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Mathematical Modeling of Solid-Liquid Interface 
Morphology in The Process of Polycrystalline  

Silicon Directional Solidification

Introduction
Directional solidification is an important process in the 

physical purification of polycrystalline silicon, the solid-liquid 
interface morphology in solidification process is directly related to 
grain size arrangement, grain length and stress distribution [1,2], 
therefore, the study of the solid-liquid (S-L) interface morphology 
has important technological value for improving the quality of 
purification. At present, the theoretical research of S-L interface 
in directional solidification is often simulated by numerical 
simulation software [3,4], but the numerical method cannot reveal 
the intrinsic relation of the parameters, and the analytic method 
is almost ignored [5,6]. The analytic method, as an exact solution, 
has an irreplaceable use for the design, process control and  

 
experiment of the directional solidification Equipment. we use the  
two-dimensional mathematical model instead of one-dimensional 
analysis, it can not only display the interface morphology visually, 
but also analyze the key parameters, and provide reference for the 
experiment [7].

Make the following instructions for modeling: 

A. The S-L interface occupies only a thin area of the silicon 
melt, the vertical axis of the melt is set to y, using the symmetry 
of the crucible. The bottom boundary of thin area W×Δ is set to 
x axis, so W×Δ is the computational area (Figure 1). Because the 
area is very thin, the latent heat of solidification released can 
fill the entire area. 
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Abstract

 Two-dimensional mathematical modeling of solid-liquid interface during directional solidification of polycrystalline silicon is established by 
analytic method. This mathematical model quantitatively reveals the mathematical principle of the solid-liquid interface and can be used to analyze 
the key parameters affecting the interface morphology. The results of modeling indicate that the interface morphology is related to the boundary 
temperature distribution of the interface and the heat flux of the crucible sidewall, and the latter is the key factor affecting the interface morphology.
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Figure 1: Computational area.
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B. The melting temperature of silicon (Tm =14230c) is 
definite, the discussion of any silicon melt height can represent 
the whole process of solidification.

Modeling and solving
Because the latent heat is released in solidification process, the 

system has an internal thermal source, so the temperature field 
satisfies the Poisson Equation, such as Eq. (1) ¶2t

¶x2 +
¶2t
¶y2 +

s
l
= 0  [1]

In Eq. (1),
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In Eq. (2),
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t x The distribution function temperature y
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In Eq. (2), x = 0 is symmetrical axis of the crucible, due to the 
symmetry of the temperature field, this is Equivalent to a insulation 
surface ( 0t

x
λ ∂

− =
∂

). x = W/2 is at the edge of the computational area 
(silicon and crucible contact), there may be heat exchange (heat 
flux q) with the outside world.

1. When the q > 0, the heat flux is the x axis positive direction, 
this means that the computational area is losing heat;

2. When q < 0, the heat flux direction is negative along the x 
axis, this means that the computational area is obtaining heat;

3. When q = 0, there is no heat exchange, the computational 
area is adiabatic.

Eq. (1) is a Poisson Equation with non-homogeneous boundary 
conditions, and it is difficult to find the analytic solution directly. 
The additive (superposition principle) of the differential Equation 
can be used to convert the Eq. (1) to the sum of Eq. (3) (containing 
the inner heat source) and Eq. (5), (7) (two Laplace Equations 
which do not contain the internal thermal source), and then solve.
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The analytic solution of Eq. (1) can be expressed as

1 2 3( , ) ( , ) ( , ) ( , )t x y t x y t x y t x y= + +                                 [9]

Solve Eq. (3) It is difficult to solve the Poisson Equation directly, 
and it is generally necessary to convert it to Laplace Equation, and 
make the following transformation:

2
1( , )u t x y y y= + −∆ ⋅                                                          [10]
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Because u is the function of x and y, let

( ) ( )u X x Y y= ⋅                                                                           [13]
Put Eq. (13) into Eq. (11),
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In Eq. (15), 
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contains y coordinate. To substitute any x, y to make Eq. (15) correct, 
and Eq. (15) needs to be Equal to a constant. Let the constant = k2.
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A0, B0, C0, D0 need to be determined. Let

0 0 0 0( ) ( ) ( )( )u X x Y y A x B C y D= ⋅ = + +                                           [19]

When k≠0,
( ) ( ) ( )
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                                                             [20]

Similarly, A, B, C, D need to be determined. Let
 [ ( ) ( )][ sin( ) cos( )]u A sh kx B ch kx C ky D ky= ⋅ + ⋅ ⋅ + ⋅  [21]

Because trigonometric functions are cyclical, k can be Equal to 
a series of specific values kn (n=1,2,3…).
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According to Eq. (12), we can get
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Eq. (23) can be transformed into
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combined to solve, we have

1
[ ' ( )sin( )]

2n
n

n n W n qA sh yπ π π
λ

∞

=

= −
∆ ∆ ∆∑                                [26]

Let
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Make Eq. (27) Fourier expansion in the interval (0, )∆ . First of 
all, to do the odd extension,
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Calculate Fourier coefficients,
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Get the Fourier expansion:

1

4( ) ( sin )
n

q nf y y
n

π
λ π

∞

=

= −
∆∑  ( 1,3,5 )n = ⋅⋅⋅                                [31]

Eq. (31), Eq. (26) and (27) are combined to solve,
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Put Eq. (32) into Eq. (25), the analytic solution of Eq. (11) is
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Put Eq. (33) into Eq. (10), the analytic solution of Eq. (3) is
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Then, solve Eq. (5), similar to Eq. (3), the separation variable 
method is also used to solve the problem. The analytic solution of 
Eq. (5) is
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Finally, to solve Eq. (7), Because Eq. (6) and (8) are symmetrical, 
the analytic solution of Eq. (7) can be deduced by Eq. (35).
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Put Eq. (34), (35), (36) into Eq. (9), the temperature distribution 
expression t(x,y) in computational area can be obtained.

Discussion
Because the S-L interface is a phase-change surface, the 

interface is the isothermal surface of 1423 0C. According to Eq. (34-
36), the S-L interface morphology is mainly related to q and tΔ(x), 
but the analytic solution is very complex, there are many variable 
parameters, it is difficult to analyze directly. By trial calculation, 
we know that the q value has the greatest effect on the result. 
and its value change has a decisive influence on the temperature 
distribution. Therefore, the heat flux q is the focus of the discussion 
object. 

It is assumed that the boundary temperature of the 
computational area is constant. Eq. (2) can transform to
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Solve Eq. (1) on the boundary conditions of Eq. (37). Let
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Solve Eq. (38) by the separation variable method.
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        As shown in Eq. (40), the t(x, y) expression is in the form of a 
triangular series and can draw its function image using commercial 
mathematical software. Draw images by several different values 

of the heat flux q. As shown in Figure 2, the computational area 
W×Δ is properly thickened for looking. The dotted line in Figure 2 
represents the S-L interface.

Figure 2: The S-L interfaces in different heat flux.
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In Figure 2, when q > 0, the S-L interface shows concave shape, 
the degree of curvature increases with the increase of q value, 
and the level S-L interface is at q = 0, which is theoretically ideal. 
It should be explained that, the interface shape is not simple and 
evenly curved by Eq. (40), but in general, the concave, convex trend, 
its curvature radius is non-uniform, not a certain circle of arc. 

To obtain the vertical growth of large-size grains, the directional 
solidification process needs to maintain the S-L interface level, 
from the above analysis, the side wall heat exchange (heat flux 
q) has a direct impact for interface morphology, so need to do a 
good sidewall insulation. However, in fact, there is always a heat 
exchange because of heater layout, heat dissipation, material 
performance limitations, control errors and other factors. From the 
above discussion, the key to determine the level of S-L interface is 
to make the interface on the same isothermal surface. such as in 
the directional solidification process, focus on the control of the S-L 
interface area (W×Δ), temperature control in other melt areas does 
not need to be too stringent, the S-L interface can still maintain a 
horizontal shape. This can greatly reduce the difficulty and cost of 
temperature control. 

Conclusion
The following conclusions can be obtained from the above 

mathematical model:

A. The S-L interface level is Equivalent to the interface in 
the same isothermal surface, not affected by the temperature 
distribution of other melt areas.

B. In the thin area (W×Δ), the interface morphology is 
based on the heat exchange of the crucible sidewall, shows the 

upper convex, concave and horizontal shape, and the degree of 
bending depends on the direction and strength of the heat flux 
q.

When there is no heat exchange (q = 0) on the crucible sidewall, 
the S-L interface can maintain level when and only when the upper 
and lower boundary temperature of the area (W×Δ) are constants. 
This means that it can reduce the temperature control difficulty of 
the silicon melt.
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