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Opinion
Biomass is an important future fuel, see for example [1-5], and in turn further studies are 

needed to investigate such fuel [6-9]. During combustion/burning, biomass powder clustering 
inside the boiler/furnace is an important issue, as the complete combustion of biomass fuel 
and its residual emissions depend heavily on the particle cloud and distribution [10-14]. 
Figure 1 shows photograph of biomass powder clustering before introduced into boilers/
furnaces. The aim of this study is to demonstrate the effect(s) of particle spatial distribution 
on biomass burning within boilers. Particle spatial distribution depends on a number of 
variables, such as particle size and shape. In particular, the biomass powder is prepared using 
logwood milling process and, as a result, the fuel powder is produced in irregular shapes 
and in various sizes [15-20]. When the particles exist in a variety of sizes and shapes due to 
the milling process, the clustering of the particles becomes unbalanced within the furnace/
boiler area, and that will effect on the particle combustion scenario, as discussed afterwards. 
Biomass powder clustering of small particles (micro or nanoscale) is more likely to follow the 
gas than larger particles; and therefore, it is more likely that smaller fuel particles will have a 
sufficient time in an oxygen-rich environment to ignite and achieve high flame temperature. 
As the suspension loses energy, the dissipation rate decreases significantly, and the particle 
cluster decreases [21]. Additionally, the energy in the suspension fuel decays over time as 
a result of viscous dissipation at the gas phase. One of the clustering effects, self-propelled 
particles may accumulate in a region of space where they travel at a reduced velocity [22]. 
Upon aggregation, the particles move more slowly in areas of high particle density due to 
steric obstruction. Such behavior can lead to the so-called motility induced phase separation 
[23]. Nevertheless, this step of separation can be prevented by chemically mediated inter-
particle forces or hydrodynamic interactions. Such interaction could explain the creation of 
finite clusters in furnaces [24,25].

Figure 1: Photo of biomass powder clustering before introduced into boilers/
furnaces.
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One reason of clustering may be due to inter-particle/particle/
flow forces, as in the case of balance suspensions. Active forces 
would then resist this step of separation by dragging the particles 
in the cluster apart following two main processes. First, single 
particles can exist independently if their propulsion forces are 
sufficient to escape from the cluster. Second, because of the build-
up of internal stress, a large cluster will split into smaller pieces: 
as more and more particles join the cluster; their propulsive forces 
add up until they break down their cohesion. Some studies of self-
propelled particles show a strong tendency to accumulate and form 
clusters [26]. The exact mechanism leading to the emergence of 
clusters is not entirely elucidated and is a major field of research 
for many systems [27]. A number of different methods have 
been suggested, which could be useful in laboratory settings. 
Distribution of particles suspended in incompressible turbulent 
flows is studied by means of high-resolution direct numerical 
simulations. Particulate matter is shown to form fractal clusters in 
the dissipative range, with properties independent of the number 
of Reynolds. Conversely, in the inertial zone, the distribution of 
the particle is not a scale-invariant. Deviations from uniformity 
are dependent on the rescaled contraction rate rather than the 
local Stokes number. Particle distribution is characterized by voids 
covering all the scales of the turbulent flow; their hallmark on the 
coarse-grained distribution of the probability mass is the algebraic 
action at small densities.

In summary, some studies investigated biomass particle 
clustering. Dewei Qi [28] used a process known as Lattice-
Boltzmann to test suspensions of both spherical and non-spherical 
particles under low Reynolds number flow conditions. Matuttis et 
al. [29] used the Discrete Element Method (DEM) to model particle 
tracing/motion in turbulent flow. Roberto [30] studied fluid/
particle interactions and provided additional intensity effects on 
particle clustering. Lightstone & Raithby [31] proposed a new model 
for predicting the motion/tracing of particles in a turbulent flow 
at clustering conditions; the model takes into account interactions 
between particles and turbulent gaseous fluids. Mckay et al. [32] 
presented a simulation method using the Galileo number (Ga) as a 
function of particle size, particle density, fluid density and viscosity. 
In conclusions, the early studies reported that the particle clustering 
model varied in terms of particle shape and size, and clustering 
should be addressed carefully in the biomass particle combustions. 
Biomass clustering influences strongly on ash produced biomass 
combustion. Biomass ash causes a lot of operational issues during 
biomass processing, combustion and pollution. For example, 
biomass ash silicone is the main contributor to the wear of the 
blades of the size reduction unit. Potassium and calcium cause heat 
exchanger fouling and sluggishness in the bottom of the furnace. 
They include the shutdown of equipment on a regular basis, a 
decrease in the running time of the production units and also an 
increase in maintenance costs. The quantitative analysis of biomass 
ash content is therefore important for the design of the plant. 
Sometimes a pre-treatment leaching process is needed to remove 
ash from biomass prior to downstream processing. This helps to 

promote an effective and economical downstream process with 
high-quality output. The ash content of the oven-dried biomass 
was measured using the technique NREL/TP-510-42622. Biomass 
ashes are composed of Cl and S, with major elements (Al, Ca, Fe, K, 
Mg, Na, P, Ti, Si) and minor or trace elements (As, Ba, Cd, Co, Cr, Cu, 
Hg, Mn, Mo, Ni, Sb, Pb, Tl, V, Zn). Compared to coal, biomass usually 
shows higher amounts of Mn, K, P, Cl, Ca, Mg, Na, O and H, and lower 
amounts of ash, Al, C, Fe, N, S, Si, and Ti, respectively.
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