalization and ICU admissions, which will relieve pressure on many countries’ 
underdeveloped healthcare systems. Additionally, robust high-throughput genome surveillance in real-
time will help to precisely profile SARS-CoV-2 variants in circulation. Urgent need also exists for a reliable 
and one-size-fits-all serological tests that will help in retrospective contact tracing, investigation of 
asymptomatic infections, and presence of humoral protective immunity in the population, along with 
SARS-CoV-2-specific T cell profiling in COVID-19 patients. The potential immunological parameters 
specific to COVID-19 disease pathology must be assessed in high-powered population surveillance 
studies to better manage the disease. Also, communication of comprehensive pandemic surveillance data 
must be communicated in simple languages to the public.

http://dx.doi.org/10.31031/CJMI.2023.06.000649
https://crimsonpublishers.com/cjmi/
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genomic surveillance [8] in the population, along with performance 
analyses, e.g., critical assessment of retrospective and prospective 
population surveillance data based on seroprevalence [9] findings 
and antiviral T cells profiling [10] together with hospitalization 
rates, Case Fatality Rates (CFR) and other metrics. Furthermore, 
results from clinical trials on emerging interventions, the 
temporal epidemiological landscape of infection spread, antibody 
neutralization data on new SARS-CoV-2 variants emerging from 
laboratories, periodic, predictive statistical modeling data [11] 
on disease propensity in the population, as well as an accurate 
evaluation of public health initiatives, are crucial for a better 
understanding of the pandemic to endemic trajectory. Additionally, 
information from previous infectious disease outbreaks can be 
used to predict how a particular virus, such as SARS-CoV-2, will 
evolve in the future, and whether COVID-19 will eventually develop 
into a well-known seasonal illness like influenza [12]. 

 Another important factor in bringing a pandemic situation to an 
endemic level, is the development of efficient anti-viral medications 
[13,14] both prophylactic and therapeutic, that can be taken at home. 
This will reduce hospitalization rates and ICU admission rates, 
reducing the burden on underdeveloped healthcare infrastructure, 
especially in poor countries, and limiting the spread of the disease 
in places like African nations, where vaccination coverage is low 
primarily due to vaccine inequity [15,16].

Key Considerations for Bringing a Pandemic to an 
Endemic State 

Furthermore, based on the past history of global pandemic 
events, it is difficult to predict whether SARS-CoV-2 will evolve over 
time to become less virulent and transmissible, causing endemic 
to occur. Evidence for any specific virus to become more benign 
over the years [17] following the course of evolution, is rare. In the 
best-case scenario, if an endemic condition arises sooner rather 
than later, its stability over an extended period of time needs to be 
ensured by careful evaluation of the holistic developments linked to 
the pandemic trajectory [18], to protect the society over an extended 
period of time. As a result, identifying and reaching agreement 
among public health experts on the acceptable disease burden to 
be considered as an endemic state [19], tracking of emerging SARS-
CoV-2 variants by periodic genomic surveillance, limiting morbidity 
and deaths through home-based diagnostics [20], antiviral drug 
therapy, and holistic care for patients with “long COVID” [21-23], 
are the main considerations for managing an endemic COVID-19 
state. Additionally, it is critical to use data from previous infectious 
disease epidemics [24] to build efficient interventional strategies 
for emerging pathogens like SARS-CoV-2.

 More importantly, in contrast to other deadly coronaviruses 
like Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) 
and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) 
[25], SARS-CoV-2 is not only more virulent, but also results in 
asymptomatic transmission of virus to other people in a higher 
frequency. It’s probable that SARS-CoV-2’s zoonotic origin [26] has 
led to substantial selection pressure for its adaption in the human 

host through greater transmissibility and immune evasion. For 
example, the D614G substitution [27] in SARS-CoV-2 and mutations 
in SARS-CoV-2 variants like B.1.1.7 (Alpha) and B.1.617.2 (Delta) 
have led to enhanced transmission in humans, as opposed to 
H1N1 influenza virus, which finally became seasonal, most likely 
because of reduced selection pressure emanating from the host. 
The unexpectedly low prevalence of influenza, the common human 
respiratory virus since the start of the ongoing COVID-19 pandemic 
[28], could be attributed to many of the preventive measures taken 
to slow the transmission of SARS-CoV-2. Finally, it is possible that 
SARS-CoV-2 and H1N1 influenza virus co-infect the host cells, 
resulting in the evolution of a new SARS-CoV-2 variant with less 
virulence and transmissibility [29,30]. 

This variant is likely to result from homologous and/or 
heterologous recombination, in which a donor sequence (in this 
case, influenza virus) is introduced into the genome of another 
virus such as SARS-CoV-2, which additionally offers evolutionary 
advantage for the long-term survival of the less lethal recombinant 
virus variant in the human host, out competing other lethal versions 
of SARS-CoV-2, resulting in the occurrence of a stable endemic 
situation [31-35]. Also, due to the complicated evolutionary 
behaviors of all viruses, it is often difficult to predict whether SARS-
CoV-2 would finally be a seasonal winter virus during its trajectory 
from pandemic to endemic. Nevertheless, it is likely that immune 
memory from prior SARS-CoV-2 infections, leading to its adaptive 
immunological tweaking against a new variant, might conceivably 
push a pandemic event towards an endemic state [36,37]. Having 
said that, due to coronaviruses’ high rate of viral RNA recombination, 
it is difficult to rule out the possibility of future recombination 
events between SARS-CoV-2 and other human coronaviruses, that 
can evade pre-existing immunity in the individuals, destabilizing 
the endemic state of the disease. Furthermore, people with 
compromised immune systems and/or immunosuppressed 
persons are unable to fully recover from SARS-CoV-2 infection, 
making them possible hidden reservoirs for the virus, which can 
then further evolve and spread through human-to-human contact 
[38,39]. Also, vaccination against COVID-19 may not be optimal in 
immunocompromised people [40]. Additional stochastic events 
may occur in a small percentage of immunosuppressed or vaccine-
resistant people, which could lead to the emergence of future 
variants from infections [41,42].

 Previous research on the emergence of viral mutants during 
pandemics seems to point to structural and functional plasticity 
in certain viral component regions, which has minor effects on the 
virus’s overall structure and function and allows a specific viral 
variant to maintain its life cycle [43,44] and achieve evolutionary 
adaptation in the human host. For example, in the case of 
SARS-CoV-2, our current comprehension of the evolution of its 
variations is largely dependent on the mutational changes in the 
virus’ spike protein. The selection pressure within the host [45-
48] that particularly targets the virus’ spike protein, has led to a 
lack of knowledge about the impact of mutations outside of this 
region. It’s possible that any adjustments to the selection pressure 
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brought on by increased population immunity that a particular 
variant experiences en route to an endemic state could lead to the 
emergence of newer mutants from viral components other than the 
SARS-CoV-2 spike protein, which would broaden the virus’s fitness 
landscape [49,50]. 

It may therefore be premature to predict a potential synergy 
dialogue between the SARS-CoV-2 and the host [51] that might 
establish a stable equilibrium, causing stable endemicity and 
reducing uncertainties about the long-term course of the ongoing 
pandemic given the complex history of the ongoing pandemic [52], 
with its twists and turns. Additionally, variations in pandemic 
measures, particularly in troubled regions of the world, could 
have a direct impact on the appearance of new variants, which 
are likely to follow an altogether different evolutionary trajectory 
from earlier SARS-CoV-2 variants [53]. This is further compounded 
by the fact that intermediate host adaptation of SARS-CoV-2, 
such as in animals from humans, could generate new variants in 
the intermediate animal host, re-infecting individuals with more 
virulence and transmissibility, following human-animal-human 
infection pathway [54,55] further underscoring the importance 
of one health approach in bringing a pandemic state to stable 
endemicity.

 The recent observations from the real world COVID-19 vaccine 
efficacy data, suggest achieving herd immunity against COVID-19 
could be challenging [56-58]. Evidence for effective protection from 
SARS-CoV-2 infections in vaccinated individuals is mostly lacking 
[59-63]. Therefore, it appears that vaccines primarily work to stop 
disease symptoms in COVID-19 victims and to stop hospitalizations, 
but there is currently little convincing evidence supporting their 
potential to stop new infections or re-infections. In the middle of 
the lengthy pandemic, a straightforward estimate implies that the 
combined efficacy of vaccines in preventing B.1.351 spread in the 
U.S. may be only 50 percent [64]. Also, it is not clear, to what extent 
previous infections from one SARS-CoV-2 variant protect people 
from re-infection with new variants [65-67]. 

Key Approaches and Challenges in Bringing a 
Pandemic to an Endemic State

 Importantly, in depth analysis of immunity type [68,69] (0-
1) in vaccinated individuals like susceptibility to infection (IES), 
reduction of infectiousness (IEI), and pathological manifestations 
(IEP) needs to be carefully evaluated, to understand the pandemic-
to-endemic trajectory-where ‘0’ corresponds to complete reduction 
in susceptibility of infection/infectiousness/pathology, and ‘1’ 
corresponds to complete sterilizing immunity/non-infectiousness/
asymptomatic state. For example, measles, which likely provides 
lifetime sterilizing immunity in the vaccinated individuals (IES= 1), 
is entirely different in its trajectory compared to SARS-CoV-2, where 
immunity against it wanes over time with progressive changes in 
IES, IEI, and IEP. In spite of extensive vaccination in the population, 
SARS-CoV-2’s R0 is primarily dependent on the dynamics of 
immune behavior in individuals. A slower waning of immunity will 
lead to faster endemic state with lower R0, resulting in much lower 

prevalence of infections. Thus, it is critical to continuously monitor 
the effective R0 in the population throughout the five stages [70] of 
a pandemic: (1) Pandemic, (2) Deceleration, (3) Control (Endemic), 
(4) Elimination and (5) Eradication. 

In addition, there are numerous ‘suspected’ COVID-19 cases 
with similar Computed Tomography (CT) lung images and clinical 
symptoms that are reported to be missed by real-time RT-PCR 
detection. This raises technical challenges associated with the 
precise detection of SARS-CoV-2 that can be difficult to overcome 
[71-74]. As a result, a negative result does not rule out SARS-CoV-2 
infection and should not be the only factor considered when making 
patient management decisions. Additionally, the gold standard of 
antibody testing for SARS-CoV-2 immunity in individuals, is not 
without flaws [75,76]. A recent data among 1497 fully vaccinated 
health care workers in Israel revealed that in 39 workers, who 
became infected after receiving their second dose of the BNT162b2 
(Pfizer-BioNTech) vaccine, had lower levels of neutralizing 
antibodies as compared to their uninfected colleagues [77,78]. 
Although, antibody levels were associated with some degree of 
protection, the researchers were unable to specifically determine a 
threshold. None of the cases were severe, but antibodies were not 
totally protective against the virus. 

Thus, individuals can have neutralizing antibodies, but can 
still get infected, underscoring the importance of determining 
the antibody threshold that protects vaccinated individuals from 
further infections [79,80]. Additionally, none of the authorized 
seroprevalence tests has the ability to distinguish between 
neutralizing and non-neutralizing anti-SARS-CoV-2 antibodies 
[81,82]. There is an urgent need for a dependable, universal 
serological test that will aid in the search for the natural reservoir and 
intermediate host(s) of SARS-CoV-2 as well as in the retrospective 
contact tracing, investigation of asymptomatic infections, case 
fatality rate, and presence of humoral protective immunity in both 
recovered COVID-19 patients and vaccinated individuals [83,84]. 
The convalescent plasma obtained from COVID-19 patients is used 
in several types of SARS-CoV-2 neutralization studies carried out in 
lab settings. 

However, there doesn’t seem to be agreement on a particular 
neutralization test type as of yet among: (1) life virus neutralization 
by plaque reduction assay [85], (2) a lentiviral vector based pseudo 
type neutralization assay [86], and (3) a competition ELISA-based 
Surrogate Virus Neutralization Assay (sVNT) [87,88] that closely 
mimics the SARS-CoV-2 neutralization pattern in individuals. In 
addition, viral neutralization assays must be performed in a Biosafety 
Level 3 (BSL3) facility, except for the pseudo type neutralization 
assay, which needs a Biosafety Level 2 (BSL2) facility. Another 
advantage of sVNT, is its ability to detect SARS-CoV-2 antibodies, in a 
species-independent manner. Since serological assays are superior 
to molecular detection because virus-specific antibodies remain in 
the body for a longer period of time than SARS-CoV-2 RNA, which 
has a relatively shorter shelf life, the sVNT assay will be perfectly 
suited for “COVID-19 hunting” in suspected intermediate host (s), 
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such as in animals [89]. However, a general limitation of these 
assays is that they are only able to detect neutralizing antibodies, 
which only function by blocking the interaction between the RBD 
(Receptor Binding Domain) and ACE2 (Angiotensin-Converting 
Enzyme 2). Although the majority of SARS-CoV-2 neutralizing 
antibodies found in patients fit this description, some antibodies 
have been reported to use alternative pathways. Therefore, to 
screen plasma donation recipients for passive immunization, 
more sophisticated viral neutralization assays are required, which 
require additional technological advances [90]. 

 Virus-specific humoral and cellular immunity act synergistically 
to protect individuals from viral infection [91,92]. Although, rapid 
induction and intensity of humoral responses are associated with 
increased disease severity, early Induction of Interferon (IFN)-γ-
secreting SARS-CoV-2-specific T cells, is found in patients with mild 
COVID-19 disease [93,94], which might help COVID-19 patients 
in accelerating viral clearance. These results offer compelling 
evidence for the prognostic utility of early functional SARS-CoV-
2-specific T cells, which has significant implications for immune 
surveillance [95]. A sufficient number of functional antiviral T cells 
(CD4+ and CD8+) can protect against developing severe COVID-19 
disease due to breakthrough infection by quickly and effectively 
eradicating SARS-CoV-2 in the early stages of infection, even though 
humoral immunity from a prior infection or vaccination gradually 
declines over time. Interestingly, regulatory FoxP3 (Forkhead 
Box Protein 3) positive T cells (Tregs); a subset of CD4+ T cells, 
involved in preventing exaggerated immune responses, were found 
in severe COVID-19 patients, exhibiting cytokine storm including 
both Th1 and Th2 cytokines [96,97]. Thus, assessment of numbers 
and function of Tregs in COVID-19 patients, can shed light on 
SARS-CoV-2-mediated immune dysregulation, and prognosis of the 
disease in individuals. Additionally, it can offer critical insights into 
how to recognize patients at various disease stages or with various 
immune response traits and synchronize them with particular 
treatment approaches. 

This means that a precision medicine approach based on 
‘immune health’ profiling by examining SARS-CoV-2-specific T 
cells could be used to better tailor immunostimulatory treatment 
modalities. However, the lack of phenotypic characterization of the 
SARS-CoV-2 T-cell response is a significant issue that is frequently 
reported [98]. The most popular ex vivo ELISpot assay [99], which is 
used to characterize the SARS-CoV-2 T-cell response in convalescent 
subjects, is only able to detect the presence of SARS-CoV-2-reactive 
T cells in the majority of convalescent COVID-19 patients and is 
unable to resolve T cell phenotypes. Also, the pre-depletion assays 
using anti-CD4 and anti-CD8 coated antibody beads for FACS [100] 
(Fluorescence-Activated Single Cell Sorting) analysis, have low 
resolution. That said, despite the lack of SARS-CoV-2 neutralizing 
Abs in some COVID-19 patients, the presence of detectable SARS-
CoV-2 specific T cell response suggests the significance of SARS-
CoV-2-specific T cell profile in COVID-19 patients, which will 
further improve our current understanding of precisely defining an 
endemic condition. 

Conclusions and Future Directions
 Taken together, R0 is a reliable readout in tracking the 

pandemic-to-endemic trajectory in a population. In particular, 
efforts should be made to identify COVID-19-infected people who 
are likely to contribute more to the spread of infections and trigger 
an unexpected spike in R0 in a shorter period of time, such as 
super-spreaders, long-haul drivers, immunocompromised people, 
and people who are not responsive to SARS-CoV-2 vaccinations. 
Furthermore, large-scale population surveillance studies using 
sophisticated laboratory assays are required to confirm the causal 
relationships between key immunological parameters and disease 
prevalence, severity, and clinical characteristics to increase the 
effectiveness of the disease’s intervention through personalized 
treatments. Additionally, this will help in the accurate assessment 
of the population’s vaccination status. Moreover, a more precise 
definition of what herd immunity in a population needs to be looked 
at. Because the threshold for herd immunity is pathogen-specific, 
it would take agreement to declare a population herd immune in 
the event of a COVID-19 pandemic. It also seems difficult to fully 
achieve herd-immunity threshold against SARS-CoV-2 infections 
due to problems including vaccine hesitancy, vaccine inequity, 
the unexpected emergence of new SARS-CoV-2 variants, and the 
delayed introduction of immunizations for children. Thus, non-
pharmaceutical interventions should continue to play a major role 
in keeping COVID-19 cases to a lower level. 

Even if herd immunity cannot be achieved, the global campaign 
to immunize a substantial section of the population, which has 
led to a decrease in the number of COVID-19 hospitalizations and 
fatalities, is essential in driving the pandemic towards endemicity. 
There are several ways immunity might defend against an infection 
when it becomes endemic without eradicating the virus from the 
population, such as through Lowering Infection Susceptibility (IES) 
or Lowering Pathogenesis (IEP). Understanding the underlying 
mechanisms by which these various aspects of protection 
deteriorate over time, and how they are strengthened by natural 
infection and vaccination, will be especially important in the case of 
viruses, such as SARS-CoV-2, against which infection does not seem 
to produce life-long immunity. For instance, it would be intriguing to 
figure out the important epigenetic changes governing the immune 
genes that provide long-lasting protection from reinfection with 
SARS-CoV-2. Also, cellular mechanisms, such as the role of cellular 
senescence and the body’s stem cell health, which can induce 
immuno genesis on demand with improved functions, to be better 
able to cope with the accidental infection with SARS-COv-2 during 
the state of endemicity, would also provide additional insight 
into the underlying mechanisms of vaccine-induced long-term 
immunity in a population. However, it is possible that in a complex 
multifactorial and multigenic disease like COVID-19, a number of 
genetic, epigenetic, and sociodemographic factors are modulating 
the susceptibility to reinfection as the disease transitions from 
a pandemic to an endemic state [101]. This would complicate 
the current state of understanding of long-term immunity in the 
susceptible population and call for systems thinking to maintain 
stable endemicity. 
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Furthermore, in comparison to using only test-based confirmed 
infections to assess the pandemic trajectory, a prediction-based 
model that incorporates effective R0 along with other critical 
metrics will provide a more accurate real-world country-specific 
infection prevalence and mortality rate with a higher level of 
confidence in accurately defining the state of endemicity [102]. 
Moreover, to speed the transition from a pandemic event to a 
stable endemic state, periodic high-powered genomic surveillance 
employing a one health approach is required. Last but not least, 
clear and comprehensive language must be used to communicate 
surveillance data to the public effectively. It might be useful to 
create rating systems, where multiple parameters and co-variants 
are combined into a single rating (low, moderate, high, very high, 
extreme, that is communicated to the public and directly ties 
to public health policies to facilitate the establishment of more 
stringent control on the pandemic-to-endemic trajectory.
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