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Introduction
It is known that for a first-order phase transition, particles should overcome a potential 

barrier [1]; therefore, the transition occurs when the value of the chemical potential differs 
from the equilibrium one. When stating crystallization problems, an equilibrium phase 
diagram is usually assumed to be known, and the dependence of the deviation of the chemical 
potential from equilibrium is written as the difference between the equilibrium temperature 
and the interface temperature. It is called kinetic overcooling kT∆ . The velocity of the interface 
depends on kinetic overcooling, ( )ksV T∆ . In the quasi-equilibrium statement [2-4], 0kT∆ =  and 
following thermodynamics, the interface is motionless. In the quasi-equilibrium case, the 
interface motion is identified with the velocity of motion of a geometric surface, on which 
the temperature is equal to that of the phase transition. The difference between these two 
approaches is clearly demonstrated by the results of the linear analysis of the interface 
stability [5,6]. In the quasi-equilibrium statement [5], it is assumed that the interface is planar 
in the stationary regime. As a disturbance, a small harmonic deviation of the interface from 
the stationary regime plane is taken in the assumption that the deviations of temperature and 
concentration from the stationary solution result from the spatial distortion of the interface. 
In this problem statement, the cause and effect are interchanged. In fact, it is not the spatial 
deviation of the interface from the stationary solution that causes the disturbances of the 
stationary solutions of temperature and concentration, but the disturbances of the stationary 
regimes of temperature and concentration may or may not result in the spatial interface 
disturbances [6]. The loss of kinetic overcooling in the equations means that the calculations 
do not take into account the driving force of the crystallization process. The kinetics of the 
addition of solution particles to a growing solid surface drops out from this problem. However, 
it is crystallization kinetics that determines, for example, the period of a eutectic structure 
[7-9]. 

Mini Review
The mechanism of the solid phase growth gives the form of the dependence of the 

structure period on the velocity of the interface motion. This question is considered in detail in 
[8]. In [10], it was shown experimentally that eutectic composites are formed by the spinodal 
decomposition of an unstable solution layer in front of the interface. To our knowledge, there 
exist no works where the possibility of the transition of a solution to an unstable state before 
its crystallization is considered theoretically and the parameters, a change in which brings the 
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Abstract
In the present work, it is shown that being in a non-equilibrium state, a solution can reach an unstable 
state during the phase transition. In the work, a phase diagram is plotted that demonstrates the boundary 
of this state, i.e., the boundary of the region of the spinodal decomposition of a solution.
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solution to an unstable state, are found. To explain how a solution 
can transit to an unstable state we use a simple local configuration 
model of a solution. In this model, it is assumed [11] that in the 
crystal lattice of a solution there are positions of two kinds of 
particles, A and B. The nearest neighbors of the positions of each 
kind are those of the other kind. In the model, the dependence 
of mutual potential energy on the distance between the atoms 
is neglected, and it is assumed to depend on their arrangement 
only. This rough approximation allows obtaining quite simply 
the dependence of free energy on component concentration for a 
multiphase multicomponent system. In this model, an expression 
for the thermodynamic potential of solutions with the concentration 
с has the form

( ) ( ) ( ) ( ) ( ) ( )1
1 ln 1 ln 1 ln
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here UAА and UВB are the mutual potential energy of two 
neighboring atoms of one component A or B. The index i denotes 
the solid phase at i=sol and the liquid phase at i=liq. The quantity
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equal to the excess of the mutual potential energy of opposite 
atoms over the average energy of similar atoms is called mixing 
energy. Here, UAB is the mutual potential energy of two neighboring 
atoms of different components, k is the Boltzmann constant, N is 
the total number of atoms and positions, and lnbi is the logarithmic 
dependence of entropy on free energy. The transition between the 
phases itself is the dynamic process of a change in the state of matter 
under the loss of stability of one phase and the transition of matter 
to the other phase. When a eutectic periodic structure is formed, 
two phase transitions occur [10]. A first-order phase transition is 
the transition of a solution from the liquid to the solid phase, and 
a second-order phase transition is the spinodal decomposition of a 
solution. The local configuration model permits showing a change 
in what physical parameters can bring a solution to an unstable 
state. To understand what conditions, lead to the unstable state of a 
solution, we shall use the geometric interpretation of the conditions 
of phase equilibrium. The liquidus and solidus lines of an equilibrium 
phase diagram are plotted based on the requirement of the equality 
of the chemical potentials of solution components at the interface. 
Geometrically, the procedure is as follows. The dependencies of 
the thermodynamic potentials of the phases on concentration are 
plotted for a fixed temperature. A common tangent to two curves 
of free energy gives the composition of two phases, which are in 
equilibrium with each other. The concentrations of the components 
at the tangent points correspond to the abscissas of the liquidus 
and solidus lines of the equilibrium phase diagram. Between the 
tangent points, there is the so-called two-phase region. It is clear 
that the phase transition process occurs in the two-phase region. 
However, as one can see, the equilibrium diagram does not provide 
any information on the properties of a solution in the two-phase 
region. In the two-phase region, the parameters of a solution 
pass from the values corresponding to the liquid phase to those 
corresponding to the solid phase. If we plot the dependencies of the 
thermodynamic potential on concentration with the parameters 

of a liquid and solid solution and several dependencies with 
intermediate values of the parameters, we will obtain, for example, 
the curves shown in Figure 1. The calculations were performed for 
the following values of the parameters: 1sol liq sol liq

AA AA BB BBU U U U= = = = , 
3.2sol

ABU =  , bsol=1.05, bliq=0.78, k=1, N=1. All the numerical values are 
conventional. They were selected to obtain an illustrative regular 
figure. For the sequel, the important thing is that the liquid and 
solid phases differ in the energy of interaction between solution 
particles. Here, the upper and lower curves (curves 1 and 6) are 
the thermodynamic potentials of the solid and liquid phases, 
respectively. The spinodal decomposition region is in the interval 
of the temperature dependence of the thermodynamic potential 
with the convexity upwards. One can see that if the parameters of 
a solution differ little from those of the solid phase, the solution 
being in the two-phase region can enter the region of spinodal 
decomposition. According to the model being used, when a solution 
transits from the liquid to the solid phase, the concentration of the 
solution (we assume temperature to be constant) changes due to 
a change in the potentials of interaction between the particles of 
solution components and the constant β, which is of no interest in 
this analysis since it will vanish under differentiation.

Figure 1: Dependence of the thermodynamic potential 
on the concentration of the solid (1) and (liquid) phases. 

The parameters UAB andof plotted curves 2, 3, 4, 
and 5 differ from the difference between values of these 
parameters of the liquid and solid phases by coefficients 

of 0.1; 0.25; 0.5; 0.75.

It is clear from the provided plotting that, within the model 
under consideration, the spinodal region has a boundary on which 
a variety of system parameters have a certain set of values. If these 
boundary values of the parameters were known, the boundary of 
the spinodal region would have to be plotted in the space of these 
parameters. However, the local configuration model contains a 
parameter that determines unambiguously the boundary of the 
spinodal region, i.e., the region where a solution is in an unstable 
state. This parameter is mixing energy. Indeed, the spinodal region 
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boundary is determined by zero of the second derivative of the 
thermodynamic potential with respect to concentration

( )
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 (1)

The total number of atoms and positions N is common for both 
phases. We assume the temperature under a phase transition to be 
equal to the equilibrium temperature of the phase transition. One 
can see from this expression that when a solution transits from 
the liquid to the solid phase, a change in the system parameters 
is reduced to a change in the mixing energy only. Hence, one 
can plot an illustrative phase diagram of a solution by including 
an additional coordinate, mixing energy, to the equilibrium 
phase diagram. This coordinate, together with temperature and 
concentration, determines unambiguously the value of expression 
(1) and, consequently, the boundary of the spinodal region. This 
diagram is shown in Figure 2. In these coordinates, the liquidus 
lines b1e1 and f1e1 are in the plane corresponding to the value of 
mixing energy in the liquid phase. The solidus lines b2a2 and f2d2 
are in the plane corresponding to the value of mixing energy in 
the solid phase. These planes are separated by the space of mixing 
energy values, as demonstrated in Figure 2. The two-phase region 
conditionally represents two volumes: that confined by the planes 
a1e1b1 and a2e2b2 and that confined by the planes e1d1f1 and e2d2f2. 
In the graph, the boundary of the spinodal decomposition region is 
plotted. A solution decomposes by spinodal scenario if it enters this 
region during the phase transition.

Figure 2: A phase diagram with the coordinate of 
mixing energy values.

Here, a question of principle arises of the sequence of the phase 
transitions of a solution when it transits from a liquid to a solid 
state. On the one hand, if a solution enters the spinodal region, it 
becomes unstable and decomposes into two phases of different 
compositions. This instability is called instability with respect to 

diffusion [12]. On the other hand, a solution is in the process of 
transition from the liquid to the solid phase. As noted above, two 
phase transitions happen to a solution: a second-order phase 
transition is the spinodal decomposition of a solution into two 
phases of different compositions and the phase transition from a 
liquid to a solid state. This transition occurs when under certain 
conditions a liquid loses its stability and transits to a crystalline 
state. This instability is called mechanical instability. As a result, 
in the problem under consideration, a solution has two types of 
instability: mechanical instability and instability with respect to 
diffusion. In this case, an answer to the question of the behavior 
of a system is given in the monograph by Prigogine [12] where it 
is shown that for two-component systems mechanical instability 
is preceded by the emergence of diffusion instability. This means 
that if in any parameter region a system has mechanical instability 
and instability with respect to diffusion, first diffusion instability 
emerges and the spinodal decomposition of a solution proceeds 
[12].

Conclusion
If during a phase transition, i.e., during a change in the 

interparticle interaction potentials, the parameters of a non-
equilibrium solution enter the spinodal region, it becomes unstable 
and decomposes into two phases of different compositions. This 
radically alters our ideas of interfacial mass transfer under phase 
transitions. So far, it has been assumed that crystallization proceeds 
from a metastable solution. In this case, a phase transition from the 
liquid to the solid phase can proceed either on the surface of the 
solid phase or in the bulk of a metastable solution. If we assume 
that before crystallization a solution reaches an unstable state, its 
crystallization will proceed after the spinodal decomposition of 
the unstable part of the solution. In this case, the composition of 
the solid phase will depend on the completeness of the spinodal 
decomposition.
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