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Introduction
Ecosystems form an essential component of life on earth as they provide natural resources 

and it is estimated that ‘ecosystem services’ benefits could be about USD 125 trillion/
year [1] which is several folds higher than the total gross domestic product of the world. 
Microorganisms constitute about 60% of the total biomass of the earth (more than 5×1030) and 
sequester ~350-550, 85-130 and 9-14Pg of carbon, nitrogen, and phosphorous, respectively 
[2]. Though the common feeling is that microorganisms are harmful, comprehensive research 
has proven beyond doubt that only a fraction of them are pathogenic while vast majority are 
beneficial and essential for ecosystem functioning. They are excellent indicators of a given 
ecosystem and its patterns and can help to unravel the strategies and limits of life. They form 
an important resource for new genes and model organisms for biotechnological applications 
and predict environmental changes. Microbial communities are extensively used as models for 
understanding intra- and inter-species interactions and evolution patterns. The continuous 
quest to unravel the microbial traits has generated voluminous knowledge and the modern 
molecular tools have provided the genetic and molecular basis of these traits.

Microbiomes

In simple terms, a microbiome may be defined as an ecological community comprising 
a community of microorganisms and their genomic elements in a given environment. The 
plant microbiomes comprise fungi, bacteria, archaea, protists and viruses. Structural and 
functional diversity of a microbiome is an outcome of the multi-faceted interactions among the 
microbial community members of an environment with their hosts in presence of the natural 
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Abstract
Microorganisms are ubiquitous and form imminent components of living systems on earth. Over four 
centuries scientific pursuit using novel biomolecular tools has helped in thorough understanding from 
individual microorganisms to complex microbiomes associated with living and non-living systems. Such 
understanding has enabled to exploit the microbial diversity for crop, human and animal welfare and 
microbes best fit the ‘One Health” concept. Microbial systems also play vital role in soil, water and air 
quality maintenance. Today, the microbiome research is helping to develop technologies to manipulate 
the microbiomes for ensured food and nutritional security. The microbiomes exhibit structural and 
functional diversity which is an interactive outcome of the microbes and the living and non-living systems 
they are associated with. Both structural and functional diversity of microbiomes influence extensively the 
crop growth and development. In this paper, the microbiomes & their constitution across agroecologies, 
structural and functional diversity among microbiomes and the impact of the combined diversity on crop 
growth and development are discussed.
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resources around them. This new area of research which started 
in late 90s has grown substantially and contributed to the better 
understanding of the plant-microbe interactions and also novel 
concepts like meta-organism concept [3] or holobiont theory [4]. 
Diverse crop production systems across different agro-ecologies 
are known to recruit specific microbiomes. This recruitment is an 
outcome of topological and chemical strategies and is governed 
by host genetics and metabolic pathways [5,6]. This specific 
recruitment process leads to structural and functional diversity 
in microbiomes and spans throughout the life span of the plants. 
The plant microbiomes inhabit mainly rhizosphere, phyllosphere 
and endosphere. Endosphere inhabitants are commonly known 
as endophytes. Each of these communities, independently as well 
contribute to the growth and development of the crop plants. 

Structural diversity

Broadly, structural diversity of a given microbiome indicates 
the different kinds of microorganisms that co-exist in a given niche. 
This diversity indicates the habitat, limits of life and conditions 
conducive for the survival and evolution of other microorganisms 
along with other living and non-living systems. The temporal and 
special distribution of different types of microorganisms could 
influence the composition of a given ecosystem. Morphological, 
physiological and biochemical methods can be initially employed 
to characterize the microbial richness. DGGE, structural 
metagenomics are employed to analyses the diversity and relative 
richness of microorganisms. Alpha diversity is a measure of the soil 
microbial (bacteria, fungi and mycorrhiza) richness and community 
composition. Based on Internet-based GIS applications coupled 
with microbiological, geochemical, and geographic data and maps, 
Stoner [7] developed a prototype to understand structural diversity 
of Yellowstone National Park. Depending on their co-evolution 
patterns, the microorganisms occupy different parts of the plants 
such as below ground plant parts (rhizosphere), above ground 
plant parts (phyllosphere) and inside the plants (endosphere). 

Rhizosphere: The rhizospheric soil hosts a rich diversity of 
microorganisms and is the ‘hot spot’ for beneficial plant microbial 
colonization and activities [8]. Plants form rhizo-assemblages 
independent of their host phylogeny to meet their growth, nutrition 
and defence-induction requirements. Plant rhizosphere micro-
ecosystem mainly comprises rhizosphere microorganisms that 
serve as indicators of soil health in terms of quality and fertility, 
pathogen suppression and plant stress tolerance [9]. Rhizosphere, 
with huge energy flux, constitutes the largest ecosystem on earth 
[10] and can be broadly classified as Endo-rhizosphere, Rhizoplane 
and Ecto-rhizosphere. Bacteria constitute the most predominant 
microbial diversity of the rhizosphere and occupy up to 15% of the 
total root surface area [11] with gram negative, non-sporulating, 
rod shaped proteobacteria and actinobacteria [12,13] and gram-
positive Bacillus, Arthrobacter and Frankia [10]. Kloepper [14] 
recognized the role of plant growth promoting rhizobacteria and 
pioneering research has led to their characterization across agro-
ecologies. Another important vertical of the rhizosphere inhabiting 
microbes include obligate intercellular Arbuscular Mycorrhizal 
Fungi (AMF) belonging to the orders of Glomerales, Diversisporales 

Archaeosporales, and Paraglomerales [15]. With special structures 
known as vesicles and arbuscules, they significantly improve plant 
nutrient uptake and induce resistance against several abiotic 
stresses [16]. They form symbiotic associations with the roots of 
many plant species and help in increased nutrient uptake [17,18]. 
Furthermore, AMF have been shown to improve plant tolerance to 
various abiotic stresses such as drought, salinity, and heavy metal 
toxicity [19,20]. With the advent of metagenomics, characterization 
of the soil virus abundance has progressed and they are estimated 
to range from 107 to 109g−1 of soil [13,21]. Soil viruses helped in 
managing bacterial plant pathogens [22]. However, the location and 
migration behavior of soil viruses are influenced by the plant root 
exudates and soil physiochemical properties [23].

Phyllosphere: The term phyllosphere includes the 
microorganisms occupying the aerial parts of the plant, especially 
leaf surfaces. The highly complex microbial communities in the 
phyllosphere consist of diverse groups of culturable and non-
culturable microorganisms [24]. The major phyla of phyllosphere 
bacteria are Proteobacteria, Firmicutes, Bacteroides, and 
Actinobacteria [25,26]. Study of microbial diversity of phyllosphere 
poses a great challenge as heterogeneous groups of microbial 
communities compete for the limited surface area which makes 
it extremely difficult to understand the community structure, 
physiology and networking. Unlike rhizospheric microbiota, the 
phyllospheric microbes are exposed to harsh conditions such as 
very high/low temperatures, UV radiation, extreme weather events, 
biogeography, environmental pollution, and limited availability of 
water and nutrient [27]. In phyllosphere too, bacterial communities 
dominate ranging from 102 to 1012g−1 of the leaf [28]. Thompson 
classified 1236 isolates from sugar beet phyllosphere into 78 
known and 37 unknown bacterial species clusters and populations 
varied with plant age. Legard [29] identified 88 bacterial species 
on spring wheat belonging to 37 genera and pink and white 
yeasts, filamentous fungi and bacteria always dominated across 
sampling times and sites. However, Rasche [30] opined that 
the culture-dependent profiling of phyllosphere communities 
could miscalculate diversity. However, the culture-independent 
approaches like genomic characterization of the microbial diversity 
could give the complete and complex community structure of the 
environment. While alpha-, beta- and gamma-proteobacteria, 
actinobacteria, bacteriodes and firmicutes dominated the 
phyllosphere [31]. Kadivar & Stapleton [32] reported occurrence 
of acidobacteria, actinobacteria, and cyanobacteria also. Studies by 
Yang [33] and Lambais [34] projected that a vast majority of the 
bacterial sequences of the phyllosphere of the crops were novel 
and unidentified. Among the identified genera, the cultivable yeasts 
genera included Cryptococcus, Sporobolomyces and Rhodotorula 
[35] while filamentous fungi included Cladosporium, Alternaria, 
Penicillium, Acremonium, Mucor, and Aspergillus that ranged from 
102 to 108 cfug−1 [28,36]. Other reports highlighted the occurrence 
of Pseudomonas spp. As the most abundant inhabitants’ [37] 
methylotrophic bacteria [38] and actinobacteria, bacteroidetes, 
firmicutes, and proteobacteria associated with seed coat have 
been reported in phyllosphere [39]. From wheat plant, Ripa 
isolated species of Aspergillus, Fusarium, Penicillium, Alternaria, 



3

Biodiversity Online J       Copyright © Suseelendra D

BOJ.000619. 5(4).2025

Cladosporium, Trichoderma and other genera from wheat plants. 
Interestingly, in the tropical and temperate ecosystems a high 
diversity of actinomycetes in phyllosphere was observed [40,41].

Endosphere: The microorganisms that inhabit endosphere 
are called endophytes. The prerequisite for an endophyte is that 
it should colonize the aerial plant tissues internally at least once 
during the life cycle without any apparent damage to the plants. 
Endophytes include pathogenic and beneficial microorganisms 
and are either vertically or horizontally transmitted. They are 
broadly grouped as endosyms (endosymbionts), endopaths 
(pathogens) and endosympaths (both symbionts and pathogens). 
Among the so far known endophytes, about 80% of them belong 
to Ascomycotina, about 18% belong to Basidiomycotina and a very 
small fraction represent Mucoromycotina. Unlike phyllosphere 
inhabitants, endophytes are protected from hostile environment 
as they internally colonize tissues. The plants provide protection, 
nutrition and shelter to the microorganisms and get in return 
improved growth & development and induced resistance various 
stresses. Several genera of endophytes have been reported from 
maize, paddy, wheat, cotton, soybean, and sugarcane etc. while in 
sunflower, a few endophytes have been reported. Such diversity in 
the endophytic microbes across crop species further strengthens 
their co-evolution over time. Interestingly genera like Chaetomium, 
Trichoderma, Paenibacillus, Bacillus, Flavobacterium, Pseudomonas, 
and Rhizobium which have already been commercially exploited for 
their beneficial traits have been reported as endophytes of these 
crops.

Functional diversity

Each of the constituent microorganisms of the microbiomes 
perform a wide array of functions. These functions influence not only 
the microorganisms per se but also their immediate environment 
including the host plants. Microorganisms significantly influence 
plant growth and development via production of phytohormones, 
volatile and non-volatile secondary metabolites, iron-chelating 
siderophores, solubilization of nutrients and triggering host plant 
resistance [42,43]. The mechanisms include growth promotion, 
nutrient supplementation, pest suppression, defense induction 
against biotic and abiotic stresses, and stimulation of other 
vital metabolic processes. The functional diversity could be 
characterized using both culture-dependent (conventional tools 
such as plate count, BIOLOG, FAME, DNA-DNA reassociation and 
G+C fractionation and molecular such as genetic fingerprinting, 
DNA microarrays, FISH, and Q-PCR) and culture-independent 
(whole genome sequencing, functional metagenomics, meta-
proteomics, proteo-genomics, and meta-transcriptomics) methods 
[44]. The functional diversity could be broadly grouped as biotic 
and abiotic stress management, plant growth promotion and 
overall crop health management. Most of the microbes are multi-
tasking, though, variable qualitatively and quantitatively. However, 
based on the objective of the study, specific traits are characterized 
and commercially exploited. For instance, Trichoderma is primarily 
exploited as biocontrol agent that too against soil-borne pathogens, 
though it is known to solubilize phosphorus and also impart drought 
tolerance [45]. Similarly, Endophytes exhibit a variety of modes of 

action against their target organisms such as antibiosis, production 
of volatile organic compounds, parasitism, production of a battery 
of hydrolases, competition for substrate and nutrients, resistance 
induction, and siderophores. These methods suppress the growth 
and fitness of the pathogen and at the same time through their 
growth promoting ability, improve growth and development of 
the plant. The functional diversity under major heads is presented 
below.

Plant disease management: Microbes that perform disease 
management function are generally termed as biocontrol agents. 
Such approach is considered as eco-friendly as it is nothing but 
exploitation of the natural co-evolution system. Several fungal 
and bacterial agents belonging to genera Trichoderma, Beauveria, 
Metarhizium, Cheatomium, atoxigenic Aspergillus, Bacillus, 
Pseudomonas, and Paenibacillus etc have been successfully 
commercialized for management of plant diseases. Trichoderma is 
a very well-known bioagent used to manage many soil-borne plant-
pathogens [46]. T. viride and T. harzianum exhibit antagonism against 
several species of plant pathogenic fungi such as Rhizoctonia solani, 
Pythium ultimum, Fusarium oxysporum, Sclerotinia sclerotiorum, 
Botrytis cinerea, Pseudocercospora spp. and Colletotrichum spp. 
[47-49] Commercial formulations of Trichoderma spp. are available 
for the management of major soil-borne diseases such as wilts, 
root rots, seed rots, and seedling blights [50,51]. Similarly, among 
bacterial biocontrol agents, popular strains of Pseudomonas 
spp. Include CHA0 and pf-5 which have been commercialized to 
suppress phytopathogens and promotion of plant growth [52-54]. 
Strains of Pseudomonas spp. such as CHA0 and Pf-5 significantly 
inhibited various root pathogens of plants [52,55] and also induced 
systemic resistance against foliar diseases [56]. Biocontrol ability is 
displayed by microbes through several modes of action. Many BCAs 
directly attack the pathogens in a physical mode and kill them. 
Some of the best-known examples are successful demonstration 
of coiling of Trichoderma around the hyphae of Phytophthora, 
Pythium, Macrophomina and Fusarium and then subsequently 
penetrate into the hyphae and thus kill the pathogen. Foliar 
application with mixtures of microorganisms from leaves of cacao 
tree reduced the symptoms of Phytophthora sp. demonstrating 
competition as one mechanism of disease suppression in a plant. 
Another approach is production of a variety of hydrolases such as 
chitinases, cellulases, glucanases, and lipases etc. which act on the 
cell walls of the pathogens and disintegrate them. The third mode 
could be competing for space and nutrients with the pathogens 
and thus restricting the growth and development of the pathogens 
to below critical threshold levels to cause disease. Phenazine-
1-carboxylic acid,2, 4-diacetylphloroglucinol, pyrrolnitrin, and 
pyoleutirin are secondary metabolites produced by Pseudomonas 
spp. Which significantly inhibit the growth of plant pathogens. 
Similarly, Bacillus spp. produced a variety of antimicrobial 
peptides, bacteriocins, toxins, and enzymes that inhibited diverse 
phytopathogens [57], by inhibiting cell wall synthesis, altering 
membrane structures, and suppressing the formation of initiation 
complexes on the small subunit of the ribosomes of the plant 
pathogens [58]. Bacteriocins (polymyxin, circulin, and colistin) are 
peptides with antimicrobial activity, which can destroy related/
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metabolically similar bacterial species [59]. Many of the antifungal 
compounds induce membrane leakage and thus loss of cell contents 
including nutrients this leads to loss of vigour and infectivity. For 
instance, a variety of lipopeptides have been reported to induce 
hyphal membrane leakage in plant pathogens. Beneficial PGPR 
including mycorrhizae could Induce Systemic Resistance (ISR) 
in plants [60,61]. ISR has been successfully demonstrated in 
many plant species for management of a broad spectrum of plant 
pathogens, including bacteria, fungi, viruses, and even herbivorous 
insects [62]. ISR mechanisms prime the plants to express rapid 
defense-responses upon pathogen attack [63] via upregulation of 
host defense factors responsible to produce phytoalexins and other 
molecules which prevent progress of the pathogens even after 
entering the plant system. Fusarium solani harboring tomato roots 
induced resistance against Septoria lycopersici by activating PR7 
and PR5 genes.

Insect-pest management: Insect-pest management using 
biocontrol agents has been adopted across the global agricultural 
systems. Bacillus thuringiensis could be cited as the classical 
example of entomopathogenic microbe against lepidopteran pests. 
Not only Bt toxin has been commercially exploited but Bt gene has 
been exploited to produce genetically modified varieties of cotton, 
maize, and brinjal etc. Entomopathogens such as viruses, bacteria, 
fungi, and nematodes invade and multiply inside the insects and then 
spread to other insects [64,65]. Entomopathogens could be host-
specific or generic in nature and are categorized as a. opportunistic 
pathogens; b. potential pathogens & c. secondary invaders; c. 
facultative pathogens and d. obligate pathogens [66]. Some of 
the common genera of entomopathogens include Paecilomyces, 
Lecanicillium, Metarhizium, Isaria (Cordyceps–teleomorph), 
Beauveria, Paranosema, Paenibacillus, Bacillus, Lysinibacillus, 
nuclear polyhedron viruses, granuloviruses, baculoviruses and 
alphabaculoviruses. While most of the entomopathogens enter 
insects through mouth, nematodes enter through integument or 
directly enter into hemocoel using their stylet. Beneficial bacteria 
modulated defense responses in plants and altered volatile 
compound emissions in response to insect infestations [67,68]. 
Interestingly, plant microbiomes were altered for enhanced 
resistance against insect-herbivory in the following generation 
[67]. Plant pathogenic bacteria can be vectored by insects [69]. 
Certain plant-beneficial rhizosphere bacteria could successfully 
colonize insect hosts and use them as a means of dispersal to the 
rhizosphere of new host plants.

Plant nutrient management: Microorganisms have been 
shown to help the plants through nutrient supplementation and 
influenced the efficiency with which nutrients were taken up by 
the plants [70]. Extensive research has demonstrated that the 
PGPRs play a vital role in facilitating the nutrient supply to various 
plant species [71]. Praveen Kumar [72] observed that combined 
inoculation of Pseudomonas sp. and Rhizobium strains enhanced 
nutrient uptake in green gram. Bhat [73] reported nutrient-
demand dependent regulatory mechanisms in the plants that 
could alter the behavior of the ion transporters in the roots. Thus, 
a demand-based regular intake of nutrients required exhaustive 

coordination between root growth regulators and ion transporter 
activities [74]. Salwan [75] found that the bacterial communities in 
the microhabitats of the rhizoplane and root endosphere of the root 
microbiome played a crucial role in facilitating plant growth. Plant 
growth promoting rhizobacteria could either activate ion transport 
systems inside roots or directly enhance nutrient availability in 
the rhizosphere [76]. The potential of several strains of Rhizobium, 
Azospirillum, Azotobacter, and Methylobacterium to fix nitrogenhas 
been demonstrated beyond doubt. The biological nitrogen fixation 
process is of utmost importance and the symbiotic association 
between leguminous plants and rhizobia manifests in meeting 
partial nitrogen requirement of the former by creating a suitable 
anaerobic environment for the optimal functioning of nitrogenase 
[77]. In associative free-living diazotrophs, a highly sophisticated 
oxygen-labile nitrogenase is responsible converting atmospheric 
nitrogen into ammonia [78]. However, the role of some microbes 
in N2 fixation is questioned recently for want of proof of concept 
[79]. Phosphorus occurs naturally in both inorganic and organic 
forms [80] and species of Bacillus, Pseudomonas, Azospirillum, 
Azotobacter, and Methylobacterium could solubilize insoluble forms 
of phosphate, zinc, iron and silica. The release of low molecular 
weight organic acids [81] and hydrolysis of phosphoric acid esters 
by phosphatases [82] have been shown to be responsible for such 
solubilization. Mycorrhizae establish a symbiotic relationship 
with roots in order to get vital nutrients from the host plant and 
then give back mineral nutrients including N, P, K, Ca, Zn, and S. 
As a result, AMF give the plants nutritional assistance even in 
unsuitable root cell environments [83]. Plants and associated 
microorganisms have co-evolved and thus established synergistic 
interactions [84]. This co-evolution has provided insights into 
developing promising eco-friendly technologies for crop health 
management as alternatives to the synthetic chemicals. The 
rhizobacteria can stimulate growth of the colonized host plant 
through direct and indirect mechanisms. The direct mechanisms 
include supplementing plants with nutrients, production of 
phytohormones and their regulators. The indirect mechanisms 
include nutritional competition; siderophore production; pathogen 
suppression, pathogen toxin inhibition; and induced resistance 
[84-86]. Iron is an essential micronutrient required for growth and 
development of microorganisms as regulates several key metabolic 
processes. The siderophores produced by the microorganisms 
chelate specific ferric iron molecules, especially under iron-limited 
conditions, thus depriving the phytopathogens of iron and thereby 
protecting plant health [87]. Siderophore-producing endophytic 
Pseudomonas GRP3 reduced iron deficiency symptoms in Vigna 
radiate with increased chlorophyll content whereas Streptomyces 
acidiscabies E13 produced siderophores which enhanced the 
growth of Vigna unguiculata under nickel stress conditions. Other 
plant growth promotion traits include production of extracellular 
polysaccharides, biofilm production and HCN production etc. 
through which plants are protected during their growth and 
development. 

Biostimulants: Biostimulant is a substance or a microorganism 
or a combination of both with an ability to stimulate physiological 
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processes in plants resulting in enhanced nutrient uptake, growth, 
yield, nutrient use efficiency, crop quality and tolerance to biotic 
and abiotic stresses, regardless of its nutrient content. However, 
when microorganisms are present, they should per se not be 
directly influencing the above effects. Biostimulants include a wide 
array of products such as botanical extracts, seaweed extracts, 
biochemicals, protein hydrolysates, amino acids, vitamins, cell-
free microbial products, antioxidants, anti-transpirants, and humic 
acid, fulvic acid and their derivatives. However, they do not include 
pesticides or plant growth regulators. Biostimulants have been 
brought under regulation recently to ensure quality products for 
the consumers. Biostimulants can complement the chemical inputs 
and temper the beneficial rhizosphere microbiomes such as fungi 
and bacteria [88,89]. The major effects manifested by biostimulants 
on crops include improved seed germination, root development, 
and crop performance; improved appearance of the plant produce; 
stimulation of innate immunity by producing various biomolecules; 
bioremediation; reduced leaching; promoting nutrient uptake; 
and nutrient use efficiency [90]. A meta-analysis study by Li [91], 
revealed that the biostimulant application resulted in 17.9% add-
on yield benefit with vegetables in arid climates and nutrient and 
organic matter deficient saline, sandy soils benefitting the most.

Factors influencing the structural and functional 
diversity

The structural diversity of a habitat is a net result of interaction 
among plants, edaphic factors, and interactions among various 
microorganisms. For instance, the forest structural diversity 
was reported to be linked to the soil microbial diversity [92], 
as the forest canopy complexity could fuel the production of 
decomposition substrates and thus harbour diverse bacterial 
and fungal communities. Rhizosphere microbial diversity and 
soil community composition is an outcome of the interactions 
between physico-chemical properties of the soil (sand: clay 
content, bulk density, water holding capacity, pH, C:N ratio, soil 
porosity, mineral composition etc.) and the soil-living-systems. 
The structural diversity of a given ecosystem is the outcome of 
the interaction among the root exudates, the microbial diversity 
and secondary metabolites produced by the microorganisms. The 
root respiration hinders the presence of Rhizosphere bacterial 
community structure is an outcome of the interactions between 
root exudates vis-à-vis various biotic and abiotic factors. For 
instance, Mac Donald [93] concluded that crop cultivars, root 
characteristics, age and plant phenophase played critical role 
in determining the rhizosphere bacterial community structure. 
During early growth phase of the plants, the fast-growing strategy 
organisms requiring simple substrates dominated the rhizospheres 
[94] while at later phenophases, the reduced oxygen levels resulted 
in relatively slow-growing bacterial communities capable of 
degrading more complex substrates [95]. Using knock-out mutants, 
Kudjordine [96] showed that benzoxazinoids released by the maize 
roots significantly influenced the composition of root-associated 
microbiota, especially Actinobacteria and Proteobacteria. Similarly, 
Avena barbata bacterial rhizosphere community assembly was 
a result of the dynamic root exudation chemistry and bacterial 

substrate preferences [97]. On the contrary, the plant and 
environmental parameters influence the phyllosphere microbial 
diversity. According to Kecskeméti [98], species of Enterobacter, 
Methylobacterium, Erwinia, Pseudomonas, Citrobacter, 
Frigoribacterium, Pantoea, Curtobacterium, Bacillus, Sphingomonas, 
Acinetobacter, and dominated grapevine phyllosphere whereas 
species of Mesorhizobium, Staphylococcus, Propionibacterium, 
Burkholderia, Pseudomonas, Ralstonia, Dyella and Bacillus 
were predominant endophytes [99]. Fungi inhabiting the leaf 
displayed metabolic functions such as leaf litter decomposition 
leading to recycling of the carbon and nitrogen [100,101]. 
Endophytes significantly influenced plant growth promotion 
and induction of resistance against biotic and abiotic stresses 
[40,102]. The physiology of the plant and the environment were 
the determinant factors of actinobacterial association in plants 
and their establishment as endophytes [103]. Nwachukwu [104] 
observed that sunflower rhizospheric soils in South Africa were 
dominated by proteobacteria and Planctomycetes whereas in bulk 
soils Firmicutes and Actinobacteria were predominant. They also 
observed significant differences in bacterial structure at phyla and 
family levels as influenced by physicochemical parameters of the 
soils. Pan [105] explored the structural diversity of the secondary 
metabolites of microbes using One Strain Many Compounds 
Strategy (OSMAC) by modifying various parameters such as 
cultivation conditions, co-cultivation etc. The microbial diversity 
could be measured using 16s/18S/ITS or 16s rRNA sequencing; 
shotgun sequencing and metagenomic approaches. 

Agroecology-based crop health management

Every agro-ecology has a niche biodiversity. The current 
concept of biological crop health management systems often 
is focused on formulations that contain one or a few microbial 
strains to address specific stresses or tasks. For instance, a 
Trichoderma formulation is deployed to manage primarily soil-
borne plant pathogens or nematodes. Similarly, a formulation 
of 2 or 3 microbes is used to address crop nutrition. Today, a few 
thousands of microbial products are on the shelf and all with 
proven bio-efficacy. Interestingly, as elaborated above, crops have 
been shown to recruit their specific microbiomes. The ecology 
of the plant microbiomes is complex and thus plant health is an 
outcome of intra- and inter-microbiome interactions. Very few 
studies attempted to understand the interactions within and 
among microbiomes [106]. Since, the microorganisms are endowed 
with multiple beneficial traits, optimization of the formulations 
to harness maximum benefits from a given microorganism could 
result in enhanced crop productivity and farm profitability. Care 
must be exercised while choosing candidate strain to exploit its 
optimum potential rather than maximum potential so that strains 
possessing maximum benefits could be used in formulation rather 
than strains possessing one best trait. For instance, if the crop needs 
certain amount of N, P, and Zn, depending on the crop requirement, 
a strain possessing all these traits to a reasonable level could be 
a better candidate instead of one strain that has maximum that 
best supplements one nutrient. The current agricultural systems 
are overexploiting the natural resources. Tampering with the 
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structural and functional microbial diversity of the ecosystems 
could lead to disastrous situations such as natural resource base 
degradation, huge losses in ecosystem services and imbalance in 
diversity and thereby destabilizing the life systems on the planet. 
Decreases in biodiversity are occurring in nearly all regions on 
Earth, with critical consequences for how ecosystems function 
[107]. Such erosion has been reported in microbial diversity due 
to misuse and abuse of synthetic agro-chemicals. On the contrary, 
long term organic farming has resulted in improved soil microbial 
populations and resulting in improved crop yields, quality and 
soil health [108]. The diverse crop production systems of an agro-
ecology promote specific microbial communities spatially and 
temporally. Hitherto, focus on such spatial and temporal microbial 
diversity of a given crop production system is limited [109-114]. 
Wide fluctuations of the population dynamics of both pathogens 
and biocontrol agents have been observed in presence and absence 
of crop plants. In absence of properly designed microbial ecology 
studies in conjunction with cropping patterns, such dynamics 
cannot be mapped to perfect the microbial technologies to near-
real situations. Similarly, different cropping systems also influence 
structural and functional diversity of the microbiome. Hence, care 
must be taken to select candidate strains or their combinations 
which are compatible among themselves as well as with the agro-
ecosystem to harness the desired enhanced productivity in a 
sustainable way. 

Conclusion
The extensive damage caused by the synthetic chemical agro-

inputs to our immediate environment has been demonstrated 
explicitly. Several health-related problems have propped up in 
recent years due to pollution of soil, water and air due to misuse 
and abuse of these chemical agro-inputs. As a panacea, microbe-
mediated crop health management has gained importance. 
Microorganisms have been proven beyond doubt to be integral 
components of the life systems on earth. Their structural and 
functional diversity is an outcome of the diverse ecologies in which 
they are operative. So far, we have used formulations comprising 
one or a few microorganisms for crop health management which 
has often resulted in inconsistent field performance. Thus, there is a 
need for holistic understanding of the crop production systems vis-
à-vis structural and functional microbial diversity so as to harness 
the beneficial traits of the microbiomes for optimized benefit.
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