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Mini Review
In the last ten years, technological advancement was made in 3D intestinal organoid 

culture [1,2] and successful development of intestinal organoids has been reported in various 
farm animal species including pigs [3-6], cattle [7-10], sheep [11], horse [11,12], and chicken 
[11,13,14]. Intestinal organoids of these species have been used in in vitro investigation of 
epithelium-microbe interactions and modelling of enteropathogenesis of various bacterial, 
viral and parasitic infections [3,9,15,16]. These studies suggested the importance of 3D 
intestinal organoid culture in public health and agricultural management due to its relevance 
and translatability to the public health by shedding lights into disease pathogenesis or 
therapeutic targets. Despite their promising features as powerful tools for basic and applied 
research [1], intestinal organoids hold clear limitations to develop more complex systems 
which better represent dynamic tissue-pathogen interactions occurring in vivo organs. 
Specifically, the enclosed luminal surface within the 3D intestinal organoids makes the 
investigation of host-pathogen or host-xenobiotic interaction limited [17]. Moreover, the 
static nature of the culture system does not mirror the dynamic nature of the intestinal tract 
and is not suitable for a long-term co-culture with host intestinal cells and microbial cells (i.e., 
microbiome or enteric pathogens) to investigate their crosstalk [18].

To overcome these challenges, integration of organoid and organ-on-a-chip system has 
been suggested recently [18-20] and applied in farm animal research [21,22]. Most of the 
microfluidic, gut-on-a-chip technology offer a continuous removal of the waste product of 
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Abstract
Intestinal organoid models derived from farm animals have great potential to contribute to both agriculture 
and human health as a one health initiative, which recognize a cohesive relationship among farm animals, 
humans, and their shared environment. This is because the Three-Dimensional (3D) organoids maintain 
the self-organizing and self-renewing properties as well as the high structural and functional similarities 
to the originating donor tissues [1]. Intestinal organoids from farm animals could play an important role 
in investigations of the pathophysiology of enteropathogens that could lead to chronic wasting disease 
and low agricultural production or zoonotic diseases that poses significant threats to public health 
[2]. Here, we discuss the integration of intestinal organoid culture and gut-on-a-chip systems in farm 
animals to potentially overcome current limitations in in vitro studies in public health and food security 
as one health initiatives. We envision multidisciplinary work integrating intestinal organoid culture and 
microfluidic gut-on-a-chip technology can contribute to improving both human and farm animal health.
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host and bacterial cells and supply continuous nutrients [23]. The 
shear stress applied by the fluid flow works as a dynamic force 
to stimulate the host intestinal cells and stimulate physiologic 
growth [24]. Some of the gut-on-a-chip devices allow application of 
peristaltic like motion to better mimic dynamic environment in the 
gut which minimizes the bacterial overgrowth in the systems [18]. 
Various other cell types (i.e., endothelial cells [25] or immune cells 
[26]) have been integrated into gut-on-a-chip devices to further 
adding the complexity to the model systems. Moreover, some of the 
devices allow modification of oxygen levels allowing the culture 
of anaerobic bacterial cells while maintaining the growth of host 
intestinal epithelial cells to better mimic the oxygen gradient 
present in the gut [27,28]. Further advances in the gut-on-a-chip 
technology and its application with intestinal organoids would 
greatly improve our understanding of fundamental biology and 

pathology, thus enhancing health care management of both farm 
animals and people (Figure 1). Studies on infectious diseases using 
such multidisciplinary technology would not only contribute to 
improving production efficiency of farm animals through decreased 
morbidity and mortality but also minimize economical damage for 
enteric infectious disease management. Viral enteric pathogens 
(e.g., Porcine Epidemic Diarrhea Virus (PEDV) [29], Porcine 
Deltacoronavirus (PDCoV) [5], and Transmissible Gastroenteritis 
Virus (TGEV) [30]) have significant economic impact in the pig 
industry due to high morbidity and mortality in piglets [31] while 
no effective in vitro models exist to study these diseases. Knowledge 
obtained through the multidisciplinary work of intestinal organoids 
and gut-on-a-chip would offer new insights to improve herd health 
management, contributing to the reduction of economic losses as 
well as the increase in agricultural production.

Figure 1: One Health initiatives with the integration of farm animal intestinal organoids and gut-on-a-chip 
technology. Integration of intestinal organoids from various farm animal species and organ-on-a-chip technologies 

enables the creation of a gut environment that is more similar to in vivo by culturing intestinal organoids in the 
upper microchannels, adding microorganisms (microbiome and/or enteric pathogens) to the epithelial surface layer, 
while allowing blood-derived immune cells to flow into the lower microchannels. Mechanistic and novel therapeutic 
investigations of various enteropathogenic and wasting diseases can be performed, which could ultimately lead to 
improve the agricultural production. Investigations of host-pathogen interactions in zoonotic infectious diseases 
can improve public health through better understanding of the pathophysiology and potential discovery of new 

therapeutic strategy for the diseases. Created with BioRender.com.

Another potentially important application of the integration 
of intestinal organoids and gut-on-a-chip models to study various 
types of enteropathogenic pathogens where the current in vitro 
models have limited ability to recapitulate (e.g., Salmonella 
typhimurium [16], Escherichia coli [8], Toxoplasma gondii [16], and 
Giardia duodenalis [32]). Farm animals play a pivotal role in public 
health because they can be reservoirs of various zoonotic diseases 
[33]. Some pathogens can be clinical or subclinical diseases to farm 
animals leading to long-term contamination of the environment 

and infect humans which can lead to severe diseases in susceptible 
individuals leading to epidemics. Since many of these pathogens 
can have host specificity, gut-on-a-chip models derived from farm 
animal intestinal organoids could serve as a good model to study 
host-pathogen interactions and potential protective mechanisms 
of hosts when intestinal organoids of asymptomatic carrier species 
are used [34]. The multidisciplinary work of intestinal organoids 
and gut-on-a-chip would offer a useful alternative to animal 
models, which not only hold ethical challenges but also require 
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many resources in labor and housing facilities [2]. Furthermore, 
enteric infection models using gut-on-a-chip technology could 
serve as useful tools for screening efficacy and adverse events of 
vaccines and antibiotics against various enteric infectious diseases, 
thus ultimately contributing to improve public health.

Conclusion
The establishing intestinal models of farm animals integrating 

3D intestinal organoid culture and gut-on-a-chip systems could 
lead to deeper insights in physiological and pathological conditions 
through one health initiatives. Such tools can be used to provide new 
insights for improving heard health and agricultural productivity 
through improved disease management, leading to sustainable food 
production, or to investigate host-pathogen interactions and host 
defense mechanisms against zoonotic infectious diseases. Moreover, 
this multidisciplinary work can provide critical complexities to 
the experimental designs to support the 3R principles (reduce, 
refine, and replace) [35] and contribute to the health and welfare 
of livestock.
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