
Opinion
The global shift toward green development and the increasing demand for critical raw 

materials make the mining industry more relevant than ever. The new era requires not only 
increased output but also more sustainable and responsible mining operations. In this context, 
technological advancements serve as the catalyst for the sector’s necessary transformation. 
Innovation has always been an integral part of the extractive industry, which consistently 
adopted pioneering scientific developments and their applications. From the innovation 
in water storage and reuse in the ore-washing plants of arid ancient Lavrion, to the first 
commercial use of the steam engine in underground coal mines in Great Britain in the 1700s 
for water drainage, from Nobel’s invention of dynamite in the 1800s, to the use of the first 
computers for mining research in the early 1980s, our industry has always been there to test, 
design, and benefit from the potential of new technological tools [1]. 

Today we stand at the beginning of a new technological revolution (Industry 4.0), 
characterized not by a single innovation, but by the seamless integration of a range of 
systems, tools, and innovations capable of recording, analysing, understanding, and ultimately 
optimizing production characteristics. This digital transformation process is reshaping not 
only how we work, but the very essence of the production process.

Machine Learning is the core of this transformation, offering the fusion of information 
(data fusion), i.e., the integration of all data from various sources to create autonomous 
structures for analysis, understanding, and prediction of the desired outcome. In the case of 
mining and metallurgy, new developments can offer:

a.	 Introduction of automation and robotics: Through the implementation of process 
automation and autonomous or semi-autonomous robotic systems, it becomes possible 
to improve efficiency, productivity, and safety, reducing human presence to only the most 
essential tasks. This is currently the most widely adopted technological domain in mining 
operations and likely the one with the greatest advancement in the coming period.

b.	 Internet of Things (IoT) and data: Machine learning algorithms can be used to 
establish a fully controlled working environment, transmitting real-time operational data 
of equipment, its condition, usage, and productivity, as well as the prevailing conditions 
in the mine (e.g., stability, ventilation). These data can be analysed to optimize processes, 
predict maintenance needs, and improve overall operational performance.

c.	 Optimization of exploration and deposit targeting: Unlike traditional exploration 
methods that require significant resources and time, the analysis of historical exploration 
records, geological, lithological, and other spatial data and correlations can offer targeted 
site identification, increasing the chances of successful discovery. This reduces exploration 
costs, resource commitments, and simultaneously the environmental footprint of 
exploration activities.
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d.	 Improved recovery and exploitation of low-grade 
deposits: Full knowledge and modelling of the deposit through 
digital twins, creating a dynamically evolving system, can lead 
to optimal exploitation design through targeted high-precision 
solutions. This allows for maximum recovery, reduced 
redundant works, increased selective mining, and lower 
beneficiation costs.

e.	 Minimization of environmental footprint: The 
development of smart and targeted solutions by reducing 
intervention areas or minimizing required works in exploitation, 
and the use of digital twins or machine learning algorithms for 
the automatic regulation of metallurgical process parameters, 
help lower energy needs and the overall environmental 
footprint of operations.

f.	 Virtual and augmented reality (VR/AR): VR and 
AR technologies can be used for training, simulation, and 
remote support in mining operations. They allow workers to 
visualize complex mining environments, plan operations more 
effectively, and solve problems in real time.

g.	 Blockchain technology: The application of blockchain 
can improve transparency and traceability in the supply chain, 
ensuring ethical sourcing of minerals and metals. It can also 
enhance transactions, contracts, and payments between mining 
companies, suppliers, and customers.

Recent examples, such as the use of machine learning algorithms 
in Rio Tinto’s copper mines or autonomous drilling in Sweden by 
LKAB, demonstrate the practical application and benefits of these 
technologies.

The Canadian Minerals and Metals Plan had already identified 
these technological trends early on, as presented graphically 
in Figure 1. Although artificial intelligence had not yet fully 
matured and many of its disruptive innovation features haven’t 
been introduced at the time, many aspects of the plan are now 
being realized in practice. These capabilities are only some of the 
disruptive innovations that are emerging in the mining industry, 
bringing significant new potential. However, they are accompanied 
by high-level challenges and, most importantly, prerequisites that 
are critical for their successful implementation (Figure 2).

Figure 1: Computer - mainframe IBM4341 - usage in Harmony mine (South Africa) in the 1980’s [1].
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Figure 2: New opportunities emerging in mining through the adoption of advanced technologies.

The first and most essential requirement is understanding 
that the application of AI (or ML) is not reduced only to software 
implementations that offer easy solutions materialized with the 
mere clicking of a button. On the contrary, the crucial initial step 
involves the collection of a large volume of clearly defined and 
well-documented data which will be capable of capturing the 
patterns and behaviour of the evaluated process or phenomenon 
[2]. This, in turn, requires extensive fieldwork and investigation 
campaigns that will enable the collection of sufficient data for 
the model training. More importantly, in cases involving complex 
phenomena, the data pre-processing is required, along with the 
development of new indicators and indices or features based on 
primary data that can better reflect the patterns emerging. This 
feature engineering process necessitates a deep knowledge of 
the modelled phenomenon, something that cannot be done by a 
software engineer, but rather by experts having familiarity and an 
in-depth understanding of the subject at hand.

The second issue is about the correct interpretation of AI (or 
ML) outcomes/generalizations. Obviously, this is vital for the 
evaluation and application of the developed models. Machine 

learning can offer valuable predictions and solutions, but these 
must be critically assessed and not adopted blindly just because 
they “are produced from the model.” Interpreting results requires 
engineering judgment (Human-in-the-Loop), which includes the 
understanding the outputs, the recognition of inherent limitations 
and the evaluation of potential practical consequences. In this way, 
the reliability and applicability of the results are assessed, ensuring 
that machine learning contributes to a better decision-making 
process and will be facilitating towards the solution of real-world 
problems.

In summary, the application of machine learning in the mining 
industry offers vast opportunities for performance and efficiency 
improvement. However, it faces numerous challenges, such as the 
need for reliable and extensive data, the development of new data 
processing methods, and the requirement for sound engineering 
judgment for the interpretation of the results. With the right 
approach, machine learning can become a powerful tool for process 
improvement and industry development, while at the same time 
providing solutions to key mining challenges.
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