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Introduction
Human activities and natural processes contribute to the emission of greenhouse gases like 

carbon dioxide, nitrous oxide, methane, and halogenated compounds. GHGs absorb infrared 
radiation and trap heat within the atmosphere, increasing the natural greenhouse effect known 
as global warming. The amount of CO2 emissions is around 15-20% in the atmosphere and a 
major contributor in the greenhouse gases [1]. The CO2 emissions from energy related sources 
of the United States, Japan and European Union declined significantly in 2019, compared with 
the previous year 2018, but emissions in the rest of the world increased by a same amount 
which levelling off the overall CO2 emissions [2]. The main problem of the environment today 
is the maximum CO2 emissions which induce global warming as a result. The earth’s climate is 
differing constantly because of different factors, viz., change in the Sun’s intensity, and change 
in the Earth’s orbit, volcanic emissions, and increase in Greenhouse Gas (GHG) concentrations. 
The increase in the earth’s temperature is due to the phenomenon where carbon dioxide (CO2), 
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Abstract

CO2 Capture and Utilization (CCU) is a promising technique for reducing global warming. Conventional 
methods include absorption and adsorption, chemical looping combustion and cryogenic distillation, 
hydrate-based separation and membrane separation have been used for CO2 separation, but they have 
certain limitations like high energy intensive, solvent degradation, solvent loss, corrosive nature of the 
solvents and toxicity of solvents. Novel materials and techniques are always being developed in order to 
achieve greater optimization. Ionic Liquids (ILs) have demonstrated great potential for cost-effective CO2 
separation. Similarly, Supported Ionic Liquid Membranes (SILMs) have also shown effective CO2 separation 
performance. This review offers the detailed mechanism, advantages and disadvantages and comparison 
of various conventional methods used for CO2 capture. In addition, different ionic liquids used for CO2 
separation have also been discussed in detail. Lastly, Various challenges, and future recommendations in 
SILMs are identified and explained. 

Keywords: Conventional technologies for CO2 capture; Ionic liquids; SILM; CO2/N2 permeability and 
selectivity

Abbreviations: CO2: Carbon Dioxide; N2: Nitrogen; H2O: Water; CH4: Methane; H2: Hydrogen; GPU: Gas 
Permeation Unit; IL: Ionic Liquid; TSIL: Task-Specific Ionic Liquid; RTIL: Room-Temperature Ionic Liquid; 
SLM: Supported Liquid Membrane; SILM: Supported Ionic Liquid Membrane; PF6: Hexafluorophosphate; 
Tf2N: Bis(trifluoromethylsulfonyl)-amide; BF4: Tetrafluoroborate; C2mim: 1-ethyl-3-methyl-imidazolium; 
C4mim: 1-butyl-3-methyl-imidazolium; C8mim: 1-octyl-3-methyl-imidazolium; DCA: Dicyanamide; Gly: 
Alanate; P66614: Trihexyl(tetradecyl)phosphonium; PI: Polyimide; PVDF: Polyvinylidene Fluoride; PS: 
Polysulfone; PES: Polyether Sulfone; PTFE: Poly (Tetrafluoroethylene); MMM: Mixed Matrix Membrane; 
GHG: Greenhouse Gases; CCU: Carbon Capture and Utilization; C5H6NCl: Pyridinium Chloride; H4P+: 
Phosphonium; NH4

+: Ammonium; Gt: Gigatonnes; IGCC: Integrated Gasification Combined Cycle; ASU: 
Air Separation Unit; MEA: Mono-Ethanolamine; HSO4

−: Hydrogen Sulfate; CILs: Conventional Ionic 
Liquids; [bmim][PF6]: 1-Butyl-3-methylimidazolium hexafluorophosphate; [bmim][Tf2N]: 1-Butyl-3-
methylimidazolium bis[trifluoromethyl)sulfonyl]- imide; [bmim][BF4]: 1-butyl-3-methylimidazolium 
tetrafluoroborate; [bmim][Ac]: 1-butyl-3-methylimidazolium acetate; [bmim][DCA]: 1-butyl-3-
methylimidazolium dicyanamide; [bmim][TCM]: 1-butyl-3-methylimidazolium tricyanomethanide; 
[bmim][NO3]: 1-Butyl-3-methylimidazolium nitrate; [Bmim][Gly]: 1-butyl-3-methylimidazolium glycinate; 
[Bmim][Ala]: 1-butyl-3-methylimidazolium L-alaninate
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methane (CH4) and other anthropogenic gases absorb the leaving 
infrared radiations which cause an increase in the temperature of 
earth [3]. For industrial CO2 emissions, various Carbon Capture 
and Storage (CCS) systems are in the development stage. Pre-
combustion, post-combustion, and oxyfuel combustion are the 
three main CCS methods. The mitigation of CO2 before combustion, 
which relates to the gasification process to create synthesis gas, is 
referred to as pre-combustion capture. After that, the synthesis gas 
can be treated to create H2 and CO2 rich streams or converted into 
chemicals and light fuels by catalysis [4,5]. The oxyfuel combustion 
method needs the use of pure oxygen for the fuel combustion 
[6]. Existing plants cannot use either pre-combustion or oxyfuel 
combustion methods. Post-combustion CO2 separation methods, 
on the other hand, may be retrofitted onto existing facilities [7]. 
Cryogenic separation, amines solvent based absorption, porous 
solids based adsorption, and membrane separation are all employed 
in post-combustion CO2 separation procedures for gas processing 
and CO2 capture, respectively [8]. The use of amines to capture CO2 
by post-combustion is a robust approach that may be integrated 
into existing plants [9]. Despite its great efficiency, the amine-
based CO2 separation technology is neither a long-term ecologically 
friendly or cost-effective option [10]. Solvent degradation [11,12], 
equipment corrosion [13,14], solvent escape, and the production of 
nitrosamines and nitramines are all disadvantages of amine-based 
chemical solvents [15].

In this work, the conventional methods used for CO2 separation 
are comprehensively presented. The mechanism, advantages and 
disadvantages and comparison of the conventional methods, i.e., 
absorption and adsorption process, chemical looping combustion, 
cryogenic distillation, hydrate-based separation, and membrane 
separation are broadly explained. Ionic liquids, being an attractive 
solvent with excellent properties are discussed in detail. The 
use of ILs in combination with membranes is a relatively recent 
technology for gas separation explored in the last two decades. 
Supported Ionic Liquid Membranes (SILMs) is among the many 
forms of IL-containing membranes reviewed in this study. 

Sources of CO2 Emissions
Worldwide anthropogenic (GHG) emissions are predominantly 

because of human activities that includes the consumption of non-
renewable energy resources, transportation, industrial processes 
and emissions from forestry and other land use [16]. According to 
the Figure 1, the data was published by the European Environment 
Agency in 2016 and it shows that, among various sources of 
anthropogenic (GHG) emissions, the fuel combustion sector mainly 
use for electricity and heat production has the biggest commitment 
towards greenhouse gas emissions. Similarly, the transport sector 
has also shown the excess amount of GHG emissions followed 
by Industrial processes and Agriculture sector [16]. As reported 
by Netherlands Environmental Assessment Agency In 2018, the 
development altogether worldwide ozone depleting substance 
(GHG) emissions (eliminating those from land-use change) 
continued at pace of 2.0%, coming to 51.8 gigatonnes of CO2 
equivalent [17]. Similarly, the increase in global GHG emissions 
of 2% (1.0 gigatonnes CO2) was due to a 2.0% rise in worldwide 

CO2 emissions from fossil fuel combustion and from Industrial 
processes together with cement production. There was a 1.8% 
increase in global methane and 0.8% increase in global nitrogen 
oxide emissions during the same time period [18]. In the 1990s, 
global fossil fuel CO2 emissions increased by 0.9 percent per year. 
In the 2000s, they accelerated to a rate of 3.0 percent per year. 
Since 2010, they have returned to a slower growth rate, increasing 
by 0.9 percent per year [19]. Aside from declines in emissions in 
the European Union and the United States over the last decade, the 
rise in emissions in China, India, and most emerging nations had 
also greatly affected global emission trends over the last couple of 
decades [20].

Figure 1: Greenhouse gas emissions by sectors 2016 
[16].

In 2019, Global greenhouse gas emissions increased at a 1.1%, 
reaching 52.4 Gt CO2 comparable. The main reason for the rise in 
global greenhouse gas emissions coincided with the rise in global 
carbon dioxide emissions in 2019. Similarly, the global emissions 
of Methane increased by 1.3%. This results in CO2 from fossil fuels 
accounts for 73% of the total, while methane accounts for 19%. 
contributed mainly to the rise of global warming [21]. As stated in 
Figure 2, the International Environment Agency did a study in 2021 
and compared the Global CO2 emissions in the last three decades. 
Stated that the worldwide CO2 emissions was nearly 21 gigatonnes 
in 1990 and then grew up continuously to almost 33 gigatonnes in 
2019 but there is a slight decline in 2020 because of the pandemic. 
As of the most recent statistics, primary energy demand fell by 
almost 4% in 2020, while worldwide energy-related carbon dioxide 
emissions fell by 5.8%, the highest annual percentage drop since 
Second World War. Simplistically, carbon dioxide emissions have 
been reduced by nearly 2 billion tons [22]. The international climate 
policy has published the top five CO2 emitter countries as stated in 
Figure 3, it indicates that China has the highest CO2 emissions as 
recorded 29% globally, followed by the United States which was 
16%. Similarly, European Union, India and Russian Federation 
have also included in the top CO2 emitters list. The role of China, 
the United States and European Union is critical because they 
account for more than 50% of global emissions [23]. In 2019, China 
has recorded the excess CO2 emissions of nearly 10 gigatonnes, 
next off the United States was indicated almost 5 gigatonnes of 
CO2 emissions. Additionally, the European Union and India have 
showed 3.0 and 2.3 gigatonnes of CO2 emissions respectively [24].
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Figure 2: Global energy-related CO2 emissions, 1990-
2020 [22]. Figure 3: Countries with the largest CO2 emissions in 

2020 [23].

Conventional Technologies for CO2 Capture
The amount of CO2 produced during combustion, as well as the 

type of combustion, have a direct impact on the selection of the 
suitable CO2 removal method. The cost of currently available CO2 
capture technologies in the market is high, accounting for 70-80% 

of the total cost of a complete carbon capture storage system which 
includes capture, transportation and storage [25]. There have been 
three basic CO2 capture methods, each of which is linked to a distinct 
combustion process, such as post-combustion, pre-combustion, or 
oxy-fuel combustion, which is shown in Figure 4 and explored in 
the following section.

Figure 4: CO2 capture pathways [28].

Post-combustion, pre-combustion, and oxy-fuel 
combustion

The technologies used for CCS are currently divided into pre-
combustion or post combustion systems and named after the point 
at which the carbon is removed, i.e., before or after the burning of 
fossil fuels [26]. Another technology, called oxy-fuel combustion, is 
still in the development phase and will take some time to become 
industrially acceptable. Power plants use technology similar to 
that used in several industrial processes, though without the 
combustion process. 

Post-combustion: After burning, this procedure eliminates CO2 
from the flue gas. For retrofitting of the existing power plants, post-
combustion technology is the most desirable option. It has been 
proved on a small scale that the recovery rate of carbon dioxide is 
as high as 800 tons/day [27]. Although, the main challenge for post-
combustion CO2 capture is its huge parasitic load (power consumed 
even when the appliance is shut off, that is standby power) [28]. 
Because the CO2 level is usually very low (i.e., 7-14% in combustion 
flow gas for coal fired and for gas fired as low as 4%) [29]. The 
energy loss and related cost for the capture device reaches the 
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CO2 concentration (above 95.5%) required for transportation and 
storage are raised [30]. National Energy Technology Laboratory 
of the United States evaluated that post-combustion CO2 capture 
would rise the electrical power production cost by 70% [31]. As 
stated by the Energy Information Agency, the ever-increasing 

power demand will result in 50% increase in installed coal-fired 
power generation capacity by 2030 [32]. A new study indicated 
that the electricity cost for post-combustion in coal and gas fired 
power plants would increase by 65% and 32% accordingly (Figure 
5), [33,34].

Figure 5: Schematic diagram of post-combustion carbon dioxide capture [34].

Pre-combustion: This technology uses the extraction of 
carbon dioxide from fossil energy before the combustion process 
begins [35]. This innovation can additionally be clarified as a 
responding fuel and O2 gas to produce carbon monoxide, fuel 
gas and hydrogen. After the expulsion of carbon dioxide, a pure 
hydrogen gas is obtained [36]. Carbon dioxide can be acquired 
by means of integrated gasification. The technology can also be 
used for power plants that use natural gas as a fuel [37]. The first 
essential stage in the process of removing carbon from a fuel is to 
change the fuel to a type that is easy to collect. A reaction between 
coal, steam, and oxygen gas is a common occurrence in coal-fired 
power plants, and the reaction takes place at high temperature and 

pressure [37]. The final product of this reaction is a fuel made from 
carbon monoxide also as mixture of hydrogen known as syngas. 
This gas can then be used to generate electricity in power plants 
by undergoing a combustion process. The energy produced is 
commonly referred to as IGCC (Integrated Gasification Combined 
Cycle) energy. The carbon monoxide gas obtained in the first step 
is converted to carbon dioxide in the second step by reacting with 
steam. As a result, hydrogen and carbon dioxide are produced. 
Through a chemical cycle, carbon dioxide is captured using a glycol 
solvent called selexol (Figure 6). This produces purified hydrogen 
gas, which is then used to generate electricity in some other plants 
[38].

Figure 6: Pre-combustion carbon capture and storage technology [39].
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Oxy-fuel combustion: The oxy-combustion method is an 
alternative to the post-combustion process [39]. This process uses 
pure oxygen to capture CO2 and to minimize the nitrogen quantities 
[40,41]. Fly ash is also removed from the gaseous stream, resulting 
in exhaust gas that is primarily composed of carbon dioxide and 
water droplets, with some pollutants such as sulfur dioxide. For 
the removal of water droplets reducing the temperature and 
compression used as a medium [42]. One benefit of oxy-fuel 
combustion versus post-combustion is that it is more economical 
to capture CO2 after combustion. Post-combustion requires an 
expensive system for CO2 capture [43,44]. An Air Separation 
Unit (ASU) is used in the oxy-combustion process to remove CO2, 
instead of post-combustion which uses CO2 capture system. The Air 
separation Unit make all around 95-99% pure oxygen for oxy-fuel 
system in comparison with Integrated Gasification Combined Cycle 
plant for the equivalent volume [45]. Air separation unit influences 
the cost fundamentally to meet the proper environmental 
guideline, additional gas transformation is frequently required to 

limit air pollutant concentrations. This will additionally decrease 
the undesirable materials within the flue gas reprocessing [45-47]. 

The temperature for burning the use of clean oxygen is in excess 
of air, for this reason oxy-combustion entails an enormous part of 
the steam for flue gas getting recycled within boiler to preserve 
superior running temperature. Modern oxy-fuel boilers have been 
improved to reduce recycling by employing slagging combustors. 
The sealing of the system to take care of the required oxygen and 
nitrogen found inside the gas is another key stage in the design. It 
prevents the leakage of air into the flue gas. It is also difficult to 
stop leaks at couplings and flanges, especially along the flue gas 
duct hence, it is considered as the foremost difficult maintenance 
issue [48]. Several studies on 30MW thermal power plants that 
use oxy-fuel combustion technology have been carried out. This 
system necessitates gas treatments to remove contaminants from 
the system, which affects the system’s performance by about 90% 
(Figure 7). In a simple cycle, the principle of oxy-combustion can 
be used [49]. 

Figure 7: Schematic of oxy-combustion technology used in a coal fired power plant [40].

Comparison of different combustion processes used for 
carbon dioxide capture 

CO2 capture from carbon fuels comprised of three main 
strategies i.e. pre-combustion capture, post-combustion capture 
and oxy-fuel combustion as discussed above. The benefits and 

drawbacks of each CO2 capture technology, as well as the conditions 
of CO2 emissions (e.g. CO2 content in the flue gas, gas flow pressure), 
as presented in Tables 1 & 2; [50,51]. The application area of the pre 
combustion is coal gasification plant and oxy fuel combustion and 
post combustion technology have been implemented in coal and 
gas fired plants [51].

Table 1: Benefits and drawbacks of existing CO2 capture processes.

Capture Process Benefits Drawbacks References

Pre-combustion

· Maximum CO2 concentration (∼45 
vol %) and pressure. 

· Industrially accomplished in some 
Mechanical areas.

· Extreme operating pressure and 
temperature (1.5-2.0Mpa and 190-

210 °C). 

· High energy consumption because 
of sorbent recovery.

[52,53]

Oxy-fuel combustion

· Lower capital cost · Maximum 
concentration of CO2 (80-98%) 

· Lower expenditure of boiler and 
different equipment’s

· Maximum drop in efficiency and 
high power consumption because 

of distinct air separation unit.
[54,55]
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Post-combustion
· A direct way to deal with the 

retrofitted 

· More mature than other strategies

· Dilute concentration of CO2 
(5-15 vol %) at near atmospheric 

pressure 

· High energy consumption because 
of solvent/sorbent recovery.

[51,54]

Table 2: Exhaust gases constitution of various carbon capture methodologies [50].

Flue Gas Composition Pre Combustion [56,57] Oxy Fuel Combustion [58-60] Post Combustion [56,57]

CO2 37.70% 85.00% 10-15%

N2 3.90% 5.80% 70-75%

H2 55.50% --- ---

H2O 0.14% 100ppm 5-10%

CO 1.70% 50ppm 20ppm

O2 --- --- ---

SOX --- 50ppm <500ppm

NOX --- 100ppm <800ppm

H2S 0.40% --- ---

Absorption process 
The most generally recognized innovation for post-combustion 

carbon dioxide extraction is absorption using Mono-ethanolamine 
(MEA), which consists of two segments: absorption and stripping/
desorption, as shown in Figure 8. It is capable of capturing 
considerable amounts of CO2 from exhaust gases using fast kinetics 
and a strong chemical reaction. Although [52-60], there are a 
few unresolved restraints that should be settled which contains 
corrosion, solvent degradation and solvent recovery effectiveness 
[61]. The amines are corrosive and susceptible to degradation by 
trace components (particularly SOx), which significantly restricts 
their application. According to a study by Rao & Rubin [62], Solvent 
degradation is responsible for around 10% of the entire cost of CO2 

capture. Thermal degradation and oxidative degradation are the 
two basic forms of degradation. Thermal degradation happens in 
circumstances with high CO2 partial pressure and large temperature 
and oxidative degradation occurs because of the excess amount of 
oxygen present in the flue gases. Besides this, degradation can also 
occur because of the presence of impurities in the gases like (SOx 
and NOx). Similarly, MEA is environmentally hazardous because 
of its volatile nature, and it could be ejected into the environment. 
Furthermore, it requires an excess quantity of energy (nearly 4 to 6 
Mega Joule/kg CO2) to recover chemical solvents [63]. The national 
technology laboratory of energy department (DOE/NETL) reports 
that the MEA-based carbon capture process will raise the electricity 
cost of new power plant by around 80%-85% and increase plant 
efficiency by roughly 30% [64].

Figure 8: CO2 recovery from flue gas using a typical chemical absorption system [50].

Adsorption process
Figure 9 depicts a typical physical CO2 adsorption system, 

which indicates that a pre-treatment setup is required prior to CO2 

adsorption. Solid adsorbent is placed in each adsorption chamber 
(such as zeolites, activated carbon or metal organic frameworks, 
etc.) [65,66]. In most cases, two or three adsorption chambers are 
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employed throughout the process, with one chamber receiving 
the raw material for adsorption, the second chamber desorbing 
the captured CO2, and the third chamber is on standby to receive 
the feed [67]. As a result, the system can run constantly. Until 
far, the majority of CO2 adsorption systems have been dry. Other 

restrictions that reduce the efficiency of the process include: 1) 
low CO2 selectivity and limited adsorbent capacity. 2) The removal 
efficiency is lower when compared to other techniques such as 
absorption and cryogenics. 3) Regeneration and re-use of the 
absorbent [68-70].

Figure 9: CO2 capture from flue gas using an adsorption method [50].

Chemical looping combustion
Richter and Knoche propose the technology of Chemical 

Looping Combustion (CLC) [71]. The solid oxygen carrier circulates 
between the various portions, dividing the combustion into 
intermediate oxidation and reduction reactions that are carried out 
individually. Fine metal oxide particles including NiO, CuO, Fe2O3, 

or Mn2O3 [72,73] are suitable oxygen carriers for a primary CLC 
system with two air and fuel reactors each, as depicted in Figure 
10. Between the reactors, the oxygen carrier circulates. The carrier 
is oxidized by oxygen within the air reactor. The metallic oxide 
is reduced in the fuel reactor by the oxidation of CO2 and H2O by 
the fuel. The main advantages of CLC can be described as follows 
[29,74]

Figure 10: Process flowchart of chemical looping combustion [50].
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a. Mainly nitrogen gas is released from the air reactor which 
is not harmful. 2) Because CO2 and H2O make up the exhaust gas 
flow from the fuel reactor, the CO2 is frequently separated using 
a condenser, eliminating the energy expenditures of traditional 
absorption methods and lowering capital expenses. The bulk of CLC 
processes have only been tested in the lab, however the technology 
has some large-scale demonstrations. At the same time, the existing 
process still has some serious problems (like insufficient oxygen 
carrier stability and slow redox reaction). Additionally, the de-
sulfurization of fuel is also essential to avoid carrier’s sulfidation 
[75]. Before scaling up, other aspects should be considered. The 
CLC rating is currently based on air and fuel reactors. The ultimate 
goal, however, is to use the thermal energy contained in the reactor 
exhaust gases. As a result, parallel to the development of the 
technology, it is critical to evaluate the usage of CLC for real-world 
applications [76].

Cryogenic distillation
Holmes and Ryan suggest the traditional cryogenic distillation 

method for purifying natural gas which is one of the most common 
separation techniques [77]. The typical cryogenic separation 
process is shown in Figure 11. The supply gas is first chilled with a 
pre cooler before being cooled to a low temperature with the help 
of a heat exchanger. The cooled gas is pumped into the distillation 
column, which is made up of several vapor-liquid contact devices 
(like trays or packing materials). The vapor component is separated 
into two pieces after passing through the distillation column: top 
and bottom product. A partial condenser extracts the methane 
isolated from the atmosphere. The CO2 that has condensed at the 
bottom of the distillation column is collected. By transferring a 
portion of the rich CO2 stream via a reboiler to produce heat for 
vaporization, a portion of the rich CO2 stream is returned to the 
distillation column. The remaining CO2 stream is separated further, 
and the pure CO2 product is taken from the separator at the end. 

Figure 11: Schematic flow diagram of cryogenic distillation [50].

Despite its widespread commercial use and significant benefits, 
cryogenic distillation’s high energy requirements typically account 
for more than half of a plant’s operating costs [78,79]. Many energy-
efficient distillation solutions have been proposed, including cyclic 
distillation, thermally integrated distillation column, reactive 
distillation, and thermally connected column, all of which are based 
on the integration of upgraded processes and technologies [80,81]. 
Maqsood et al. [82] investigated the intensified side-mounted 
and integrated switching cryogenic network structure for CO2 
extraction from natural gas [82-84]. The study’s findings revealed 
that utilizing the hybrid cryogenic distillation network, energy 
consumption was greatly decreased, and methane loss and size 
requirements were detected, and the technique offers promising 
results for the purification of sour natural gas reserves [84,85]. 
With the optimization of the advanced cryogenic networks, the 
overall profit grew to 69.24 percent [86].

Hydrate based separation
Clathrate hydrates, also known as gas hydrates, are ice-like crystal 

formations made up of water molecules and additional chemicals 
such as N2, H2, CO2, and O2. Inside the cavities of water molecules, 
these small gas molecules become trapped. The concentration of 
different gases are different from each other i.e. in the crystal form 
and in the original mixture of gases [87]. CO2 separation is defined 
as the selective separation of CO2 from a gas mixture between the 
crystalline solid hydrate phase and the gas phase, resulting in the 
formation of a hydrate crystal. The minimum pressure required for 
the production of hydrates at a temperature of 273.9K is roughly 
5.56MPa, according to thermodynamics. The pressure of the 
synthesis gas after the shift reaction is nearly 2 to 7MPa, while the 
flue gas is almost at atmospheric pressure after combustion. Hence, 
to increase the rate of hydration formation the gas steam needs 
compression [88]. To generate hydrates, various promoters have 
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been tried to lower the equilibrium condition. The most researched 
promoter is Tetrahydrofuran (THF). The equilibrium of hydrate 
formation decreases with the addition of THF at any temperature. 
Similarly, by increasing the THF concentration the pressure of 
hydrate formation decrease to an optimal concentration of nearly 
1 mol% THF. It can be used in industry to remove CO2 without 
compressing the exhaust gas appreciably [89]. If 3.2 mol% propane 
is added to a CO2/O2 mixture, the equilibrium pressure for hydrate 
formation can be decreased by 50%. It should be noted that current 
kinetic hydrate models are unable to account for the additives 
system well. It could be upgraded by means of studying particular 
mechanisms and superior microscopic observations [90,91].

Membrane separation
The phenomenon that causes membrane separation is known 

as the Knudsen diffusion principle. CO2 dissolves within the 
membrane and dissipates at a proportionate rate to the partial 
pressure gradient. Membranes are semi-permeable barriers 
made of various materials that, through various mechanisms, can 
separate various components from a mixture [92]. Organic or 
inorganic materials are used to make membranes. In non-facilitated 
membranes, the solution-diffusion process occurs. After being 
dissolved in the membrane, the permeate diffuses through it. The 
partial pressure of CO2 is related to the amount of CO2 dissolved per 
unit volume [93]. Furthermore, large-area polymeric membranes 
are easier to make. A unique sort of polymeric membrane called 
facilitated transport membrane has a transference process that 
differs from that of conventional polymeric membranes [94] is 
frequently studied independently of other polymeric membranes. 
Table 3 shows a comparison of membrane module.

Table 3: Comparison of different membrane modules [9].

Module Type Hollow Fiber Spiral Wound Envelope

Pressure drop High in the fiber High and longer permeate path Medium

Packing density (m2/m3) <10,000 <10,000 200-500

Manufacturing Cheap easy and cheap easy

Cleaning Chemical washing/replaced Hard medium

Cost (€/m2) 2-8 8-37 40-150

The two types of membranes utilized in carbon capture are 
gas separation membranes and gas absorption membranes. In the 
gas separation membrane system, the CO2 bearing gas is fed at a 
high pressure to a membrane separator. Membrane separators 
are typically formed out of parallel cylindrical membranes. CO2 
preferentially passes through the membrane and is collected 
on the opposite side at a lower pressure. Membrane separators 
are typically formed out of parallel cylindrical membranes. CO2 

preferentially passes through the membrane and is retrieved on the 
opposite side at a lower pressure. A microporous solid membrane 
separates CO2 from the gas stream in a gas absorption system. 
The CO2 removal rate for a gas absorption system is high because 
flooding, foaming, channeling, and entrainment are reduced. The 
equipment required is less than that required for a membrane 
separator [95]. Figure 12 depicts the two systems.

Figure 12: (a) gas separation membrane (b) gas absorption membrane [96].

Comparison of the Different CO2 Capture 
Technologies

Carbon capture, which requires CO2 separation, is often an old 
procedure that has matured to the point of having a number of 

full-scale applications. These mechanisms have been the subject of 
several experimental and computational modelling research. The 
fundamental advantage of post-combustion capture is that it is 
simple to integrate with existing power plants; nevertheless, CO2 
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partial pressure and concentration in flue gases are low. A minimal 
concentration of CO2 should be achieved for transportation and 
storage. Carbon capture requires a large amount of additional energy 
and expenses to achieve a minimum necessary concentration. 
The degradation of solvent and severe corrosion of the utilized 
equipment is done by using the chemical absorption procedure for 
the removal. As a result, this process of preparing CO2 for transit 
and storage necessitates a large investment in solvents and other 
equipment. These might result in a 70 percent increase in the cost 
of producing electricity [96,97]. New solvents are being researched 
in order to reduce the cost of carbon capture. This method has a 
high capital and operating cost due to large size of the equipment.

Carbon collection before combustion is generally used in 
process industries. There are full-scale CCS facilities in some of 
the industries that use this approach [98]. In the gas mixture, the 
amount of CO2 is far higher than the conventional mixture of flue 
gas. In comparison with post combustion, low energy is needed in 
this process because of the higher pressures and the lower volume 
of gas, but the energy penalty is still high. Pre-combustion is mainly 
used in combined cycle integrated gasification technique. This 
technology requires a large auxiliary system to operate smoothly. 
Consequently, this system’s capital costs are too high compared 
with other systems. Some pilot operations are under development 
and oxy-fuel combustion is also used in several small-scale 
demonstration units [51,99,100]. The most promising milestone 
for oxygen fuel combustion is a 50MW thermal demonstration 
power plant built in Texas by Net Power employing the Allam cycle 
idea and ensures almost zero emissions. This method offers some 
other advantages such as reduction of the size of the equipment, 
compatibility with different types of coal and a chemical plant on-
site [100]. In addition, certain technical uncertainties require more 
investigation to apprehend the complete operation. The carbon 
capture chemical looping combustion process is still currently in 
progress. It is not yet commercially implemented. This method must 
be used for further research. As there is no flame, thermal NOx is 
not produced, and the air reactor outlet stream is environmentally 
harmless [74]. It will be much more attractive than other processes 
when a correct oxygen carrier is developed in CLC. While there is a 
great potential for a cheap and cheap energy solution to the control 
of CO2 emissions in membrane-based separation technology, 
its application is still limited by several practical issues. The 
pressure difference produced by a compressor or vacuum pump 
is limited by the capability and energy consumption of the current 
compressor or vacuum pump within certain ranges, and therefore 
the typical flue gas requires a very large membrane area [9,101]. 
In comparison to traditional chemical absorption technology, 
membrane-based separation is still in its infancy. The majority 
of membrane-based separation studies are now conducted on a 
small scale in laboratories. As a result, its performance in pilot and 
full-scale energy plants must be evaluated before it can be fully 
implemented [9].

Advantages and Disadvantages of CO2 Separation 
Processes

High energy consumption is the main challenge of CO2 
separation methods. Each process has also certain disadvantages, 
such as secondary pollution [102], solvent degradation , high 
cost of equipment [29] and limited selectivity [63], which restrict 
its application and development. To address the constraints of a 
single separation procedure, hybrid mechanisms should be a viable 
option. Combining several techniques can improve separation 
performance while avoiding drawbacks. The hybrid process, 
however, is fully independent. Various CO2 separation processes, 
such as absorption, adsorption, membrane, cryogenic and hydrate, 
etc., have been developed in the past few decades. Cryogenic and 
hydrate are low-temperature processes in CO2 capture approaches. 
Cryogenic processes are gases which are converted at very low 
temperatures to their liquid phase. Hydrate is a solid hydrate 
process [103]. In this process, hydrogen units are implemented 
to strengthen the formation of hydrate and reduce the conditions 
of equilibrium [104]. For cryogenic and hydrogen conditions, low 
temperatures and high pressure are required. Absorption and 
adsorption are widely applied in many industrial fields and are 
relatively mature processes. Membrane based separation method 
is considered as one of the most widely studied and rapidly growing 
processes of separation for efficient pollutant treatment [105,106]. 
Researchers are committed to not only optimizing operating 
parameters, but also inventing new membrane materials and 
membrane processes in order to address some of the drawbacks 
of membrane-based separation procedures and boost separation 
performance even further [107].

Ionic Liquids for CO2 Capture
Ionic liquids (ILs) are organic molten salts with a variety of 

desirable properties, including no vapor pressure above the liquid 
surface, thermal stability, and low volatility [108,109]. ILs have the 
most appealing property of being tailor-made, which means that the 
properties of ILs can be adjusted by changing the cations and anions 
to produce specific compounds for specific applications [110,111]. 
ILs are classified as non-volatile because their vapor pressure is 
relatively low in environmental conditions. ILs are known for their 
exceptional lubricating and hydraulic characteristics. Similarly, 
the acidity and basicity trends of ILs is adjustable and it can both 
absorb and emit gases [112].

Comparison of CO2 Capture Using Ionic Liquids 
with Amine Based Solvents

As mentioned in the introduction, carbon capture methods 
are classified into three types: pre-combustion, post-combustion, 
and oxy-combustion. Among these approaches, post combustion is 
suitable for retrofitting facilities, while industrialized absorption 
systems mostly use post-combustion technology. Because of their 
high CO2 capacity, amine-based solvents are the current absorption 
technique solutions. The efficiency of ILs for CO2 collection in 
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comparison to amines determines their practical uses. It is claimed 
that ILs can be tuned to have a reasonable CO2 solubility without 
the side effects associated by using amine-based solvents [113]. 
Because amine-based solvents are volatile, systems that employ 
them require a lot of energy during the solvent regeneration step, 
which adds to the overall cost of the CO2 capture process. Using 
ILs as non-volatile solvents can considerably reduce or even 
eliminate this expense. Because of their volatility, amine-based 
solvents are not ecologically friendly. They are naturally unstable, 
leading in the formation of hazardous poisonous compounds such 
as nitrosamines, nitramines, and amides. It should be noticed that 
nitrosamines are of particular concern since they are carcinogenic 
and toxic to humans even at small concentration [114]. Because 
of their negligibly low vapor pressure, ILs are classified as non-

volatile. It implies they do not evaporate and so do not pollute the 
atmosphere. As a result, solvent losses are low in case of ILs.

Conventional ILs capture carbon by physical absorption. It is 
noteworthy that changing the cations/anions in ILs can increase 
CO2 solubility, but their CO2 capture capability is still poor compared 
to other commercial carbon capture methods, such as amine-based 
solvents, which are already available [115]. Mono Ethanol Amine 
(MEA) is more efficient than other alkanolamines as an absorption 
solvent. The following is the order of absorption rate for amines: 
MEA>DEA>AMP>DIPA>MDEA [116]. For a general overview, Table 
4 compares CO2 capture methods using conventional ILs with 
the most often used commercial solvents. Table 5 compares the 
benefits and drawbacks of three different ionic liquid composition 
systems [117-119].

Table 4: Comparison of properties of conventional ILs with commercial solvents used for CO2 capture [117-119].

Variable
Chemicals for CO2 Capture

Conventional ILs Task-Specific ILs MEA (30 %wt) DEPG PC

Absorption type Physical Chemical Chemical Physical Physical

Vapor pressure (bar) at 25 °C 1.33×10-9 1.33×10-9 8.5×10-4 9.73×10-7 1.13×10-4

Viscosity (cP) 20-2000 50-2000 18.98 5.8 3.0

CO2 solubility (mol of CO2/mol of IL) at 1 bar 
and 20-40 °C >2.51 1.6 50-85 3.63 3.41

abskJmolCat1 bar and 40 °C     

Selectivity

CO2/CH4 8-35 --- --- 15 26

CO2/H2 50-150 --- --- 77 126

H2S/CO2 2-10 --- 1-2 8.8 3.3

CO2/N2 30-100 --- --- 50 117

Cost 200 $/5gr 400 $/5gr 370 $/1L 80 $/1L 117 $/1L

Table 5: Benefits and drawbacks of three different ionic liquid (IL) mixture systems [114].

Type Benefits Drawbacks

Conventional ILs 
(CILs)

Energy consumption is lower than traditional solvents. 

High CO2 selectivity
High viscosity

Task-specific ILs When compared to CILs, they have a better CO2 storage 
capacity (because of functional groups)

Compared to CILs, they possess higher viscosities

Complex synthesis procedures

IL-alkanolamine-
water mixture

They have low viscosities compared to CILs

When compared to CILs, there is a higher rate of CO2 
dissolution

Not ecologically friendly as pure ILs

This kind of IL has lower amine loss and energy utilization 
than amines, but greater than CILs.

Supported Ionic Liquid Membranes for CO2 
Capture

A SILM is a three-phase liquid membrane system in which 
the IL is retained in the pores of the support material by capillary 
forces. Polymeric and inorganic membranes are the most common 
support materials. Due to the relatively high viscosity of IL, there 
are three techniques for preparing SILM: direct immersion, vacuum, 
and pressure. Each of these methods can have a significant impact 
on the operation performance of SILM [120]. Several SILMs were 
produced, for example, by soaking a hydrophilic PVDF membrane in 
six phosphonium-based ILs [121]. Miyako et al. [122] reported the 

formation of a SILM by submerging a hydrophobic PP film in [BMIM]
PF6. The produced SILMs employing this approach are typically 
acceptable for transport studies for the extraction of organic 
molecules [123]. SILMs containing [BMIM] [Cl, BF4 or NTf2], which 
were produced using the pressure technique, and the resulting 
SILMs verified that each of the ILs had completely filled the holes of 
support material. As a result of this approach, it is possible to utilize 
the SILMs for pervaporation studies even at higher pressures [124-
126]. Figure 13 Shows the number of publications related to CO2 
capture/separation through ionic liquid-based membranes in the 
previous decade [127]. The CO2 permeability and selectivity of 
SILMs is summarized in Table 6.
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Figure 13: Published articles in ionic liquid based membranes for CO2 capture [127].

Table 6: Permeability and selectivity of CO2 and N2 gases using SILMs.

Permeability (Barrer)

ILs Polymers CO2 N2 Selectivity CO2/N2 Conditions Ref

[C6mim][NTf2]

PIM-1

2240 90 25

303 k [129]
[C4mim][NTf2] 4590 212 22

[C2mim][NTf2] 6650 332 20

[Dems][TFSI] 5800 193 30

[Bdim][TFSI]

PSF

3600 130 27 308 k [130]

[Bmim][TFSI] 3000 107 28
7 bar

Cyphos 102 637 15.3 41.5

AMMOENTM100

PVDF

93.9 1.79 52.6

303 k 

3 bar
[131]

[Bmim][BF4] 93.9 5.04 52.3

[Set3][NTF2] 747 18.4 26.2

[Emim][OTf] 486 14.3 34

[MtdFHim][NTf2] 210 13 16

[MnFHim][NTf2]
PES

280 14 21 296 k 

1.85 bar
[132]

[MpFHim][NTf2] 320 12 27

[Bmim][NTf2] PI 34.4 1.34 25.7 308 k [133]

[N2224]2[maleate] PES 2840 --- 218.5
313 k 

0.1 bar
[134]

CO2 Permeability and Selectivity of SILMs
A gas molecule is generally transported across an IILM in three 

steps: (1) absorption in the ILM’s upstream surface, (2) diffusion 
across the ILM matrix, and (3) desorption in the ILM’s downstream 
face. The permeability and selectivity can be found by the following 
equations [128].

2 . .
i

i
i

Permeating flux mol
Permeance

Driving force m s pa
= =  (1)

2 .ji
iPermeate flowrate mol

Permeating flux
Membrane Area m s

= =
 (2)
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feed permeance
i i i iDriving force P P P Pascal= ∆ = − =  (3)

2
.

. .i i
mol m

Permeability Permeance Membrane thickness
m s pa

= × =  (4)

i

j

Permeability
Selectivity

Permeability
=

 (5)

Conclusion and Future Recommendations
This paper examines the complete mechanism, usage, benefits, 

and drawbacks of conventional technologies used for CO2 capture. 
Conventional methods have issues with solvent loss, corrosive 
nature of the solvents, toxicity of solvents, and high energy usage 
in solvent regeneration. ILs play a critical role in CO2 capture 
processes [129-134]. The unique features of ILs lead them to a 
wide range of applications. For CO2 separation, a variety of SILMs, 
including supported ionic liquid polymer membranes has been 
thoroughly investigated. The CO2/N2 permeability and selectivity 
of various ionic liquids with polymer membranes are investigated 
comprehensively. The CO2/N2 permeability and selectivity is 
substantially improved by choosing the appropriate size of porous 
support. Similarly, choosing the suitable membrane support, 
resulting in superior membrane performance at low and high 
gas pressures. The testing methods for SILMs must be improved 
significantly before commercialization.
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