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Introduction
To date pillar design equations are derived empirically, the most frequently used is the 

Hedley-Grant equation with various subscripts/parameters for different mines and rock 
types. Figure 1 shows the predicted strength for the same rock type using generally used 
equations as well as some based on the FLAC2D/Hoek Brown, FLAC2D/strain softening 
programme, and [1]. Three “sets” are obtained using the basic Hedley-grant format, with [2] 
equation the highest, Ryder’s (although a linear variation) intermediate and Hedley-Grant the 
lowest. The difference is such that sensible comparison is out of the question and answers for 
the disparity, and correction thereof, needs urgent attention. Also shown are results obtained 
from using FLAC2D HB and strain softening simulations which tend to add to the variation in 
results. Back analysis for calibration purposes also depends on the reliability of the calculated 
pillar stresses obtained using the Tributary Area Theory, Texan, Minsim or other numerical 
methods. The results obtained by different methods can vary considerably dependent on the 
practitioner, numerical method, geometry and elastic constants used. 

Figure 1: Pillar strengths for the same rock type using different pillar 
strength equations [1,9].
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Abstract
The design of stable pillars in bord and pillar workings has been the subject of many papers using various 
versions of the empirically derived Hedley-Grant pillar strength formula. A compilation of results using 
different exponents and strength constant combinations can give similar strength values for the same 
pillar geometry. In addition, the volume of the pillar affects the strength increasing or decreasing for the 
same w/h ratios depending on the volumetric dimensions. It is concluded that the empirical approach 
needs to be enhanced by an analytical methodology. The paper discusses the use of an alternative failure 
criterion in conjunction with an analytic stress distribution to calculate the strength/failure of pillars and 
comparing these with observed pillar stability. The proposed methodology simulates progressive fracture 
development in the pillar with increase in pillar stress. It is concluded that the method is a possible 
improvement on current pillar strength determinations.
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The current approach is based on: 

a.	 Examine the inherent properties of the Hedley-Grant equation 
and illustrate the potential problems. 

b.	 Using an alternative empirical failure criterion obtained from 
strength curves of three-dimensional laboratory strength tests. 

c.	 Use FLAC2D in conjunction with the proposed empirical 
criterion to predict the strength of individual pillars.

d.	 Compare the results with recently observed published pillar 
stability data.

A FISH function in FLAC2D, appendix 1, was developed to 
simulate the full stress deformation curve from initiation to failure 
and residual stress level. The method is then used to compare 
the calculated pillar strength, failure, with measured data. It is 
concluded that the method has the possibility of enhancing the 
current design procedure by elucidating the mechanism of pillar 
failure, stress distribution, composition, planes of weakness and 
how these influence the pillar when subjected to loading.

The Hedley-Grant formula

The basic Hedley-Grant formula 

p kw hα βσ =  (1)

 Where σp= Pillar strength

 k=Rock strength factor

 w=Pillar width

 h=Pillar height

 α=Constant

 β=Constant

The formula requires calibration for each individual mine and 
portions of a mine which is not available in the planning stages. 
It also has the problem that the actual dimensions of the pillar 
play a role in the strength calculated. For the same w/h ratio, the 
strength of the specific pillar changes with the dimensions thereof. 
Figure 2 shows that for the same w/h ratio, a 2m and 4m high 
pillar, the strength differs, increasing or decreasing dependent on 
the α and β values. For the same w/h ratios, the strength increases 
with increase in height while for the conventional exponents the 
strength decreases with increase in height. This effect has nothing 
to do with the pillar properties but is a mathematical function. (The 
overlap equation has one exponent only and does not exhibit this 
effect). The effect can only be removed by changing the k value 
from 67 to 53MPa for the Watson formula while 67 to 80MPa for 
the conventional. It is concluded that different calibrations are 
required not only for different rock types, geotechnical areas and 
mine but also for changes in stopping width/pillar volume.

Figure 2: Pillar strengths for stope widths of 2 and 4m, with the same w/h ratio, Watson [3] and the “conventional” 
Hedley-Grant, α and β=0.5 and 0.75 respectively.

The k value is the only parameter somehow related to the 
uniaxial compressive strength, varying widely between 30 to 70% 
of the uniaxial compressive strength. The α and β values have no 
apparent relationship with the rock mass. The result is that various 
combinations, such as listed in Table 1, give the same pillar strength 
as illustrated in Figure 3, plotted in conjunction with observed 
failed and intact pillars [3]. For the data base between 2 and 7m 

wide pillars, any one of the listed formulae can be used. Beyond 
7m width, observational data is insufficient except that the lower 
curves give a better separation than the [3], curve. There is no 
logical basis for these differences and the only way to obtain the 
correct answer for a specific mine is to start mining and then, on 
the basis of observation, establish whether the initial design using 
industry averages, is adequate. Not an auspicious design procedure.
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Figure 3: Strength curves for possible combinations listed in Table 1.

Table 1: k, α and β values that give similar strength values for a specific data range.

k Value α β

Watson 2021 67 0.67 -0.32

H-G 110 0.5 -0.75

Estimates 110 0.4 -0.4

100 0.45 -0.5

90 0.4 -0.2

Alternative Failure Criterion
Kersten [1] attempted to obtain a generic pillar strength 

equation based on the Hoek Brown strength equation in conjunction 
with FLAC2D modelling. The result was a cumbersome process of 
little practical use. One of the main problems was the determination 
of the mi constant which, according to Hoek & Brown [4], is a 
function of tensile strength and uniaxial compressive strength. 
Hoek et al. [4] proposes that for normalized strength distributions 
there is a standard 6MPa cutoff for the tensile strength. This implies 
that for an increase in uniaxial compressive strength there will be 
an associated increase in the mi value which is not necessarily 
axiomatic and not borne out by numerous laboratory tests. The 
proposed alternative empirical fracture criterion is based on the 
direct curve fitting, similar to the Hoek Brown criterion, to available 
laboratory strength determinations, [5]. Figure 4 is an example 
for Lac du Bonnet granite [6] with two curves superimposed: the 
proposed power function as well as the Hoek Brown formulation. 
The two curves are identical since the basis for the equations 
are based on the same principle. To test the procedure, several 
suites of relevant laboratory strength test results (Table 2) were 
investigated in the same manner and the power function obtained 
can be expressed by: 

( )1 3rkbp
rkm

c

σ
σ

σ
= + ⋅

   
(1)

 Where σp = Specimen strength

 rkm = Slope of curve

 rkb = Exponent

 σ3 = Minimum principal stress 

 σci = Uniaxial compressive strength derived from triaxial data 
sets.

Table 2: Parameters for different rock types obtained by 
curve fitting [5].

rkm rkb MPa

Anorthosite 0,120 0,780 186

Norite 0,140 0,690 154

Pegmatoid 0,180 0,700 84

Granite 0,180 0,620 220

Green SS2 0,180 0,680 40

Pyroxenite 0,200 0,710 103

UG2 Comp 0,250 0,700 72

Red SS 1 0,250 0,630 43
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Figure 4: Comparison between laboratory data, the fitted power function and the predicted strength curve using 
the Hoek-Brown failure criterion which are identical.

The proposed simplified equation relies on clearly defined 
“constants”:

a.	 rkm is a function of the slope of the strength curve, or the 
coefficient of internal friction, and 

b.	 rkb the deviation from linearity of the internal coefficient of 
friction 

c.	 The uniaxial compressive strength based on three-dimensional 
laboratory results, the σci as defined by Hoek [4].

d.	 To incorporate the effect of the degradation of rock mass, 
expressed by the GSI value of Hoek and Brown, a factor rks is 
introduced in equation 1.

( )1 3rkb rksp
rkm rks

c rks

σ
σ

σ
⋅= + ⋅ ⋅

⋅

    
(2)

e.	 No questionable tensile test results or assumptions are 
required.

The last aspect is deemed acceptable for underground 
excavations since most induced fracturing occur in a compressive 
environment while the Hoek Brown criterion also caters for open 
pit mining where tensile stresses may need to be incorporated.

Methodology
The strength given by equation 1 requires the uniaxial 

compressive strength obtained from triaxial data, the σci of the 
Hoek Brown system, the rkm value which gives the slope of the 
stress increase due to the effect of the minimum principal stress 
which is a function of the coefficient of internal friction. The rkp 

value defines the deviation from linearity of rkm a function of the 
influence of the minimum principal stress. All four parameters are 
clearly defined by laboratory data obtained from tri-axial tests. In 
reality, the laboratory results are for intact selected specimen and 
need to be modified when representing the semi-failed rock mass, 
for this purpose a parameter, rks, is introduced. This parameter is 
equivalent to the geological strength index, GSI, and is fulfilling the 
same function. Figure 5 illustrates the effect of changing the rks 
value from 0.9 to 0.6. The plot of rks=1 has been excluded as the 
strength of an 8m wide pillar consisting of laboratory type material 
is 5100MPa and still increasing exponentially for wider specimen. 
The above effect explains the fact that if laboratory data, without 
adjustments, the predicted pillar strengths increase exponentially 
as rks approaches 1 [1]. The selection of the rks value is the only 
parameter in the equation that needs to be determined empirically 
by calibration.

Failure progresses across the pillar with increase in stress, 
resulting in lower resistance of the failed rock and reducing the 
average strength of the pillar as fracture proceeds within the pillar 
resulting in an overall residual strength of the pillar. This effect is 
simulated by introducing a parameter rkss, an estimate at this stage 
as only a few residual strength values are available [2,3]. In the 
attached FISH function, the rks value is replaced by the rkss value 
after the strength of a nodal point has been exceeded. (The reaction 
of the failed material requires a more rigorous approach as that 
given above and additional formulation is investigated). Having 
developed a semi-analytic methodology for calculating pillar 
strength it is possible to determine a host of information of a pillar 
reacting to loading. For example, Figure 6 shows the upper quarter 
of a circular pillar with the position of individual nodal positions in 
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the pillar for which the stresses are calculated Figure 7. The results 
for the individual nodal points are shown in Figure 7 on the left-
hand side, the straight line from the origin depicts the average pillar 
stress while the curves show the pillar strength/resistance for the 
individual nodes defined by the numbers. The right hand shows 

the increase in the fracture zone (blank space) with increase in the 
average pillar stress. The initial predicted failure commences at the 
top corner of the pillar, a feature observed in every pillar the author 
has seen. 

Figure 5: Graph illustrating the effect of change in the rks value, from 0.9 to 0.6.

Figure 6: Position of history points where for calculating the individual strength of nodal points.
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Figure 7: Progressive fracture development at various positions in a pillar with increase in stress level.

Calibration, Comparison with Underground Pillar 
Surveys

The initial calibration is a comparison of laboratory data with 
predicted values using the KISpostf.dat file, using the laboratory 
obtained parameters, sigc, rkm and rkb and rks=1. An estimated 
rkss value of 0.3 was incorporated. The predicted values using the 
KISpostf.dat file in (Figure 8) is identical to those given in Figure 4. 
This is not surprising since the same “constitutive” equation is used. 
What it, however, shows are that the overall FISH function appears 

to simulate reality. For calibrating actual pillar behavior, data 
from experimental sites at Impala Platinum mine [7], Two Rivers 
Platinum mines [1] and Boysendal Platinum mine [3] are used. A 
recent study by Watson et al. [3] on pillar stability on a UG2 reef 
mine provides an excellent data set for pillars with different width 
for a constant height of 1.9m and their failed/stable classification. 
The KISpostf.dat program, Appendix 1, was used to calculate the 
strength of the listed pillars. The strength determined clearly 
separates the failed and solid pillars. Figure 9 is a composite plot 
of failed, stable pillars, and the strength predicted using Watson [3] 
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formula and the KISpostf.dat methodology. The generally assumed 
exponential increase in strength is not shown by either the observed 
or the predicted delineation; the flatter curve obtained using the 

FLAC2D program appears to be more realistic but not conclusive 
because of the sparsity of data for the wider pillars.

Figure 8: Comparison between laboratory test data and calculated using KISpostf program.

Figure 9: Plot of failed and stable pillars and FLAC2D-RK, (KISpostf.dat) simulation with a loading rate (1e-
7) and sigc=130MPa, rkm=0.25, rkb=0.7 and rks=07. Also shown are the results obtained using the Watsons 
equation [3].

The Watson curve is steeper than the FLAC2D RK curve and 
incorporates more failed pillars than predicted. On the other hand, 
the FLAC2D RK curve is very “flat” and differs from the generally 
accepted expectation for the pillar strength to increase with increase 
in the pillar width. This aspect is discussed further in section 5 
incorporating the post-failure stress regime by modification of 
the KIS postf.dat file. An additional comparison with observation 

using is a stress strain diagram [3] for the stress distribution above 
a pillar, Figure 10, showing the increase in stress with increase in 
mining, a plateau, and a sudden drop to a residual value of 40 MPa. 
A similar pillar was modelled using the FLAC2D-RK program with 
the result shown in Figure 11. The importance is the similarity 
between (Figures 10 & 11), since detail of the pillar dimensions 
and is unknown. A detailed analysis and underground inspection 
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of pillar stability at Two Rivers Platinum mine [1] did not find any 
failed pillars but there was a distinctive fracture initiation at the 
corners of the pillars, induced stress fracturing, possibly enhanced 
by the blasting effect, which was used for calibration. The constants 
used were rkm=0.25, rkb=0.71, rks=0.5, rksigc=130 and effective 
pillar width of 6.2m and height of 2.6m. Figure 11 shows the stress 
distribution and the extent of the fracture zone. The reigning 
average pillar stress on these pillars, 49MPa, was obtained using 
the system pillar equilibrium method [1] with the pillar strength 
and the average pillar stress in (Figure 12), 53MPa, was obtained 
using the FLAC2D method. The predicted failure coincides well 

with the observed fracturing underground. Data collected at Impala 
Platinum mine by Piper & Flannigan [7] was used for calibration 
purposes with parameters rkm= 0.2, rkb=0.71, rks=0.6, rksigc=120, 
values determined from curve fitting to Merensky reef laboratory 
strength data, with an effective pillar width of 5.2m, 1.8m high, were 
used. The equilibrium field stress on the pillars calculated using the 
system pillar equilibrium method was 119MPa [1]. Simulating the 
same conditions with KISpost.dat shows that at a stress of 120MPa 
the predicted fracture zone (Figure 13), is 0.5m, the same as the 
average of 0.5m measured by Piper & Flannagan [7].

Figure 10: Stress-strain diagram of pillar stress measurements in the hanging wall of a UG2 pillar [3].

Figure 11: Average pillar strength, (MPa) vs y displacement of a 1.9m high pillar using the FLAC2D RK program.
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Figure 12: Average pillar stress and pillar strength at stage where fracture initiation commences at the corner 
of the pillar, Two Rivers Platinum mine.

Figure 13: Average pillar stress and pillar strength with extent of the predicted fracture zone of grid pillars at 
Impala Platinum mine.

Discussion
The example of the influence of three independent variables 

that can be defined arbitrarily used in the Hedley-Grant equation 
showed the need to reduce the number of variables and that 
these should be defined as accurately as possible. The proposed 
four variables, rkb, rkm, sigc are clearly defined values for a data 
set with rks the only estimated parameter. The rks is equivalent 
to the geological strength index, GSI. The post-failure strength of 
the rock is required since it affects the pillar strength a parameter, 
rkss, is required. The only way of establishing these parameters, 
calibration is required for a full pillar strength determination. The 
rks parameter is a measure of the tectonic history of the rock mass, 
in a microscopic as well as macroscopic sense, same as the GSI value 
but on a macroscopic scale. The rkss value is seen as a continuation 
of the “tectonic”/mining disturbance of the rock mass and hence 
will result in a similar reduction in strength hence the substitution 
in equation 2 of rks by rkss for the post failure regions.

Since the rks parameter has a significant effect on the pillar 
strength and that it is the one parameter that is not clearly defined 
it is necessary to determine its effect on the overall design pillars. 
Figure 14 is a plot of the effect of changes in the rks value for various 
w/h ratios of pillars. The effect becomes predominant rks >0.8 for 
w/h>2. A rks of 0.7 to 0.73 was found to be appropriate for w/h 
ratios, pillar widths 2 to 10m for UG2 chromitite in the back analysis. 

It is clear that for detail design purposes a sensitivity analysis is 
required for a planned mine design and that the probable deviations 
from the estimated values must fall within the selected factor of 
safety. A relationship between the GSI and rks values is most likely 
and would enhance our understanding of rock mass response. The 
Youngs modulus and Poissons ratio has no discernable effect on the 
pillar strength. It becomes important when stress-strain diagrams 
are required [8-10]. The KISpostf.dat file is controlled by the elastic 
model, mod e, which gives an apparent realistic result for the pillar 
strength but does not include the effect of the stress changes in the 
pillar due to consecutive nodal failure. Using the Mohr model as a 
basis, mod mo, the effect is incorporated in KISmohr.dat file with 
resultant increase in pillar strength (Figure 15), due to the effect 
of the stress change introduced in the mo model. (Note that the 
strength curve is still a function of equation 1). The KISpostf.dat, 
mod e, results in (Figure 9) are lower and for the curve in (Figure 
15), (mo-based derivation). To obtain comparative results, the rks 
was increased to 0.73 (mode) instead of 0.7 and plotted in Figure 
15. The current KISpostf.dat file needs to be changed to incorporate 
this effect but is beyond the capability of the author to do so. 
The conceptual program KISpostf.dat is a conceptual design and 
requires optimization and further testing to define its applicability 
and limitations. Once this has been defined it can be expanded to 
more complex geometries with interfaces, joints etc.
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Figure 14: Effect of changes in the rks value for change in the w/h ratio of the pillar.

Figure 15: Comparison of pillar strength between the elastic model with rks=0.73 and the Mohr model.

Summary and Conclusion
The main disadvantage of the empirical criteria used currently 

is that the “constants/parameters” do not all appear to be based on 
actual physical quantities. In this paper it is attempted to reduce the 
number of unknowns or replaced with clearly defined quantities. 
The proposed methodology is a combination of an empirical 
failure criterion based on measurable physical properties, or 
failure “constitutive law”, of rock, and an analytical procedure. It 
is concluded that the methodology has a distinct advantage on the 
equations used to date for predicting the strength of pillars. The 

proposed methodology is an attempt to form a simple platform 
on which it will be possible to incorporate the influence of planes 
of weakness in the pillar and sensitivity analysis. The program 
in Appendix 1 should not be seen as final as alterations and 
improvements must be introduced with optimization and wider 
application. 
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Appendix 1
new

ti

Elastic Model for calibration

config axi ext=6 ; Axial geometry and provision for including the failed zone. 

gr 40,15 ; Grid

gen 0,0 0,.95 3,.95 3,0 ;half height and radius of pillar

mod e ;elastic model 

;Chromitite

prop bu=83e3 sh=39e3 d=.003 

; Circular pillar FISH function for calculating the total force and average pillar stress, aps.

def load

  sum2=yforce(1,jgp)*x(2,jgp)*0.25

  loop i (2,igp)

   sum2=sum2+yforce(i,jgp)*x(i,jgp)

  end_loop

  ftot = 2.*pi*sum2

; (Total area of pillar - axi-symmetric mode)    

  _area = pi*x(igp,jgp)*x(igp,jgp)                 

  load  = ftot

  aps   = ftot/_area

end

; average pillar strength curve,psc, of line across pillar on j=2, (can be optimised.)

def long_sum 

   f1=ex_1(1,2)+ex_1(3,2)+ex_1(5/2)+ex_1(7,2)+ex_1(9,2)+ex_1(11,2)+ex_1(13/2)+ex_1(15,2)+ex_1(17,2)

   f2=f1+ex_1(19,2)+ex_1(21,2)+ex_1(23/2)+ex_1(25,2)+ex_1(27,2)+ex_1(29,2)+ex_1(31/2)+ex_1(33,2)

   long_sum=f2+ex_1(35,2)+ex_1(37,2)+ex_1(38/2)+ex_1(39,2)+ex_1(40,2)

end

def psc

   psc=long_sum/23 

end

; Function obtaining average pillar resistance over the width of the pillar.

def apr

apr=(ex_3(1,2)+ex_3(5,2)+ex_3(10/2)+ex_3(15,2)+ex_3(20,2)+ex_3(25,2)+ex_3(30/2)+ex_3(35,2)+ex_3(39,2))/9

end
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his psc

his apr

; create quarter symmetry

fix y j=1

*fix y x j=1                                 

fix y x j=16

fix x i=1

;apply sxx=-40 i=41; for triaxial test modelling

ini yv -.5e-7 j=16 ; results are sensitive to velocity settings and requires initial test runs to obtain stability.

his aps

his load

his ex_1 i=5 j=2 ; nodal strength at given i and j

his ex_1 i=20 j=2

his ex_1 i=30 j=2

his ex_1 i=35 j=2

his ex_1 i=37 j=2

his ex_1 i=38 j=2

his ex_1 i=10 j=2; Ratio of applid maximum principal stress and strength at specified nodal points.

his ex_1 i=20 j=2

his ex_1 i=30 j=2

his ex_1 i=5 j=2

his yd i=1 j=16

his u ; History of unbalanced forces.

; Basic Peter Cundall formulation

def RK

  loop i (1,izones)

    loop j (1,jzones)

          sdif = sxx(i,j) - syy(i,j)

      s0   =  0.5 * (sxx(i,j) + syy(i,j))

      rad  =  0.5 * sqrt(sdif*sdif + 4.0 * sxy(i,j)^2)

; --- principal stresses sp1, sp2 ; note: compressive is negative ---

      sp1  =  s0 - rad

      sp2  =  s0 + rad

      ex_1(i,j) = sp1

      ex_2(i,j) = sp2  ; can plot ex_1, ex_2, to compare to sig1, sig2

      sp1pos    = abs(sp1) ; take positive compressive for formula
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      sp2pos    = abs(sp2)

;--- Rudi’s formula ---

; Extension of basic Cundal formulation.

; Introducing the changes at failure at individual nodal point failure, rks

      if ex_1(i,j)#0 then

      ex_3(i,j)=rksigc*rks*rkm*rks*(sp2pos(i,j)^(rkb*rks)) + rksigc*rks

      end_if

; Introducing the changes at failure at individual nodal point failure, rkss

      if sp1pos(i,j)>=ex_3(i,j) then 

      ex_1(i,j)=-(rksigc*rkss*rkm*rkss*(sp2pos^(rkb*rkss)) + rksigc*rkss)

      end_if

      if sp1pos#0

      ex_4(i,j)=sp1pos(i,j)/ex_3(i,j); ratio of strength/stress.

      ex_5(i,j)=ex_2(i,j)/ex_1(i,j) ;  k-ratio

      end_if

      endLoop

  endLoop

end

def supstep

   RK

  if ns=0 then

     ns=5

   end_if

   command

      step ns

      print k

   end_command

end

def supsolve

  loop k (1,nsup)

   supstep

 end_loop

end

set rksigc=130 ;Laboratory test data values for formula

set rkb=.71;Laboratory test data values for formula

set rkm=.25 ; Laboratory test data values for formula
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set rks=.73 ; “GSI” or tectonic effect

set rkss=.2 ; Postfailure strength, extension of “GSI” or tectonic effect.

set nsup=1200 ns=10 ; note, FLAC will cycle nsup*ns times

supsolve

plot b ex_3 zone fi ; stress/strength ratio

plot b ex_4 zone fi max 1; Plot of failure zone

pl b sig1 fi ; Elastic stress 

plot b ex_5 zone fi ; k ratio

plot his -1 2 3 -5 -6 -7 -8 -9 -10  ; plot of aps, apf, apr and nodal strength values

plot his -1 2 3  ; plot of aps, apf and apr, essentially the same.

plot his -1 vs -15

; to simulate detailed progresssive fracture zone growth

pause

set nsup=50 ns=20 ; note, FLAC will cycle nsup*ns times

supsolve

pause

set nsup=50 ns=20 ; note, FLAC will cycle nsup*ns times

supsolve

pause

set nsup=50 ns=20 ; note, FLAC will cycle nsup*ns times

supsolve

pause

set nsup=50 ns=20 ; note, FLAC will cycle nsup*ns times

supsolve

pause

set nsup=50 ns=20 ; note, FLAC will cycle nsup*ns times

supsolve

pause

set nsup=50 ns=20 ; note, FLAC will cycle nsup*ns times

supsolve

pause

set nsup=50 ns=20 ; note, FLAC will cycle nsup*ns times

supsolve

pause

set nsup=50 ns=10 ; note, FLAC will cycle nsup*ns times

supsolve

pause
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