
Introduction
Underground mining safety has not improved over the last decade, with the average annual 

rate of fatalities per 100,000 Full Time Equivalent (FTE) workers being roughly 24 from 2011 
to 2022 [1]. In the literature review conducted by Sari et al. [2] it is noted that younger, less 
experienced miners are at greater risk of suffering a disabling injury [2]. On the other hand, 
for older and more experienced miners, the high levels and long duration of exposure to the 
hazards inevitably leads to problems like hearing loss [3], or other diseases such as black lung, 
a serious lung disease caused by exposure to coal dust, which can be fatal [4]. Some examples 
of dangers in the underground mine environment include tunnel collapse, explosive gasses 
[5], high temperatures [6], exposure to diesel particulate [7], and the crush hazards caused 
by the machines used for the operation [8]. Machine operators in underground coal mines 
are particularly at risk, as they must remain near the cutting interface to pick up cues from 
machine and the environment to monitor cutting conditions [9]. Workplace accidents caused 
by these hazards are problematic and they lead to loss of productivity, worker injury, and loss 
of life [10]. The National Institute for Occupational Safety and Health (NIOSH), recommends 
removing workers from hazardous locations as the best form of risk reduction in general [11].

Aiding operators with improved sensors for tool wear detection can help them perform 
their role from a greater distance to the cutting interface and reduce their risk from dust 
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Abstract

Underground coal mine workers who operate continuous mining machines rely on many cues to 
determine tool wear. This skill is difficult to train and proximity to the mining interface is a hazard to the 
machine operators. To create safer conditions for machine operators, an acoustic classification method 
for determining tool wear is proposed. To demonstrate this technique, a concrete sample is cut with 
conical picks of different wear levels using a linear cutting machine and the acoustic data is recorded for 
classification experiments. The differences in acoustic frequency spectra are highlighted and classification 
of short segments of the recorded acoustic data, less than 200 milliseconds in duration, is demonstrated 
using three popular classification techniques: the K-nearest neighbors classifier, the support-vector 
machine classifier, and the multi-layer perceptron classifier. The performance of these techniques is 
compared, and the effects of segment size and down sampling are examined. Of the tested methods, 
the support-vector machine gives good performance with little complexity. This technology could aid 
operators in performing their roles from a safer distance, alerting them to worn tool conditions in real 
time.
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exposure as well as from the immediate dangers at the cutting 
interface. Experienced operators are an invaluable resource, as they 
hold the experience gained after years of dealing with hazardous 
conditions [9]. Operators are known to rely on many cues, including 
visual, acoustic, and vibrational. This suggests a sensor can measure 
these cues. Acoustic sensors can operate with a quick, less than one 
second, response time and detect changes in material type and tool 
wear in many domains [12-15]. When comparing acoustic, visual, 
and vibrational cues for tool wear, acoustic detection of tool wear 
has the advantage over visual detection in that it does not require 
a clear line of sight to the cutting interface, which is often in a 
hazardous location near the machine [9]. Alternatively, vibrational 
cues require direct contact with the cutting process, which requires 
a more robust sensor design compared to an acoustic sensor which 
is placed further away. For these reasons, using acoustic data for 
objective tool wear classification from a distance is investigated 
in this work. Any technology that is employed in this domain 
must be well suited for the task it is designed to perform, or else 
its adoption is unlikely [8]. By providing objective, real-time data 
to human operators, the proposed technology can help operators 
make objective decisions regarding shutting down operations for 
cost-saving maintenance or continuing work. Automating tool wear 
detection can also allow machine operators to focus on other aspects 
of machine operation, increasing their productivity. Automation 
also enables the collection of data that could be analysed for trends 
in tool wear during operation.

The rest of this article is outlined as follows. In the Background 
section, the application background and previous work used to 
guide this study are discussed. The Methods section follows, and 
it gives a detailed description of the experimental equipment, 
classification methods, and metrics for comparing classification 
performance. After that, the Results section lists the notable 
results. Then, a Discussion section is given, which states the 
merits of the tested methods and provides recommendations for 
implementation. Finally, a conclusions section summarizes the 
work and its relevance considering the target application.

Background
In the black lung study by Colinent, the author notes that 

much effort has been given to dust mitigation. Strategies include 
minimizing dust generation, preventing dust from circulating, 
removing dust from circulation, diluting dust concentration, use of 
barriers and ventilation direction to reduce worker expo- sure, and 
maintenance of these systems [4]. The idea of removing workers 
from hazardous zones is supported by the general advice given 
by NIOSH in their hierarchy of controls [11]. In order to remove 
workers from the hazardous zones, they must be enabled to 
perform their roles from more remote locations.

Considering that experienced human operators can detect tool 
wear using acoustic cues suggests that enough relevant information 
can be captured within the typical human hearing range. A study 
on occupational hearing loss in underground mines reported that 
the type of hearing loss experienced by underground coal miners 
indicates a noise frequency below 6kHz and a noise intensity 
around 90dBA [3]. This work aims to capture these low-frequency 
and high-intensity acoustic emissions for classification.

As early as the 1990s, methods that consider the total volume of 
the acoustic emissions, the count of peaks and valleys in the signal, 
and the changes in signal spectra have been researched [16,17]. 
Proper preprocessing is important. In underground mining, the 
rock-cutting system can lose mass as tools are worn, resulting 
in a non-stationary dynamic system. Fast Fourier transform 
based preprocessing of a small window of signal and subsequent 
classification with a support-vector machine has shown to be 
an effective method for robust classification of non-stationary 
dynamic systems [18]. Other preprocessing techniques for similar 
problems include wavelet and Empirical Mode Decomposition. 
Wavelet preprocessing combined with machine learning has 
been used with success in recent years [19-21]. Empirical Mode 
Decomposition has demonstrated vibration classification for tool 
wear in other domains [22-24]. Fast Fourier spectra magnitude 
based preprocessing with normalization is chosen for its time-
invariant properties, small number of hyperparameters, and known 
effectiveness across domains [25,26].

Both wavelets and Empirical Mode Decomposition are time-
variant. The wavelet transform is known to be very sensitive to 
small-time translations [27]. With wavelets, this can be mitigated by 
measuring the average energy for a continuum of offsets and using 
those values as the feature vector for classification [28]. Similar 
processing would be needed for Empirical Mode Decomposition. 
Another option is to register the signal in the time domain to an 
event, such as contact with the material. The choice of preprocessing 
methods is motivated by the idea that different tool wear levels 
in a conical pick will produce different acoustic emissions with 
different Fourier frequency spectra magnitude for a given material. 
This is verified by analysing objective differences in statistical 
distributions of the frequency spectra magnitudes for the tested 
categories. To leverage these differences, different classification 
techniques are employed and compared. These methods and how 
they are compared are described in the next section.

Materials and Methods
A homogeneous concrete sample is cut using the Linear 

Cutting Machine at the Earth Mechanics Institute at the Colorado 
School of Mines, shown in Figure 1, and capable of testing with 
many cutting tools [29]. Hydraulic actuators move the rock box 
for positioning and cutting. The rock sample in this experiment is 
a solid block of concrete. This is a homogeneous material that will 
isolate the changes in tool wear. Additional equipment consisting 
of a dust shroud and vacuum sample collection system was used 
for a simultaneous study on dust generation, but not for this study. 
Forces are recorded using integrated load cells in the coupling 
between the tool and the frame. The acoustic signals for this 
experiment were recorded from the camcorder used to capture 
Figure 1 at a sample rate of 44.1kHz. Then, the data is categorized 
by tool wear condition. The different tool wear levels are shown in 
Figure 2. The tool tips have been artificially worn with a lathe to a 
spherical shape to approximate even wear. They vary in diameter 
and have been chosen to represent new, moderately used, and worn 
tooltips. The new tool is unmodified and has a diameter of 3.71mm, 
the moderately used tool has a diameter of 17.9mm, and the worn 
tool has a diameter of 27.5mm. 
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Figure 1: The linear cutting machine at the earth mechanics institute of Colorado School of Mines.

Figure 2: The tips of the conical picks with different wear levels used for the experiment.

The sample is cut by layers, with each layer consisting of several 
lines spaced roughly three centimetres apart. The cutting speed is 
set to 10 inches per second and penetrations of 1.5 and 2.0 inches 
are used. For each wear category, four lines are collected for both 
penetrations. To reduce the edge effects of the experiment, like the 
differences in impulse response between the linear cutting machine 
and the sensor, the recording of each line is trimmed to 6 seconds, 
starting shortly after the bit hits the material. The data is chopped 
into small segments of 20, 40, 60, 80, 100, and 200 milliseconds 
in duration. The segments are allowed to overlap by 50%, and this 
yields roughly 480 samples for the 100-millisecond case and 4800 
samples for the 20-millisecond case for each wear category.

The fast sampling rate of the microphone, 44.1kHz, means 
that even short segments, dozens of milliseconds in duration, will 
have thousands of data points. Reducing input dimension via down 
sampling after low pass filtering will preserve low frequency data 
while leading to faster processing for the classification algorithms 
and eliminating additional aliasing. These segments also have a 
Hamming window applied to enforce periodic assumptions of the 
Fourier based preprocessing [30]. Longer signal windows will 
yield more resolution in the frequency domain up to the sampling 
frequency while higher sampling rates offer slightly increased 
resolution but over a wider frequency range. This study compares 
the effect on classification performance from both down sampling 
and window length.

Method performance is rated using the F1 score, which penalizes 
false positives and false negatives, by generating a distribution 

of scores and comparing the distributions [31]. The confusion 
matrices of the classifiers are also examined to understand how the 
classifier is performing [32]. Each window size data set is divided 
randomly in a 70:30 test train split 40 times to collect statistical 
distributions of the scores for each classification method when 
using a small sample for training data. The preprocessing and 
classification methods are described in more detail below.

Preprocessing
After filtering, down sampling, and splitting the data into 

small segments, the input to each of the classification algorithms 
is a vector of floating-point numbers which represents a small 
segment of the audio recording from the cutting experiment. Any 
segment of the data, starting at time t, is denoted as _

tX
 . This vector 

has consecutive samples of the time domain signal starting at time 
t and ending at the end of the window duration offset by the start 
time. The first preprocessing step is to multiply this vector element-
wise with a Hamming window, 

_
h
 , and the new vector is given as: _ _ _

t ty h O X=
  

. The exact choice of window function has subtle effects 
on the algorithm performance, but in general the window function 
serves to reduce spectral leakage, or aliasing [33].

After the window is applied, the Fourier based preprocessing 
begins. The datasets are split 70:30 into the test and train sets. The 
normalized data is denoted as 

_

tZ


, and it is calculated as:

                               

_ __

_
t

t

S

y uZ −=
 





 	 (1)
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where both subtraction and division are performed element-
wise, _

u
  represents the vector of mean values for each dimension 

in the training set, and 
_
s


represents the vector of standard 
deviations for each dimension in the training set. The distributions 
of frequency spectra magnitudes and time domain wave- forms for 
each wear category are shown in Figure 3. The Fourier transform 
data has most of its energy below 4kHz. The higher frequency 

data has smaller variance compared to the lower frequency data. 
The time domain data is roughly shaped like the window function. 
Transforming the time domain data into the frequency domain 
highlights the changing modes between the categories. These 
differences in resonant frequencies are made more apparent after 
normalization. During each classification experiment, the test data 
is normalized according to the distribution of the training set.

Figure 3: The natural distribution of frequency spectra magnitude and time domain data of each wear category for 
data.

Before invoking any classifiers, objective differences in acoustic 
spectra across wear categories can be shown by performing a 
classic two-sided Welch-Satterthwaite t-test on each frequency bin 
[34]. The results of this test and the normalized frequency spectra 
magnitude distributions for each wear category are shown in 
Figure 4. In the left column, the mean value and the standard error 
of the mean are shown for the collected data. In the right column, 
the results of a t-test for each bin for each pair of categories are 
shown. It is known that operators use acoustic signals to determine 

cutting conditions, and this figure demonstrates significant, 
p<0.001, differences across tool wear categories for most frequency 
bins. Even though the higher frequencies have less energy, their 
differences are still significant due to their low variance. The exact 
changes will depend on the machine and the entire set of cutting 
conditions, but for a given environment, these differences can be 
observed and detected. The classification techniques discussed 
in the next section use these differences to determine the wear 
category of a given sample based on the training data.

Figure 4: The mean frequency spectra magnitude after normalization for each wear category and a comparison 
between the categories for significant differences.
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Classification
These data splitting, preprocessing calculations, and 

classification techniques are computed using the scikit-learn, a.k.a. 
sklearn, library [35]. The library supports many classification and 
regression methods and facilitates rigorous comparison. For this 
study, the support-vector machine technique is compared with a 
simpler method and a more sophisticated method to investigate 
classifier efficiency. The simpler method is the k-nearest neighbors 
classifier. The k-nearest neighbor technique works by comparing 
the input sample to its memory of the k closest training samples, 
and the most popular class is elected as the output. The more 
sophisticated method, the multi- layer perceptron classifier, works 
by training a network of artificial neurons to develop a series of 
vector transformations which results in accurate classification. 
Meanwhile, the support-vector machine aims to find a separating 
hyperplane in a transformed version of the data.

To measure the performance of the chosen algorithms, the 
F1 score is used to evaluate the classification results. There is 
an inherent trade-off between precision and recall in practical 
classifiers [36]. The F1 score is the geometric average of precision 
and recall and serves to evaluate overall performance. More 
detailed descriptions of the individual classification algorithms 
follow below.

K-nearest neighbors

The non-parametric K-nearest neighbors approach is used 
in classification and regression [37]. The K-nearest neighbors 
classifier aims to predict the class label, gt of future data point x0 on 
the predetermined q classes given a set of p labeled classes {(xt, gt), t 
∈ 1 . . . p} [38]. In order to obtain the class label for x0, the K-Nearest 
Neighbor (KNN) classification algorithm searches for the sample’s 
K closest neighbors and then assigns the class of the majority. The 
selection of K and the distance measure used are the two factors 
that have the biggest impact on a KNN classifier’s performance [39]. 
Without prior knowledge, Euclidean distances are typically used by 
the KNN classifier as the distance measure. These distances are 
simple to compute and if the data categories are distinct, then this 
method will work well. The Euclidean distance and K=5 are used 
for this study, with larger values of K giving similar results.

Support-vector machine

The fundamental goal of the Support-Vector Machine (SVM) is 
to build a separation hyperplane that best divides data examples 
into two classes while maximizing the minimum distance between 
points and the separation hyper-plane [40]. Support-vector 
machines employ the structural risk minimization [41] concept 
and seek to achieve zero misclassification error while reducing the 
model’s complexity. The problem statement and solution of its dual 
via Karush-Kuhn-Tucker conditions [42] is omitted here for brevity. 
For discussion, the decision function of the two-class support-
vector machine is listed here:

          ( ) ( )( )
1

,
p

s s s
s

h x sign g k x x rβ
=

= +∑ 	  (2)

where sign returns 1 if the input is greater than zero, p is the 
number of support-vectors, βs and gs are weights, and k(xs, x) is the 
kernel mapping of the support-vector xs and the input, x, and r is a 
bias term. The kernel function is able to compare the input to the 

chosen support vectors in a space that highlights their differences.

The SVM is a binary classifier by nature, however many 
interesting problems are multi-class (q-class) [43]. Hence a multi-
class SVM approach must be adopted in that regard. In this study, 
a one-against- one approach [44] is employed. This approach 
trains q(q-1) binary classifiers to distinguish between two classes. 
The final output is the class that receives the most votes from the 
binary classifiers. The coefficients calculated during training are 
considered optimal for the given data. The SVM requires a roughly 
similar number of computations as the KNN but takes extra steps 
to make the data more separable through the kernel function. The 
Radial-Basis function is used here for the kernel, as it can make 
nonlinear separations.

Multi-layer perceptron classifier

A specific type of feed-forward artificial neural network is the 
Multi-Layer Perceptron (MLP) and it is well-known for its stability, 
usability, and relatively modest structure in tackling some tasks 
when compared to other structures [45]. An MLP classifier analyzes 
the relationship between input and output in a set of p-labeled 
classes. An input layer, several hidden layers, and an output layer 
make up the network topology of MLP [46]. Processing nodes 
known as neurons make up each layer, with each neuron connected 
to all neurons in the previous layer. Each neuron receives weighted 
inputs with a bias value, which are then transformed and processed 
by a nonlinear activation function [47]. The hidden layer’s output is 
shown in the following:

{ }
1

, 1, ...,
p

r qr q r
q

S t w x c r k
=

= + ∀ ∈∑  
   (3)

 where the activation function is represented by t(•); the bias 
of the rth hidden units is represented by cr; the inputs and weights 
between the input and hidden layer are represented by xq and wqr, 
while Sr is the hidden layer’s output. Activation functions come in 
a variety of forms, including logistic sigmoid, softmax, hyperbolic 
tangent, and rectified linear unit functions [48]. The output 
layer consists of one neuron for each class, and the output is the 
probability that the input belongs to that neuron’s respective class.

The coefficients for the network are trained in an iterative fashion 
by examining the gradient of performance with respect to each one. 
This forward pass and back-propagation process is repeated until 
the network finds a solution or the necessary number of iterations 
have been completed [49]. This type of training requires a balance 
of many factors to be successful; but once trained, the network can 
classify samples with a roughly similar number of computations as 
the other techniques depending on the network size. The rectified 
linear unit activation function and a network of two hidden layers 
equal in size to the input dimension is used here, with more hidden 
layers giving similar results.

Result
The mean F1 scores are plotted against the window lengths 

for each of the tested methods at each of the tested down sampling 
factors. In the following figures, the F1 score of a method is 
significantly greater than another method if the median score is 
above the max score of the other method. This comparison method 
is slightly more conservative but more visually straightforward 
than comparing each score in the collected distribution, as 



1432

Aspects Min Miner Sci   Copyright © Austin F Oltmanns

AMMS.MS.ID.000789.12(3).2024

recommended in [31]. Classifier performance was greater with 
longer window lengths and increased sampling rates, or lower 
down sampling factors.

The K-nearest neighbors classifier performance is shown in 
Figure 5. Using K=5 gave slightly better performance than other 
values, but this method performed the worst overall. Increasing 
window length gave better performance for this method, and 
down- sampling had little effect for larger window lengths. The F1 
score only increased a small amount when using the 0.2 second 
window compared to the 0.1 second window. The support-vector 

machine classifier performance is shown in Figure 6. This is a 
low hyperparameter method that performs very well and does 
so efficiently. With this method, performance trends are better 
with longer window length and higher sampling rates, or less 
down sampling, for the experiment. Increasing window length 
gave a better performance for the number of variables introduced 
compared to increasing sampling rates. Using a window length of 
0.2 seconds gave the best performance of for all down sampling 
levels, and the performance was similar for samples with less down 
sampling.

Figure 5: The mean F1 score and standard deviation for K-nearest neighbors method.

Figure 6: The mean F1 score and standard deviation for the tested support-vector machine method.

The multi-layer perceptron classifier performance is shown in 
Figure 7. This method has the power to classify data very accurately 
for samples similar to its training data. Different network sizes 
are tested to achieve maximum performance. This method scores 
similarly to the support-vector machine but uses more resources. 
Both longer window lengths and higher sampling rates, or less 

down sampling, increased performance. Increasing window length 
gave better performance for the number of variables introduced 
compared to increasing sampling rates. Using a window length of 
0.2 seconds gave the best performance of all down sampling levels, 
and the score tapered to about 0.90.
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Figure 7: The mean F1 score and standard deviation for the tested multi-layer perceptron methods.

Looking at the confusion matrices for the different types 
of classifiers generally showed that most of the confusion was 
between the moderate and worn categories of bits, suggesting that 
these two categories have responses that are more similar to each 
other than to the new category. A sample confusion matrix for a 
SVM classifier experiment is shown in Table 1, it is representative 
of most of the other classifiers too. The table shows data for the 
concrete sample using a 70:30 test train split and with fast Fourier 
transform preprocessing of a 100-millisecond window. The table 
shows that there is about twice as much confusion between 
moderate and worn categories as there is between new and the 
other two wear categories. This indicates that determining wear to 
a fine degree may be difficult with acoustic emissions alone.
Table 1: Confusion matrix for acoustic wear classifier, 
normalized by true class size.

Test Result % Prediction

True Class New Mod. Worn

new 90.15 4.77 5.08

mod. 3.85 87.26 8.89

worn 5.67 9.25 85.07

Discussion
It is well known that changes in tool wear produce changes in 

vibrational response across many domains. This fact is also true 
in the case of underground mining. Human operators use sound 
cues as one of the means of assessing tool wear during operation. 
The operators have many duties, and this skill can be difficult to 
train, since the process is subjective. By providing operators a 
means to perform some of these duties from a safer position, their 
exposure to risks at the mining interface can be reduced [9]. This 
work proposes the addition of objective acoustic data collection 
and analysis to aid in tool wear classification. When using methods 
like the ones described in this work, the cutting conditions must be 
taken into account. For example, cutting different materials can also 
produce different modal responses as well as cutting at different 

speeds, penetrations, and with different tool geometries. The 
operator’s ability to deduce changes in wear in different materials 
comes from experience in cutting those materials with tools at 
different wear levels. Likewise, to successfully apply this technique, 
data would need to be captured and analyzed for different cutting 
conditions.

When comparing the methods for implementation in the 
application, the support-vector machine would be an efficient 
classifier to use, as it scores as well as the multi-layer perceptron 
classifier, but has reduced computational complexity. The results 
also indicate that longer sample times, which give increased 
resolution for the sampled frequencies, provides better classification 
performance than using an increased sampling rate for a shorter 
duration considering the number of variables introduced. With 
a window of 0.2 seconds, the tested sampling rates had similar 
performance. At this sample length, the input dimension is large, 
especially when little down sampling is used. Use of larger samples 
was computationally infeasible for the equipment and would also 
have reduced the number of samples available in the data set. The 
good performance of signals with long duration and down sampling 
implies that lower frequencies are of particular interest for tool 
wear classification in rock cutting. The code and data used for this 
work are available at: https://github.com/Fworg64/concrete tool 
wear.

After classification, human operators could be alerted to the 
anomalous conditions to allow them to make a decision to either 
stop the operation for further diagnostics or continue cutting if 
they know from experience what could be causing a false positive 
or how long to extend the current operation. Also, this technology 
that can monitor tool wear in an objective manner would provide a 
mechanism to monitor the performance of human operators. This 
can help operators and other stakeholders identify areas where 
they can improve. It can also be used to assist in training and help 
to identify risky operations. Either way, the feedback could be 
collected from a greater distance, reducing the operator’s exposure 
to dust and other hazards.
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To implement this technology, only a simple and low-cost 
microphone would need to be placed near the cutting interface to 
detect the mode shifts associated with changing tool wear. These 
devices are low power, low cost, and very portable, making them 
well suited for the mining environment. However, since the signal 
is only collected from one or maybe several points, it is unlikely 
that this technology could predict which tools are worn on the 
drumhead. Also, interference from nearby operations which are 
producing noise could also affect the accuracy of this method were 
it to be deployed to an active mine. Ultimately, this technology could 
assist operators in performing their role from a greater distance and 
provide a level of objective feedback that is not currently present.

Conclusion
This paper showed a method for classifying the different 

acoustic signals generated by conical picks of different wear levels 
cutting into a controlled concrete sample. The changes in tool mass 
and geometry lead to excitation of different modes, which can be 
detected and classified by the tested methods after appropriate 
preprocessing. Of the tested methods, the support-vector machine 
using long duration samples that are down sampled to an 
appropriate dimension, like 200 milliseconds and 4 times down 
sampling, performs well and is computationally efficient. Acoustic 
emissions are currently processed by human operators with 
many duties. By automatically classifying the acoustic emissions, 
operators can be enabled to perform their role from a greater 
distance. This way they can avoid hearing damage, harmful dust, 
and machine proximity while being able to focus on their many 
other duties. With sufficient data collection, this classification can 
be performed with a microphone and an embedded processor.
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